

# Kriterien zur Bestimmung der zweckmäßigen Vergleichstherapie

sowie

# Recherche und Synopse der Evidenz zur Bestimmung der zweckmäßigen Vergleichstherapie nach § 35a SGB V

Vorgang: 2016-B-072 Crizotinib

Stand: Juli 2016

| I. Zweckmäßige Vergleichstherapie: Kriterien gemäß 5. Kapitel § 6 VerfO G-BA                                                                                         |                                                                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                      | Crizotinib                                                                                                                                                    |  |
| [zur Behandlung de                                                                                                                                                   | s ROS1-positiven nicht kleinzelligen Lungenkarzinoms]                                                                                                         |  |
| Kriterien gemäß 5. Kapitel § 6 VerfO                                                                                                                                 |                                                                                                                                                               |  |
| Sofern als Vergleichstherapie eine Arzneimittelanwendung in<br>Betracht kommt, muss das Arzneimittel grundsätzlich eine<br>Zulassung für das Anwendungsgebiet haben. | Siehe Übersicht "II. Zugelassene Arzneimittel im Anwendungsgebiet"                                                                                            |  |
| Sofern als Vergleichstherapie eine nicht-medikamentöse<br>Behandlung in Betracht kommt, muss diese im Rahmen der<br>GKV erbringbar sein.                             | Nicht angezeigt                                                                                                                                               |  |
| Beschlüsse/Bewertungen/Empfehlungen des Gemeinsamen<br>Bundesausschusses zu im Anwendungsgebiet zugelassenen                                                         | Nutzenbewertungen:                                                                                                                                            |  |
| Arzneimitteln/nicht-medikamentösen Behandlungen                                                                                                                      | <ul> <li>Crizotinib: Beschluss vom 2. Mai 2013 über die Nutzenbewertung von Arzneimitteln mit neuen<br/>Wirkstoffen nach § 35a SGB V</li> </ul>               |  |
|                                                                                                                                                                      | <ul> <li>Afatinib: Beschluss vom 8. Mai 2014 über die Nutzenbewertung von Arzneimitteln mit neuen<br/>Wirkstoffen nach § 35a SGB V</li> </ul>                 |  |
|                                                                                                                                                                      | <ul> <li>Nintedanib : Beschluss vom 18. Juni 2015 über die Nutzenbewertung von Arzneimitteln mit<br/>neuen Wirkstoffen nach § 35a SGB V</li> </ul>            |  |
|                                                                                                                                                                      | Ceritinib: Beschluss vom 17. Dezember 2015 über die Nutzenbewertung von Arzneimitteln mit<br>neuen Wirkstoffen nach § 35a SGB V                               |  |
|                                                                                                                                                                      | Nivolumab : Beschluss vom 4. Februar 2016 über die Nutzenbewertung von Arzneimitteln mit<br>neuen Wirkstoffen nach § 35a SGB V                                |  |
|                                                                                                                                                                      | <ul> <li>Crizotinib (neues AWG): Beschluss vom 16. Juni 2016 über die Nutzenbewertung von<br/>Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V</li> </ul> |  |
|                                                                                                                                                                      |                                                                                                                                                               |  |
|                                                                                                                                                                      |                                                                                                                                                               |  |
|                                                                                                                                                                      |                                                                                                                                                               |  |
|                                                                                                                                                                      |                                                                                                                                                               |  |

| I. Zweckmäßige Vergl                                                                                                                                         | eichstherapie: Kriterien gemäß 5. Kapitel § 6 VerfO G-BA                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                              | Crizotinib                                                                                                                                                                                                                                                                                                                                            |
| [zur Behandlung des ROS1-positiven nicht kleinzelligen Lungenkarzinoms]                                                                                      |                                                                                                                                                                                                                                                                                                                                                       |
| Kriterien gemäß 5. Kapitel § 6 VerfO                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                              | Richtlinien:                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                              | Carboplatin: Anlage VI zum Abschnitt K der Arzneimittel-Richtlinie - Verordnungsfähigkeit von<br>zugelassenen Arzneimitteln in nicht zugelassenen Anwendungsgebieten - (Stand: 26. Februar<br>2016): Arzneimittel, die unter Beachtung der dazu gegebenen Hinweise in nicht zugelassenen<br>Anwendungsgebieten (Off-Label-Use) verordnungsfähig sind: |
|                                                                                                                                                              | <ul> <li>Carboplatin-haltige Arzneimittel bei fortgeschrittenem nicht-kleinzelligem<br/>Bronchialkarzinom (NSCL) – Kombinationstherapie</li> </ul>                                                                                                                                                                                                    |
|                                                                                                                                                              | Richtlinie Methoden Krankenhausbehandlung (Stand: 7. Mai 2016); Ausgeschlossene Methoden (§ 4):                                                                                                                                                                                                                                                       |
|                                                                                                                                                              | <ul> <li>Protonentherapie beim inoperablen nicht-kleinzelligen Lungenkarzinom des UICC<br/>Stadiums IV</li> <li>Protonentherapie bei Hirnmetastasen</li> <li>Protonentherapie bei Lebermetastasen</li> </ul>                                                                                                                                          |
| Die Vergleichstherapie soll nach dem allgemein anerkannten<br>Stand der medizinischen Erkenntnisse zur zweckmäßigen<br>Therapie im Anwendungsgebiet gehören. | Siehe systematische Literaturrecherche                                                                                                                                                                                                                                                                                                                |

|                                               | II. Zugelassene Arzneimittel im Anwendungsgebiet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wirkstoff<br>ATC-Code<br>Handelsname          | Anwendungsgebiet<br>(Text aus Beratungsanforderung/Fachinformation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Zu prüfendes A                                | zneimittel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Crizotinib<br>L01XE16<br>Xalkori <sup>®</sup> | XALKORI wird angewendet bei Erwachsenen zur Behandlung des ROS1-positiven, fortgeschrittenen nicht kleinzelligen Lungenkarzinoms (nor small cell lung cancer, NSCLC).                                                                                                                                                                                                                                                                                                                                                                                        |
| Chemotherapi                                  | ۶n:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Carboplatin<br>L01XA02<br>(generisch)         | Off-Label-Indikation für Carboplatin: Kombinationstherapie des fortgeschrittenen NSCLC (palliativ)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cisplatin<br>L01XA01<br>(generisch)           | Cisplatin wird angewendet zur Behandlung des:<br>fortgeschrittenen oder metastasierten nichtkleinzelligen Bronchialkarzinoms.<br>Cisplatin kann als Mono- oder Kombinationstherapie angewendet werden.<br>(Cisplatin Teva <sup>®</sup> 1 mg / ml Konzentrat; März 2015)                                                                                                                                                                                                                                                                                      |
| Docetaxel<br>L01CD02<br>(generisch)           | Nicht-kleinzelliges Bronchialkarzinom:<br>Docetaxel ist zur Behandlung von Patienten mit lokal fortgeschrittenem oder metastasiertem, nicht-kleinzelligem Bronchialkarzinom nach<br>Versagen einer vorausgegangenen Chemotherapie angezeigt.<br>Docetaxel ist in Kombination mit Cisplatin zur Behandlung von Patienten mit nicht resezierbarem, lokal fortgeschrittenem oder metastasiertem<br>nicht-kleinzelligem Bronchialkarzinom ohne vorausgegangene Chemotherapie angezeigt.<br>(Docetaxel-ratiopharm <sup>®</sup> 20 mg/ml; Konzentrat Februar 2016) |
| Etoposid<br>L01CB01<br>(generisch)            | Etoposid ist in Kombination mit anderen antineoplastisch wirksamen Arzneimitteln bei der Behandlung folgender bösartiger Neubildunger<br>angezeigt:<br>Palliative Therapie des fortgeschrittenen nicht-kleinzelligen Bronchialkarzinoms bei Patienten in gutem Allgemeinzustand<br>(Etopophos <sup>®</sup> 100 mg/1000 mg; September 2015)                                                                                                                                                                                                                   |
| Gemcitabin                                    | Gemcitabin ist in Kombination mit Cisplatin als Erstlinientherapie von Patienten mit lokal fortgeschrittenem oder metastasiertem                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Proteinkinase                                   | -Inhibitoren:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (generisch)                                     | (Vinorelbin Hospira 10 mg/ml Konzentrat Juni 2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vinorelbin<br>L01CA04                           | Vinorelbin ist angezeigt zur Behandlung:<br>des nicht kleinzelligen Bronchialkarzinoms (Stadium 3 oder 4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vindesin<br>L01CA03<br>(Eldesine <sup>®</sup> ) | Kombinationschemotherapie:<br>Lokal fortgeschrittenes oder metastasiertes nicht-kleinzelliges Bronchialkarzinom (Stadium IIIB, IV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pemetrexed<br>L01BA04<br>(Alimta <sup>®</sup> ) | Alimta ist in Kombination mit Cisplatin angezeigt zur first-line Therapie von Patienten mit lokal fortgeschrittenem oder metastasiertem nicht kleinzelligen Lungenkarzinom außer bei überwiegender plattenepithelialer Histologie. Alimta in Monotherapie ist angezeigt für die Erhaltungstherapie bei lokal fortgeschrittenem oder metastasiertem nicht-kleinzelligen Lungenkarzinom außer bei überwiegende plattenepithelialer Histologie bei Patienten, deren Erkrankung nach einer platinbasierten Chemotherapie nicht unmittelbar fortgeschritten ist. Alimta in Monotherapie ist angezeigt zur Behandlung in Zweitlinientherapie von Patienten mit lokal fortgeschrittenem oder metastasiertem nicht-kleinzelligen Lungenkarzinom außer bei überwiegender plattenepithelialer Histologie. (Alimta <sup>®</sup> ; Februar 2016) |
| Paclitaxel<br>L01CD01<br>(generisch)            | Fortgeschrittenes nicht-kleinzelliges Bronchialkarzinom (NSCLC):<br>Paclitaxel ist, in Kombination mit Cisplatin, zur Behandlung des nicht-kleinzelligen Bronchialkarzinoms bei Patienten angezeigt, für die<br>potentiell kurative chirurgische Maßnahmen und/oder eine Strahlentherapie nicht in Frage kommen.<br>(Paclitaxel-GRY <sup>®</sup> 6 mg/ml Konzentrat; März 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mitomycin<br>L01DC03<br>(generisch)             | Mitomycin wird in der palliativen Tumortherapie eingesetzt. Bei intravenöser Gabe ist es in der Monochemotherapie oder in kombinierte zytostatischer Chemotherapie bei folgenden metastasierenden Tumoren wirksam: [] nicht-kleinzelliges Bronchialkarzinom []. (Mitomycin Teva <sup>®</sup> 1 mg/ml; Februar 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| lfosfamid<br>L01AA06<br>(Holoxan <sup>®</sup> ) | Nicht-kleinzellige Bronchialkarzinome:<br>Zur Einzel- oder Kombinationschemotherapie von Patienten mit inoperablen oder metastasierten Tumoren.<br>(Holoxan <sup>®</sup> Januar 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L01BC05<br>(generisch)                          | nichtkleinzelligen Bronchialkarzinom (NSCLC) angezeigt.<br>Eine Gemcitabin-Monotherapie kann bei älteren Patienten oder solchen mit einem Performance Status 2 in Betracht gezogen werden.<br>(Gemcitabin Kabi 38 mg/ml Konzentrat; März 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Afatinib<br>L01XE13<br>(Giotrif <sup>®</sup> )     | Giotrif <sup>®</sup> als Monotherapie wird angewendet zur Behandlung von:<br>epidermaler Wachstumsfaktorrezeptor (EGFR)-Tyrosinkinaseinhibitor (TKI)-naiven erwachsenen Patienten mit lokal fortgeschrittenem<br>und/oder metastasiertem nicht-kleinzelligen Lungenkarzinom (NSCLC, non small cell lung cancer) mit aktivierenden EGFR-Mutationen;<br>lokal fortgeschrittenem oder metastasiertem NSCLC mit Plattenepithel-Histologie, das unter oder nach Platin-basierter Chemotherapie<br>fortschreitet.<br>(Giotrif <sup>®</sup> ; März 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Erlotinib<br>L01XE03<br>(Tarceva <sup>®</sup> )    | Nicht-kleinzelliges Lungenkarzinom (NSCLC):<br>Tarceva ist zur First-Line-Behandlung bei Patienten mit lokal fortgeschrittenem oder metastasiertem nicht-kleinzelligen Lungenkarzinom<br>(NSCLC) mit aktivierenden EGFR-Mutationen angezeigt.<br>Tarceva ist auch für eine Wechsel-Erhaltungstherapie (switch maintenance treatment) bei Patienten mit lokal fortgeschrittenem oder<br>metastasiertem NSCLC mit aktivierenden EGFR-Mutationen und unverändertem Krankheitszustand nach First-Line-Chemotherapie angezeigt.<br>Tarceva ist auch zur Behandlung von Patienten mit lokal fortgeschrittenem oder metastasiertem NSCLC angezeigt, bei denen mindestens eine<br>vorausgegangene Chemotherapie versagt hat.<br>Beim Verschreiben von Tarceva sollten Faktoren, die im Zusammenhang mit einer verlängerten Überlebenszeit stehen, berücksichtigt werden.<br>Bei Patienten mit epidermalen Wachstumsfaktor-Rezeptor-(EGFR)-IHC-negativen Tumoren konnten weder ein Überlebensvorteil noch andere<br>klinisch relevante Wirkungen durch die Behandlung gezeigt werden.<br>(Tarceva <sup>®</sup> ; Januar 2016) |
| Gefitinib<br>L01XE02<br>(Iressa <sup>®</sup> )     | Iressa <sup>®</sup> ist angezeigt zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem oder metastasiertem, nicht-kleinzelligem Lungenkarzinom (NSCLC) mit aktivierenden Mutationen der EGFR-TK. (Iressa <sup>®</sup> 250 mg; September 2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Osimertinib<br>L01XE35<br>(Tagrisso <sup>®</sup> ) | Tagrisso ist angezeigt zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem oder metastasiertem, nichtkleinzelligem Lungenkarzinom (NSCLC) und einer positiven T790M-Mutation des epidermalen Wachstumsfaktor-Rezeptors (Epidermal Growth Factor Receptor, EGFR). (Tagrisso <sup>®</sup> ; März 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ceritinib<br>L01XE28<br>(Zykadia <sup>®</sup> )    | Zykadia wird angewendet bei erwachsenen Patienten zur Behandlung des fortgeschrittenen, Anaplastische-Lymphomkinase(ALK)-positiven, nicht-kleinzelligen Bronchialkarzinoms (NSCLC), die mit Crizotinib vorbehandelt wurden. (Zykadia <sup>®</sup> ; August 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Nintedanib<br>L01XE31                              | Vargatef wird angewendet in Kombination mit Docetaxel zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem, metastasiertem oder lokal rezidiviertem nicht-kleinzelligen Lungenkarzinom (NSCLC) mit Adenokarzinom-Histologie nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| (Vargatef <sup>®</sup> )                            | Erstlinienchemotherapie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | (Vargatef <sup>®</sup> ;Januar 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Antikörper:                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bevacizumab<br>L01XC07<br>(Avastin <sup>®</sup> )   | Bevacizumab wird zusätzlich zu einer platinhaltigen Chemotherapie zur First-Line-Behandlung von erwachsenen Patienten mit inoperablem fortgeschrittenem, metastasiertem oder rezidivierendem nicht-kleinzelligem Bronchialkarzinom, außer bei vorwiegender Plattenepithel-<br>Histologie, angewendet.<br>Bevacizumab wird in Kombination mit Erlotinib zur First-Line-Behandlung von erwachsenen Patienten mit inoperablem fortgeschrittenem, metastasiertem oder rezidivierendem nicht-kleinzelligem Nicht-Plattenepithel-Bronchialkarzinom mit Mutationen, die den epidermalen Wachstumsfaktorrezeptor (EGFR) aktivieren, angewendet. |
|                                                     | (Avastin <sup>®</sup> ; Juni 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Necitumumab<br>L01XC22<br>(Portrazza <sup>®</sup> ) | Portrazza ist in Kombination mit Gemcitabin- und Cisplatin-Chemotherapie indiziert zur Therapie von erwachsenen Patienten mit lokal fortgeschrittenem oder metastasiertem, den epidermalen Wachstumsfaktor-Rezeptor (EGFR) exprimierenden, plattenepithelialen, nicht-kleinzelligen Lungenkarzinom, wenn diese bislang keine Chemotherapie für dieses Stadium der Erkrankung erhalten haben. (Portrazza <sup>®</sup> ; Februar 2016)                                                                                                                                                                                                    |
| Nivolumab<br>L01XC17<br>(Opdivo <sup>®</sup> )      | Nicht-kleinzelliges Lungenkarzinom (NSCLC): Opdivo ist zur Behandlung des lokal fortgeschrittenen oder metastasierten nichtkleinzelligen<br>Lungenkarzinoms (NSCLC) nach vorheriger Chemotherapie bei Erwachsenen indiziert.<br>(Opdivo <sup>®</sup> ; Mai 2016)                                                                                                                                                                                                                                                                                                                                                                        |
| Ramucirumab<br>L01XC21<br>Cyramza <sup>®</sup>      | Cyramza ist in Kombination mit Docetaxel indiziert zur Behandlung von erwachsenen Patienten mit einem lokal fortgeschrittenen oder metastasierten nicht-kleinzelligen Lungenkarzinom mit Tumorprogress nach platinhaltiger Chemotherapie. (Cyramza <sup>®</sup> ; Januar 2016)                                                                                                                                                                                                                                                                                                                                                          |

Quellen: AMIS-Datenbank, Fachinformationen

# Recherche und Synopse der Evidenz zur Bestimmung der zVT:

| Systematische Recherche:                                              | 2   |
|-----------------------------------------------------------------------|-----|
| Indikation für die Recherche:                                         | 2   |
| Berücksichtigte Wirkstoffe/Therapien:                                 | 2   |
| Ergänzungen/Hinweise zur Auswahl der Literatur:                       | 2   |
| IQWiG Berichte/G-BA Beschlüsse                                        | 6   |
| Cochrane Reviews                                                      | 10  |
| Systematische Reviews (Erstlinientherapie)                            | 12  |
| Systematische Reviews (Zweitlinientherapie)                           | 52  |
| Systematische Reviews (beide Therapielinien)                          | 79  |
| Leitlinien                                                            | 115 |
| Ergänzende Dokumente anderer Organisationen zu möglichen Komparatoren | 157 |
| Detaillierte Darstellung der Recherchestrategie:                      | 160 |
| Literatur                                                             | 162 |
| Anhang:                                                               | 168 |

### Systematische Recherche:

Es wurde eine systematische Literaturrecherche nach systematischen Reviews, Meta-Analysen, HTA-Berichten und Evidenz-basierten systematischen Leitlinien zur Indikation **"fortgeschrittenes nicht-kleinzelliges Lungenkarzinom"** durchgeführt. Der Suchzeitraum wurde insgesamt auf die letzten 6 Jahre eingeschränkt, eine Initialrecherche erfolgte am 05.06.2015 und eine Folgerecherche wurde am 13.06.2016 abgeschlossen. Die Suche erfolgte in folgenden Datenbanken bzw. Internetseiten folgender Organisationen: The Cochrane Library (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Health Technology Assessment Database), MEDLINE (PubMed), AWMF, Clinical Evidence, DAHTA, G-BA, GIN, IQWIG, NGC, NICE, TRIP, SIGN, WHO. Ergänzend erfolgte eine freie Internetsuche nach aktuellen deutschen und europäischen Leitlinien. Die detaillierte Darstellung der Suchstrategie ist am Ende der Synopse aufgeführt.

Die Recherche ergab 1270 Quellen, die anschließend in einem zweistufigen Screening Verfahren nach Themenrelevanz und methodischer Qualität gesichtet wurden. Zudem wurde eine Sprachrestriktion auf deutsche und englische Quellen vorgenommen. Insgesamt ergab dies 69 Quellen, die in die synoptische Evidenz-Übersicht aufgenommen wurden.

### Indikation für die Recherche:

bei Erwachsenen zur Behandlung des fortgeschrittenen nicht kleinzelligen Lungenkarzinoms

### Berücksichtigte Wirkstoffe/Therapien:

Siehe Übersicht "I. Zweckmäßige Vergleichstherapie" und "II. Zugelassene Arzneimittel im Anwendungsgebiet."

### Ergänzungen/Hinweise zur Auswahl der Literatur:

- Die Leitlinien und Systematischen Reviews sind nach Erst- und Zweitlinie geordnet.
- Variationen in den Therapieregimen (z.B. Therapiedauern und zeitliche Abfolgen, Therapiezyklen, Therapiewechsel und ihre Bedingungen) wurden nicht berücksichtigt.
- Publikationen zur Radiochemotherapie wurden nicht eingeschlossen. Ebenso hier nicht berücksichtigt ist die Prothonentherapie ist (vgl. G-BA, 2011: Protonentherapie beim Nichtkleinzelligen Lungenkarzinom (NSCLC). Abschlussbericht. Beratungsverfahren nach § 137c SGB V (Krankenhausbehandlung 13. Januar 2011. Protokollnotiz: Beratungen hierzu sollen 2015 wieder aufgenommen werden).
- Studien zur Erhaltungstherapie wurden nicht eingeschlossen (<u>Hinweis</u>: Eigene aktuelle Synopse zur Beratung: Durvalumab 2016-B-066)

• Gelb markierte Literaturquellen stellen neue Evidenz, resultierend aus der Folgerecherche da bzw. beinhalten ergänzend extrahierte Inhalte die relevant für das zu beratende Anwendungsgebiet sind.

### Abkürzungen

| ACCP    | American College of Chest Physicians                              |
|---------|-------------------------------------------------------------------|
| AE      | unerwünschte Ereignisse (adverse events)                          |
| AIOT    | Italian Association of Thoracic Oncology                          |
| ALK     | Anaplastic Lymphoma Kinase                                        |
| AM      | Arzneimittel                                                      |
| ASCO    | American Society of Clinical Oncology                             |
| AWMF    | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen          |
|         | Fachgesellschaften                                                |
| BSC     | Best supportive care                                              |
| CCO     | Cancer Care Ontario                                               |
| CECOG   | Central European Cooperative Oncology Group                       |
| CI      | Konfidenzintervall                                                |
| CIS     | Cisplatin                                                         |
| DAHTA   | Deutsche Agentur für Health Technology Assessment                 |
| DOC     | Docetaxel                                                         |
| ECOG-PS | Eastern Cooperative Oncology Group Performance Status             |
| EORTC   | European Organisation for QLQ Research and Treatment of Cancer    |
|         | Quality of Life Questionnaire                                     |
| EGFR    | Epidermal Growth Factor Receptor                                  |
| ESMO    | European Society for Medical Oncology                             |
| FACT-L  | Functional assessment of cancer-lung (questionnaire)              |
| FEM     | Fixed effects model                                               |
| G-BA    | Gemeinsamer Bundesausschuss                                       |
| GEF/GFT | Gefintinib                                                        |
| GEM     | Gemcitabin                                                        |
| GIN     | Guidelines International Network                                  |
| GoR     | Grade of Recommendation                                           |
| GP      | Gemcitabin + Cisplatin                                            |
| GRADE   | Grading of Recommendations Assessment, Development and            |
|         | Evaluation                                                        |
| HR      | hazard ratio                                                      |
| ILD     | interstitial lung disease                                         |
| IQWiG   | Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen  |
| k.A.    | keine Angabe                                                      |
| KRAS    | Kirsten rat sarcoma viral oncogene homolog                        |
| LoE     | Level of Evidence                                                 |
| M+      | mutation positive (EGFR)                                          |
| NCCN    | National Comprehensive Cancer Network                             |
| NCI     | U.S. National Cancer Institute                                    |
| NGC     | National Guideline Clearinghouse                                  |
| NICE    | National Institute for Health and Care Excellence                 |
| NSCLC   | non-small cell lung cancer (nichtkleinzelliges Bronchialkarzinom) |
| OR      | Odds ratio                                                        |
| ORR     | Gesamtansprechen (overall response)                               |
| OS      | Gesamtüberleben (Overall survival)                                |
| PAX     | Paclitaxel                                                        |
| PEM     | Pemetrexed                                                        |
| PFS     | Progressionsfreies Überleben (progression free survival)          |
| PLAT    | Platinhaltige Chemotherapeutika                                   |
| PR      | Partial response                                                  |
| PS      | Performance status                                                |

| QOL/ QoL | Quality of life                        |
|----------|----------------------------------------|
| RCT      | randomized controlled trial            |
| RR       | risk ratio                             |
| SACT     | systemic anticancer therapy            |
| SR       | Systematisches Review                  |
| ТА       | Technology Assessment                  |
| TAX      | Docetaxel                              |
| TKI      | Tyrosinkinsaseinhibitor                |
| TOI      | Trial outcome index                    |
| TRIP     | Turn Research into Practice Database   |
| TTP      | Time to Progression                    |
| UICC     | Union for International Cancer Control |
| VEGF     | vascular endothelial growth factor     |
| VNB      | Vinorelbin                             |
| VS.      | versus                                 |
| WHO      | World Health Organisation              |
| WT       | wild type                              |

### IQWiG Berichte/G-BA Beschlüsse

| <b>G-BA, 2015 [23].</b><br>Beschluss über eine<br>Änderung der<br>Arzneimittel-<br>Richtlinie (AM-RL): | <b>Zugelassenes Anwendungsgebiet:</b><br>Nintedanib (Vargatef®) wird angewendet in Kombination mit Docetaxel zur<br>Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem,<br>metastasiertem oder lokal rezidiviertem nicht-kleinzelligen Lungenkarzinom<br>(NSCLC) mit Adenokarzinom-Histologie nach Erstlinienchemotherapie.                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anlage XII -<br>Beschlüsse über die<br>Nutzenbewertung                                                 | Zweckmäßige Vergleichstherapie:<br>- Eine Chemotherapie mit Docetaxel oder Pemetrexed<br>oder                                                                                                                                                                                                                                                                                                                                                                                              |
| von Arzneimitteln mit<br>neuen Wirkstoffen                                                             | <ul> <li>Gefitinib oder Erlotinib (nur f ür Patienten mit aktivierenden EGFR-Mutationen)<br/>oder</li> <li>Crizotinib (nur f ür Patienten mit aktivierenden ALK-Mutationen)</li> </ul>                                                                                                                                                                                                                                                                                                     |
| nach § 35a SGB V -<br>Nintedanib                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                        | Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber einer<br>Chemotherapie mit Docetaxel:<br>Hinweis für einen geringen Zusatznutzen                                                                                                                                                                                                                                                                                                                                                 |
| <b>G-BA, 2014 [18].</b><br>Beschluss des<br>Gemeinsamen<br>Bundesausschusses<br>über eine Änderung     | Der Gemeinsame Bundesausschuss hat in seiner Sitzung am 17. Juli 2014<br>beschlossen, die Richtlinie über die Verordnung von Arzneimitteln in der<br>vertragsärztlichen Versorgung (Arzneimittel-Richtlinie) in der Fassung vom 18.<br>Dezember 2008 / 22. Januar 2009 (BAnz. Nr. 49a vom 31. März 2009), zuletzt<br>geändert am 19. Juni 2014 (BAnz AT 09.09.2014 B2), wie folgt zu ändern:                                                                                               |
| der Arzneimittel-<br>Richtlinie (AM-RL):<br>Anlage VI - Off-<br>Label-Use Teil A                       | I. Die Ziffer III. der Anlage VI Teil A zur Arzneimittel-Richtlinie wird unter Nr. 1<br>Buchstabe j "Zustimmung des pharmazeutischen Unternehmers" wie folgt<br>geändert:                                                                                                                                                                                                                                                                                                                  |
| Ziffer III.<br>Carboplatin-haltige                                                                     | Im zweiten Absatz wird nach der Angabe "Stada Arzneimittel AG" die Angabe "Sun Pharmaceuticals Germany GmbH" eingefügt.                                                                                                                                                                                                                                                                                                                                                                    |
| Arzneimittel bei<br>fortgeschrittenem<br>nicht-kleinzelligem                                           | II. Die Änderungen treten am Tag nach ihrer Veröffentlichung im Bundesanzeiger<br>in Kraft.                                                                                                                                                                                                                                                                                                                                                                                                |
| Bronchialkarzinom<br>(NSCLC) –<br>Kombinationstherapi                                                  | Die Tragenden Gründe zu diesem Beschluss werden auf den Internetseiten des Gemeinsamen Bundesausschusses unter www.g-ba.de veröffentlicht.                                                                                                                                                                                                                                                                                                                                                 |
| e, Zustimmung eines<br>pharmazeutischen                                                                | Eckpunkte der Entscheidung (Anmerkung: aus den <u>Tragenden Gründen zum</u><br><u>Beschluss</u> )                                                                                                                                                                                                                                                                                                                                                                                          |
| Unternehmers                                                                                           | Die Firma Sun Pharmaceuticals Germany GmbH hat über die Umsetzung der<br>Empfehlung der Expertengruppe Off-Label zu "Carboplatin-haltigen Arzneimittel<br>bei fortgeschrittenem nicht-kleinzelligem Bronchialkarzinom (NSCLC) –<br>Kombinationstherapie" die Anerkennung des bestimmungsgemäßen Gebrauchs<br>nach § 84 AMG ihrer Carboplatin-haltigen Arzneimittel zur Anwendung bei<br>fortgeschrittenem nicht-kleinzelligem Bronchialkarzinom (NSCLC) –<br>Kombinationstherapie erklärt. |
| <b>G-BA, 2013 [22].</b><br>Beschluss des<br>Gemeinsamen<br>Bundesausschusses<br>über eine Änderung     | Anwendungsgebiet:<br>Zur Behandlung des vorbehandelten Anaplastische-Lymphom-Kinase (ALK)-<br>positiven, fortgeschrittenen nicht kleinzelligen Bronchialkarzinoms (non small cell<br>lung cancer, NSCLC).                                                                                                                                                                                                                                                                                  |
| der Arzneimittel-<br>Richtlinie (AM-RL):<br>Anlage XII -<br>Beschlüsse über die<br>Nutzenbewertung     | <ul> <li>Zweckmäßige Vergleichstherapie:</li> <li>a) Patienten, bei denen eine Chemotherapie angezeigt ist:<br/>Docetaxel oder PEM zur Behandlung von Patienten, bei denen eine<br/>Chemotherapie angezeigt ist (dies können insbesondere Patienten mit<br/>ECOG-PS 0, 1 und gegebenenfalls 2 sein).</li> </ul>                                                                                                                                                                            |
| von Arzneimitteln mit<br>neuen Wirkstoffen<br>nach § 35a SGB V –                                       | Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber der Chemotherapie mit Docetaxel oder PEM:                                                                                                                                                                                                                                                                                                                                                                                        |

| Crizotinib                              | Anhaltspunkt für einen beträchtlichen Zusatznutzen.                                                                               |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                         | Zweckmäßige Vergleichstherapie:                                                                                                   |
|                                         | b) Patienten, bei denen eine Chemotherapie nicht angezeigt ist:                                                                   |
|                                         | BSC zur Behandlung von Patienten, bei denen eine Chemotherapie nicht                                                              |
|                                         | angezeigt ist (dies können insbesondere Patienten mit ECOG-PS 4, 3 und                                                            |
|                                         | gegebenenfalls 2 sein).                                                                                                           |
|                                         | Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber BSC:<br>Ein Zusatznutzen ist <i>nicht belegt.</i>                       |
| GBA, 2011 [24].                         | Der Gemeinsame Bundesausschuss hat in seiner Sitzung am 21. Oktober 2010                                                          |
| Protonentherapie                        | beschlossen, die Richt-linie zu Untersuchungs- und Behandlungsmethoden im                                                         |
| beim                                    | Krankenhaus (Richtlinie Methoden Kranken-hausbehandlung) in der Fassung                                                           |
| Nichtkleinzelligen                      | vom 21. März 2006 (BAnz. 2006, S. 4466), zuletzt geändert am 18. Februar                                                          |
| Lungenkarzinom                          | 2010 (BAnz. 2010, S. 1784), wie folgt zu ändern:                                                                                  |
| (NSCLC)<br>Abschlussbericht.            | I. In § 4 ( <u>"Ausgeschlossene Methoden</u> ") werden nach Nummer 3.7 folgende                                                   |
| Beratungsverfahren                      | Nummern angefügt:                                                                                                                 |
| nach § 137c SGB V                       |                                                                                                                                   |
| (Krankenhausbehan<br>dlung)             | "3.8 Protonentherapie beim operablen nicht-kleinzelligen<br>Lungenkarzinom                                                        |
|                                         | 2.0 Protononthoronic haim incharablen night klainzalligen                                                                         |
|                                         | 3.9 Protonentherapie beim inoperablen nicht-kleinzelligen<br>Lungenkarzinom des UICC Stadiums IV"                                 |
|                                         | II. In Anlage II <u>"Methoden, deren Bewertungsverfahren ausgesetzt sind</u> " wird nach Nummer 2.2 folgende Nummer 2.3 angefügt: |
|                                         | "2.3 Protonentherapie beim inoperablen nicht-kleinzelligen<br>Lungenkarzinom der UICC Stadien I bis III                           |
|                                         | Beschluss gültig bis 31. Dezember 2015"                                                                                           |
| G-BA, 2015                              | AWG:                                                                                                                              |
| Afatanib [21].                          | GIOTRIF als Monotherapie wird angewendet zur Behandlung von EGFR-TKI-                                                             |
|                                         | naiven er-wachsenen Patienten mit lokal fortgeschrittenem und/oder                                                                |
| Beschluss des                           | metastasiertem nicht-kleinzelligen Lungenkarzinom (NSCLC) mit aktivierenden                                                       |
| Gemeinsamen                             | EGFR-Mutationen.                                                                                                                  |
| Bundesausschusses                       | Zusatznutzen von Afatnib gegenüber der zVT                                                                                        |
| über eine Änderung<br>der Arzneimittel- | Zusatzhutzen von Alathib gegenüber der zvir                                                                                       |
| Richtlinie (AM-RL):                     |                                                                                                                                   |
| Anlage XII -                            |                                                                                                                                   |
| Beschlüsse über die                     |                                                                                                                                   |
| Nutzenbewertung                         |                                                                                                                                   |
| von Arzneimitteln mit                   |                                                                                                                                   |
| neuen Wirkstoffen                       |                                                                                                                                   |
| nach § 35a SGB V –                      |                                                                                                                                   |
| Afatinib                                |                                                                                                                                   |
| (Beschluss vom                          |                                                                                                                                   |
| 05.11.2015)                             |                                                                                                                                   |

|                                                                                                                | 1) Nicht vorbehandelte Patienten mit ECOG-Performance-Status 0 oder 1                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                |                                                                                                                                                                                                                                                                                                      |
|                                                                                                                | Zweckmäßige Vergleichstherapie:                                                                                                                                                                                                                                                                      |
|                                                                                                                | <ul> <li>Gefitinib oder Erlotinib</li> <li>oder</li> </ul>                                                                                                                                                                                                                                           |
|                                                                                                                | <ul> <li>Cisplatin in Kombination mit einem Drittgenerationszytostatikum (Vinorelbin oder<br/>Gemcitabin oder Docetaxel oder Paclitaxel oder Pemetrexed) unter Beachtung des<br/>Zulassungsstatus</li> </ul>                                                                                         |
|                                                                                                                | <ul> <li>oder</li> <li>Carboplatin in Kombination mit einem Drittgenerationszytostatikum<br/>(nur für Patienten mit erhöhtem Risiko für Cisplatin-induzierte Nebenwirkungen im<br/>Rahmen einer Kombinationstherapie; vgl. Anlage VI zum Abschnitt K der Arzneimittel-<br/>Richtlinie)</li> </ul>    |
|                                                                                                                | Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber Cisplatin in Kom-<br>bination mit Pemetrexed:                                                                                                                                                                                              |
|                                                                                                                | a) Patientengruppe mit EGFR-Mutation Del19:                                                                                                                                                                                                                                                          |
|                                                                                                                | Hinweis auf einen erheblichen Zusatznutzen.                                                                                                                                                                                                                                                          |
|                                                                                                                |                                                                                                                                                                                                                                                                                                      |
|                                                                                                                | b) Patientengruppe mit EGFR-Mutation L858R:                                                                                                                                                                                                                                                          |
|                                                                                                                | Ein Zusatznutzen ist nicht belegt.                                                                                                                                                                                                                                                                   |
|                                                                                                                | c) Patientengruppe mit anderen EGFR-Mutationen:                                                                                                                                                                                                                                                      |
|                                                                                                                | Ein Zusatznutzen ist nicht belegt.                                                                                                                                                                                                                                                                   |
|                                                                                                                | 2) Nicht vorbehandelte Patienten mit ECOG-Performance-Status 2                                                                                                                                                                                                                                       |
|                                                                                                                | Zweckmäßige Vergleichstherapie:                                                                                                                                                                                                                                                                      |
|                                                                                                                | – Gefitinib oder Erlotinib                                                                                                                                                                                                                                                                           |
|                                                                                                                | oder                                                                                                                                                                                                                                                                                                 |
|                                                                                                                | <ul> <li>alternativ zu den unter 1) angegebenen platinbasierten Kombinationsbehandlungen:<br/>Monotherapie mit Gemcitabin oder Vinorelbin</li> </ul>                                                                                                                                                 |
|                                                                                                                | Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber der zweckmäßigen<br>Vergleichstherapie:                                                                                                                                                                                                    |
|                                                                                                                | Ein Zusatznutzen ist nicht belegt.                                                                                                                                                                                                                                                                   |
|                                                                                                                | 3) Patienten nach Vorbehandlung mit einer Platin-basierten Chemotherapie                                                                                                                                                                                                                             |
|                                                                                                                | Zweckmäßige Vergleichstherapie:                                                                                                                                                                                                                                                                      |
|                                                                                                                | – Gefitinib oder Erlotinib                                                                                                                                                                                                                                                                           |
|                                                                                                                | oder<br>– Docetaxel oder Pemetrexed                                                                                                                                                                                                                                                                  |
|                                                                                                                | Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber der zweckmäßigen                                                                                                                                                                                                                           |
|                                                                                                                | Vergleichstherapie:                                                                                                                                                                                                                                                                                  |
|                                                                                                                | Ein Zusatznutzen ist nicht belegt.                                                                                                                                                                                                                                                                   |
|                                                                                                                | Studienergebnisse nach Endpunkten:                                                                                                                                                                                                                                                                   |
|                                                                                                                | 1) Nicht vorbehandelte Patienten mit ECOG-Performance-Status 0 oder 1                                                                                                                                                                                                                                |
|                                                                                                                | Afatinib vs. Cisplatin in Kombination mit Pemetrexed (Studie Lux-Lung 3) <sup>1</sup>                                                                                                                                                                                                                |
| G-BA, 2016 [20]<br>Beschluss des<br>Gemeinsamen<br>Bundesausschusses<br>über eine Änderung<br>der Arzneimittel | <b>Zugelassenes Anwendungsgebiet (laut Zulassung vom 20.07.2015):</b><br>OPDIVO ist zur Behandlung des lokal fortgeschrittenen oder<br>metastasierten nichtkleinzelli-gen Lungenkarzinoms (NSCLC) mit<br>plattenepithelialer Histologie nach vorheriger Chemothe-rapie bei<br>Erwachsenen indiziert. |
| der Arzneimittel-<br>Richtlinie (AM-RL):<br>Anlage XII -                                                       | 1) Patienten, für die eine Behandlung mit Docetaxel angezeigt ist:<br><b>Zweckmäßige Vergleichstherapie:</b> Docetaxel                                                                                                                                                                               |

| Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Docetaxel:</b> Hinweis auf einen beträchtlichen Zusatznutzen.                                                                                                                                               |
|                                                                                                                                                                                                                |
| 2) Patienten, für die eine Behandlung mit Docetaxel nicht angezeigt ist:                                                                                                                                       |
| Zweckmäßige Vergleichstherapie: Best-Supportive-Care                                                                                                                                                           |
|                                                                                                                                                                                                                |
| Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber<br>Best-Supportive-Care: Ein Zusatznutzen ist nicht belegt.                                                                                          |
| Zugelassenes Anwendungsgebiet (laut Zulassung vom 23.11.2015):                                                                                                                                                 |
| XALKORI wird angewendet bei Erwachsenen zur Erstlinienbehandlung des                                                                                                                                           |
| Anaplastische-Lymphom-Kinase(ALK)-positiven, fortgeschrittenen nicht                                                                                                                                           |
| kleinzelligen Lungenkarzinoms (non small cell lung cancer, NSCLC).                                                                                                                                             |
| Zweckmäßige Vergleichstherapie:                                                                                                                                                                                |
| Patienten mit ECOG-Performance-Status 0, 1 oder 2:                                                                                                                                                             |
| - Cisplatin in Kombination mit einem Drittgenerationszytostatikum                                                                                                                                              |
| (Vinorelbin oder Gemcitabin oder Docetaxel oder Paclitaxel oder                                                                                                                                                |
| Pemetrexed) unter Beachtung des Zulassungsstatus                                                                                                                                                               |
|                                                                                                                                                                                                                |
| oder                                                                                                                                                                                                           |
|                                                                                                                                                                                                                |
| <ul> <li>Carboplatin in Kombination mit einem Drittgenerationszytostatikum (nur<br/>für Patienten mit erhöhtem Risiko für Cisplatin-induzierte</li> </ul>                                                      |
| Nebenwirkungen im Rahmen einer Kombinationstherapie; vgl. Anlage VI                                                                                                                                            |
| zum Abschnitt K der Arzneimittel-Richtlinie)                                                                                                                                                                   |
|                                                                                                                                                                                                                |
| Patienten mit ECOG-Performance-Status 2:                                                                                                                                                                       |
| - alternativ zur Platin-basierten Kombinationsbehandlung: eine                                                                                                                                                 |
| Monotherapie mit Gemcitabin oder Vinorelbin                                                                                                                                                                    |
| Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber<br>Cisplatin in Kombination mit Pemetrexed oder Carboplatin in<br>Kombination mit Pemetrexed: Anhaltspunkt für einen beträchtlichen<br>Zusatznutzen. |
|                                                                                                                                                                                                                |

### **Cochrane Reviews**

| de Castria TB,                                                                                       | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| et al., 2013 [12].<br>Cisplatin versus<br>carboplatin in<br>combination<br>with third-<br>generation | To assess the efficacy and safety of carboplatin-based chemotherapy when compared with cisplatin-based chemotherapy, both in combination with a third-generation drug, in people with advanced NSCLC. To compare quality of life in people with advanced NSCLC receiving chemotherapy with cisplatin and carboplatin combined with a third-generation drug.                     |  |  |  |  |  |  |
| drugs for                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| advanced non-<br>small cell lung<br>cancer                                                           | <i>Population:</i> people with advanced NSCLC (first-line)<br><i>Interventionen und Komparatoren:</i> regimens with cisplatin or carboplatin in combination with a third-generation drug (i.e. docetaxel, paclitaxel, vinorelbine, gemcitabine or irinotecan)                                                                                                                   |  |  |  |  |  |  |
|                                                                                                      | <ul> <li>Cisplatin plus gemcitabine versus carboplatin plus gemcitabine.</li> <li>Cisplatin plus docetaxel versus carboplatin plus docetaxel.</li> <li>Cisplatin plus paclitaxel versus carboplatin plus paclitaxel.</li> <li>Cisplatin plus vinorelbine versus carboplatin plus vinorelbine.</li> <li>Cisplatin plus irinotecan versus carboplatin plus irinotecan.</li> </ul> |  |  |  |  |  |  |
|                                                                                                      | We included trials comparing these compounds for any number of cycles or treatment schedules.                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                                                                                      | Endpunkte:                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                      | Primär:                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                      | • Overall survival.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                                                                      | One-year survival rate.                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                      | • QoL.                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                      | <ul> <li>Drug toxicities (according to the National Cancer Institute Common Toxicity<br/>Criteria v2.0)</li> </ul>                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                                                                                                      | <u>Sekundär</u> :                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                                                                                      | Objective response rate, classified according to the Response Evaluation Criteria in Solid Tumors (RECIST) (Eisenhauer 2009).                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                                                                                      | <b>Suchzeitraum:</b> 1966 bis 03/2013                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                                                                                      | Anzahl eingeschlossene Studien/Patienten (Gesamt): 10/5 017                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                                                                                                      | <b>Qualitätsbewertung der Studien:</b> Risk of bias' tool created by The Cochrane Collaboration: mittlere bis gute Qualität (nur RCTs)                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                      | Heterogenitätsuntersuchungen: durchgeführt (siehe Punkt 3.): geringe<br>Heterogenitäten                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                      | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |

### OS

There was no difference between carboplatin based and cisplatin-based chemotherapy in overall survival (hazard ratio (HR) 1.00; 95% confidence interval (CI) 0.51 to 1.97,  $I^2 = 0\%$ ) and one-year survival rate (risk ratio (RR) 0.98; 95% CI 0.88 to 1.09,  $I^2 = 24\%$ ).

### ORR

Cisplatin had higher response rates when we performed an overall analysis (RR 0.88; 95% CI 0.79 to 0.99,  $I^2 = 3\%$ ), but trials using paclitaxel or gemcitabine plus a platin in both arms had equivalent response rates (paclitaxel: RR 0.89; 95% CI 0.74 to 1.07,  $I^2 = 0\%$ ; gemcitabine: RR 0.92; 95% CI 0.73 to 1.16,  $I^2 = 34\%$ ).

### Adverse events

Cisplatin caused more nausea or vomiting, or both (RR 0.46; 95% Cl 0.32 to 0.67, I2 = 53%) and carboplatin caused more thrombocytopenia (RR 2.00; 95% Cl 1.37 to 2.91, I2 = 21%) and neurotoxicity (RR 1.55; 95% Cl 1.06 to 2.27,  $I^2 = 0$ %). There was no difference in the incidence of grade III/IV anaemia (RR 1.06; 95% Cl 0.79 to 1.43, I2 = 20%), neutropenia (RR 0.96; 95% Cl 0.85 to 1.08,  $I^2 = 49$ %), alopecia (RR 1.11; 95% Cl 0.73 to 1.68, I2 = 0%) or renal toxicity (RR 0.52; 95% Cl 0.19 to 1.45,  $I^2 = 3$ %).

### QoL

Two trials performed a quality of life analysis; however, they used different methods of measurement so we could not perform a meta-analysis.

| Study or subgroup                                                                                                     | Carboplatin-based<br>N                                    | Cisplatin-based<br>N                       | log [Hazard Ratio]<br>(SE) | Hazard Ratio<br>IV,Random,95% CI            | Weight      | Hazard Rati<br>IV,Random,95% C |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|----------------------------|---------------------------------------------|-------------|--------------------------------|
| I Carboplatin vs. cisplatin                                                                                           | plus gemcitabine                                          |                                            |                            |                                             |             |                                |
| Ferry 2011                                                                                                            | 89                                                        | 87                                         | 0.008 (0.86)               |                                             | 16.3 %      | 1.01 [ 0.19, 5.44              |
| Mazzanti 2003                                                                                                         | 58                                                        | 62                                         | 0.11 (1.25)                |                                             | 7.7 %       | 1.12 [ 0.10, 12.94             |
| Zatloukal 2003                                                                                                        | 453                                                       | 910                                        | -0.08 (0.86)               | _ <b>_</b>                                  | 16.3 %      | 0.92 [ 0.17, 4.98              |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.0<br>Test for overall effect: Z =                            | · · · · · · · · · · · · · · · · · · ·                     | 9 = 0.99);   <sup>2</sup> =0.0%            |                            | +                                           | 40.3 %      | 0.99 [ 0.34, 2.90              |
| 2 Carboplatin vs. cisplatin                                                                                           | · · · ·                                                   |                                            |                            |                                             |             |                                |
| Chen 2006                                                                                                             | 40                                                        | 41                                         | -0.16 (3.67)               | • • •                                       | • 0.9 %     | 0.85 [ 0.00, 1133.50           |
| Rosell 2002                                                                                                           | 309                                                       | 309                                        | -0.09 (0.91)               | <b>_</b>                                    | 14.6 %      | 0.91 [ 0.15, 5.44              |
| Schiller 2002                                                                                                         | 299                                                       | 303                                        | 0.05 (0.63)                | _ <b>_</b>                                  | 30.4 %      | 1.05 [ 0.31, 3.61              |
| Sweeney 2001                                                                                                          | 15                                                        | 18                                         | -0.34 (7.85)               | • • •                                       | • 0.2 %     | 0.71 [ 0.00, 3421936.85        |
| Subtotal (95% CI)                                                                                                     |                                                           |                                            |                            | -                                           | 46.0 %      | 1.00 [ 0.37, 2.73              |
| Heterogeneity: Tau <sup>2</sup> = 0.0<br>Test for overall effect: Z =<br>3 Carboplatin vs. cisplatin                  | = 0.00 (P = 1.0)                                          | <sup>0</sup> = 1.00); l <sup>2</sup> =0.0% |                            |                                             |             |                                |
| Fossella 2003                                                                                                         | 406                                                       | 408                                        | 0.01 (0.94)                |                                             | 13.6 %      | 1.01 [ 0.16, 6.37              |
| Subtotal (95% CI)<br>Heterogeneity: not applic<br>Test for overall effect: Z =                                        |                                                           |                                            |                            |                                             | 13.6 %      | 1.01 [ 0.16, 6.37              |
| Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.0<br>Test for overall effect: Z =<br>Test for subgroup differen | 0; Chi <sup>2</sup> = 0.04, df = 7 (F<br>= 0.01 (P = 1.0) |                                            |                            | +                                           | 100.0 %     | 1.00 [ 0.51, 1.97              |
|                                                                                                                       |                                                           |                                            | Q.C<br>Favour              | DI 0.1 I IO I<br>s carboplatin Favours cisp | 00<br>Iatin |                                |

| 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The initial treatment of people with advanced NSCLC is palliative, and carboplatin can be a treatment option. It has a similar effect on survival but a different toxicity profile when compared with cisplatin. Therefore, the choice of the platin compound should take into account the expected toxicity profile and the person's comorbidities. In addition, when used with either paclitaxel or gemcitabine, the drugs had an equivalent response rate. |

## Systematische Reviews (Erstlinientherapie)

| Sheng Z,                                                       | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zhang Y, 2015<br>[57].<br>EGFR-TKIs<br>combined with           | EGFR-TKIs added to chemotherapy and EGFR-TKIs single agent have been<br>used as first-line treatment for advanced non-small cell lung cancer patients<br>with and without EGFR mutations. However, direct headto-head comparison<br>between them is still lacking. We performed indirect comparisons to assess                                                                           |
| chemotherapy<br>versus EGFR-<br>TKIs single                    | the treatment effects of EGFR-TKIs added to chemotherapy versus EGFR-<br>TKIs alone via common comparator of standard chemotherapy in both<br>subgroups.                                                                                                                                                                                                                                 |
| agent as first-                                                | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                              |
| line treatment<br>for molecularly<br>selected<br>patients with | <b>Population:</b> patients with previously untreated advanced NSCLC, defined as inoperable locally advanced (stage IIIB) or metastatic or recurrent disease (stage IV)                                                                                                                                                                                                                  |
| non-small cell<br>lung cancer                                  | <i>Interventionen und Komparatoren:</i> first-generation EGFR-TKIs (erlotinib or gefitinib) vs. standard platinum doublet chemotherapy as firstline treatment                                                                                                                                                                                                                            |
|                                                                | Endpunkte:                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                | Primär: PFS (PFS was measured from the date of enrollment, randomization, or treatment start until disease progression, relapse, or death)                                                                                                                                                                                                                                               |
|                                                                | Sekundär: OS (OS was measured from the date of enrollment, randomization, or treatment start until death from any cause.)                                                                                                                                                                                                                                                                |
|                                                                | Suchzeitraum: Bis 9/2014                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                | Anzahl eingeschlossene Studien/Patienten (Gesamt): 12/2 160                                                                                                                                                                                                                                                                                                                              |
|                                                                | <i>Qualitätsbewertung der Studien:</i> Two reviewers independently assessed<br>the quality of selected studies using the following criteria: (1) generation of<br>allocation concealment, (2) description of dropouts, (3) masking of<br>randomization, intervention, outcome assessment, and (4) intention-to-treat<br>(ITT) analyses. Each criterion was rated as yes, no, or unclear. |
|                                                                | Heterogenitätsuntersuchungen: Cochrane chi-Quadrat Test                                                                                                                                                                                                                                                                                                                                  |
|                                                                | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                | We found that EGFR-TKIs combined with chemotherapy did confer an                                                                                                                                                                                                                                                                                                                         |

additive PFS advantage over standard chemotherapy both for patients with mutant EGFR tumors (HR 0.54, 95 % CI [0.30, 0.95], P = 0.03) and for patients with wild-type EGFR tumors (HR 0.82, [0.68, 0.98], P = 0.03), but no survival difference between the treatments in both subgroups.

When using standard chemotherapy as common comparator, indirect comparison indicated that addition of chemotherapy to EGFR-TKIs did confer an additive PFS benefit (HR 0.38, [0.32, 0.46], p<0.001) and survival benefit (HR 0.75, [0.66, 0.85], P<0.001) over EGFR TKIs alone in patients with wild-type EGFR, but showed a PFS disadvantage (HR 1.35, [1.03, 1.77], p = 0.03) and a marginal trend toward survival disadvantage (HR 1.16, [0.99, 1.35], p = 0.06) compared with EGFR-TKIs alone in patients with mutant EGFR tumors.

Table 1 Demographic characteristics of patients

| Study name (Ref)           | No. of<br>EGFR <sup>-</sup> | No. of<br>EGFR <sup>+</sup> | Therapy regimen                              | EGFR assessment method                    |
|----------------------------|-----------------------------|-----------------------------|----------------------------------------------|-------------------------------------------|
| EGFR-TKIs versus Chem      | otherapy                    |                             |                                              |                                           |
| First-SIGNAL [3]           | 54                          | 43                          | Gefitinib versus CisG                        | Direct sequencing                         |
| IPASS [4, 5]               | 176                         | 261                         | Gefitinib versus CP                          | ARMS                                      |
| WJTOG3405 [6, 7]           | 0                           | 172                         | Gefitinib versus CisD                        | Direct sequencing, PCR clamp              |
| NEJ002 <sup>b</sup> [8, 9] | 0                           | 228                         | Gefitinib versus CP                          | PCR clamp                                 |
| GTOWG <sup>a</sup> [10]    | 75                          | 10                          | Erlotinib versus CV                          | Direct sequencing                         |
| TORCH [11]                 | 236                         | 39                          | Erlotinib versus CisG                        | Direct sequencing/fragment<br>analysis/MS |
| EURTAC [12]                | 0                           | 173                         | Erlotinib versus<br>platinum-G or platinum-D | Direct sequencing                         |
| OPTIMAL [13, 14]           | 0                           | 154                         | Erlotinib versus CG                          | Direct sequencing                         |
| EGFR-TKIs + Chemothe       | rapy                        |                             |                                              |                                           |
| INTACT 1 [15, 16]          | 280                         | 32                          | Gefitinib + CisG versus CisG                 | Direct sequencing                         |
| INTACT 2 [16, 17]          |                             |                             | Gefitinib + CP versus CP                     |                                           |
| TALENT [18, 19]            | NA                          | NA                          | Erlotinib + CisG versus CisG                 | NA                                        |
| TRIBUTE [20]               | 198                         | 29                          | Erlotinib + CP versus $CP$                   | Direct sequencing                         |

ARMS amplification refractory mutation system, CisG cisplatin–gemcitabine, CP carboplatin–paclitaxel, CV carboplatin–vinorelbine, CisD cisplatin–docetaxel, CG carboplatin–gemcitabine, G gemcitabine, D docetaxel, EGFR<sup>+</sup> presence of epidermal growth factor receptor mutation, RA not available, PCR polymerase chain reaction. EGFR mutation based on exon 19 and exon 21 only

<sup>a</sup> Trials reported in abstract format

<sup>b</sup> Median age not available; mean age calculated instead

### PFS: (random-effects model)

#### EGFR-TKIs added to chemotherapy versus chemotherapy alone) Hazard Ratio Hazard Ratio IV, Random, 95% CI Study or Subgroup log[Hazard Ratio] SE IV, Random, 95% CI 1.1.1 EGFR-TKIs+ Chemotherapy vs. Chemotherapy in patients with mutant EGFR INTACT1-2 -0.5978 0.5436 0.55 [0.19, 1.60] TALENT -0.5276 0.529 0.59 [0.21, 1.66] TRIBUTE -0.7133 0.4571 0.49 [0.20, 1.20] Subtotal (95% CI) 0.54 [0.30, 0.95] Heterogeneity: Tau<sup>2</sup> = 0.00; Chi<sup>2</sup> = 0.07, df = 2 (P = 0.96); l<sup>2</sup> = 0% Test for overall effect: Z = 2.14 (P = 0.03) 1.1.2 EGFR-TKIs+ Chemotherapy vs Chemotherapy in patients with wild-type EGFR INTACT1-2 -0.3147 0.1645 0.73 [0.53, 1.01] TALENT -0.0513 0.1692 0.95 [0.68, 1.32] TRIBUTE -0.2231 0.1476 0.80 [0.60, 1.07] Subtotal (95% CI) 0.82 [0.68, 0.98] Heterogeneity: Tau<sup>2</sup> = 0.00; Chi<sup>2</sup> = 1.28, df = 2 (P = 0.53); I<sup>2</sup> = 0% Test for overall effect: Z = 2.18 (P = 0.03) 0.02 0.1 10 50 1

Favours EGFR-TKIs Favours control

### EGFR-TKIs single agent versus chemotherapy

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hazar                      | d Ratio                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IV, Rande                  | om, 95% Cl                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .2.1 EGFR-TKIs vs. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | URTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.9943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37 [0.25, 0.54]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          |                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | irst-SIGNAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.6162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.54 [0.27, 1.09]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | Τ                               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STOWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.08 [0.24, 4.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.48 [0.36, 0.64]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IEJ002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.1394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.32 [0.24, 0.43]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OPTIMAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.16 [0.10, 0.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                          | <u> </u>                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ORCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.5108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60 [0.30, 1.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VJTOG3405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.6539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.52 [0.38, 0.72]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Subtotal (95% CI)<br>leterogeneity: Tau² = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12: Chi2 - 07:20 df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 7 (D - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.40 [0.29, 0.54]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0003), I <sup>2</sup> – 74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .2.2 EGFR-TKIs vs. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemotherapy in pat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ients witl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h wild-type EGFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                 |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | irst-SIGNAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.42 [0.82, 2.46]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          | +                               |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STOWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.09 [1.28, 3.41]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
| IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.85 [2.05, 3.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.07 [1.58, 2.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.15 [1.68, 2.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | leterogeneity: Tau <sup>2</sup> = 0<br>est for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17); l² = 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | <u> </u>                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 1 2 5                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vours EGFR-TKIs            | ravours control                 |
| <b>OS</b> : (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (random-effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts model)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                 |
| EGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R-TKIs arms \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ersus chemo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | therap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H                          | lazard Ratio                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tudy or Subgroup lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Random, 95% Cl                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | atients with mutant EGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NTACT1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.571 0.644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77 [0.50, 6.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALENT<br>RIBUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.0513 0.819<br>-0.2178 0.757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 [0.19, 4.73]<br>30 [0.18, 3.55]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ubtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2170 0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 [0.52, 2.69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                 |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .3.2 EGFR-TKIs + Chem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otherapy vs Chemothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erapy in pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | atients with wild-type EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FR                         |                                 |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .3.2 EGFR-TKIs + Chen<br>TLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otherapy vs Chemothe<br>-0.1508 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36 [0.65, 1.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FR                         |                                 |
| <b>1.</b><br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TLAS<br>NTACT1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.1508 0.145<br>-0.0943 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 0.8<br>55 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 [0.65, 1.14]<br>91 [0.67, 1.23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FR                         | - <b>•</b> -                    |
| <b>1.</b><br>A <sup>.</sup><br>IN<br>T <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TLAS<br>JTACT1-2<br>ALENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55 0.8<br>55 0.9<br>91 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FR                         |                                 |
| <b>1.</b><br>A <sup>*</sup><br>IN<br>T/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.1508 0.145<br>-0.0943 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55 0.8<br>55 0.9<br>91 1.1<br>98 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FR                         |                                 |
| 1.<br>A<br>IN<br>T/<br>TI<br>Si<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TLAS<br>JTACT1-2<br>ALENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>D; Chi <sup>2</sup> = 2.25, df = 3 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55 0.8<br>55 0.9<br>91 1.1<br>98 0.1<br><b>0.9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>91 <b>[0.77, 1.07]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FR                         | +<br>+<br>+<br>+<br>+           |
| 1.<br>A`<br>IN<br>T/<br>Si<br>H/<br>Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br><b>ubtotal (95% CI)</b><br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.19<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 0.8<br>55 0.9<br>91 1.7<br>98 0.7<br><b>0.9</b><br><b>0.9</b><br><b>0.9</b><br><b>0.9</b><br><b>0.9</b><br><b>0.9</b><br><b>0.9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>11 <b>[0.77, 1.07]</b><br>= 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FR                         | *<br>*<br>*                     |
| 1.<br>A<br>IN<br>T/<br>TI<br>SI<br>H/<br>T(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br><b>ubtotal (95% CI)</b><br>eterogeneity: Tau <sup>2</sup> = 0.0                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.19<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 0.6<br>55 0.9<br>01 1.7<br>08 0.7<br>0.9<br>= 0.52);   <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>11 <b>[0.77, 1.07]</b><br>= 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FR                         |                                 |
| 1.<br>A<br>IN<br>T/<br>TI<br>SI<br>H/<br>T(<br>1.<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br><b>ubtotal (95% CI)</b><br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br><b>.3.3 EGFR-TKIs vs. Che</b>                                                                                                                                                                                                                                                                                                                                               | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.19<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $55  0.8 \\ 55  0.9 \\ 0.1  1.7 \\ 0.8  0.7 \\ 0.8 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ $                                                                                                                                                                        | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>91 <b>[0.77, 1.07]</b><br>= 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FR                         | •<br>•<br>•                     |
| 1.<br>A'<br>IN<br>T/<br>TI<br><b>S</b><br>H'<br>T(<br><b>1.</b><br>EI<br>Fi<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>URTAC<br>irst-SIGNAL<br>ITOWG                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0; Chi^2 = 2.25, df = 3 (P \\ 1.13 (P = 0.26)\\ \hline \\                                 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $55  0.8$ $55  0.9$ $55  0.9$ $55  0.9$ $0.1  1.7$ $0.8  0.7$ $0.5$ $= 0.52);  ^2 = 0.52);  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>94 [0.65, 1.67]<br>94 [0.50, 2.17]<br>73 [0.14, 3.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5FR                        |                                 |
| 1.<br>A'<br>IN<br>T/<br>T/<br>S/<br>S/<br>H<br>Tr<br>C<br>E<br>E<br>F<br>G<br>G<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>JTOWG<br>PASS                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0; Chi^2 = 2.25, df = 3 (P \\ 1.13 (P = 0.26)\\ \hline \\ \textbf{motherapy in patients}\\ 0.0392 & 0.240\\ 0.0392 & 0.376\\ -0.3147 & 0.843\\ 0 & 0.140\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $55  0.3$ $55  0.9$ $55  0.9$ $0.1  1.7$ $0.8  0.7$ $0.5  0.5$ $0.52);  ^2 = 0.52);  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;  ^2 = 0.52;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>11 [0.77, 1.07]<br>= 0%<br>Int EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5FR                        |                                 |
| 1.<br>A<br>IN<br>TI<br><b>S</b><br>H<br>H<br>T<br>G<br>E<br>I<br>Fi<br>G<br>G<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br><b>ubtotal (95% CI)</b><br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br><b>.3.3 EGFR-TKIs vs. Che</b><br>URTAC<br>URTAC<br>irst-SIGNAL<br>JTOWG<br>PASS<br>EJ002                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.01405 & 0.172\\ 0.1165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01$                                                                                                                                                     | 55 0.055<br>55 0.055<br>11 1.188 0.058<br>0.58 0.52); $ ^2 = -$<br>with muta<br>57 1.0<br>56 1.0<br>55 0.7<br>58 1.0<br>59 1.0<br>50 1.0 | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>11 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>13 [0.14, 3.81]<br>30 [0.76, 1.32]<br>39 [0.63, 1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FR                         |                                 |
| 1.<br>A'<br>IN<br>TI<br>SG<br>H<br>TT<br>E<br>E<br>F<br>F<br>G<br>G<br>IP<br>N<br>O<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TLAS<br>TTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>PTIMAL                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0; Chi^2 = 2.25, df = 3 (P \\ 1.13 (P = 0.26)\\ \hline \\ \textbf{motherapy in patients}\\ 0.0392 & 0.240\\ 0.0392 & 0.375\\ -0.3147 & 0.843\\ 0 & 0.146\\ -0.1165 & 0.172\\ 0.0392 & 0.209\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55  0.055  0.055  0.055  0.055  0.055  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051  0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>Mt EGFR<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>04 [0.69, 1.57]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FR                         |                                 |
| 1.<br>A´IN<br>TJ<br>Si<br>H<br>TT<br>TT<br>TI<br>Si<br>G<br>IP<br>Fi<br>G<br>G<br>IP<br>N<br>N<br>O<br>TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br><b>ubtotal (95% CI)</b><br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br><b>.3.3 EGFR-TKIs vs. Che</b><br>URTAC<br>URTAC<br>irst-SIGNAL<br>JTOWG<br>PASS<br>EJ002                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.01405 & 0.172\\ 0.1165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.172\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01165 & 0.012\\ 0.01$                                                                                                                                                     | 55         0.055         0.955           0.55         0.911         1.11           108         0.10         0.10           0.10         0.10         0.10           0.11         0.11         0.11           0.15         0.15         0.10           0.16         1.00         0.10           0.17         1.01         0.10           0.16         1.00         0.10           0.17         0.01         0.10           0.17         0.01         0.10           0.17         0.01         0.10           0.16         1.10         0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>11 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>13 [0.14, 3.81]<br>30 [0.76, 1.32]<br>39 [0.63, 1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FR                         |                                 |
| 1.<br>A'<br>IN<br>T'<br>S<br>H'<br>T'<br>S<br>H'<br>T'<br>T'<br>S<br>I<br>Fi<br>S<br>O<br>O<br>T'<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>PTIMAL<br>ORCH                                                                                                                                                                                                                                                                               | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0; Chi^2 = 2.25, df = 3 (P \\ 1.13 (P = 0.26)\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35         0.055         0.055           0.135         0.056         0.052           0.11         1.1         1.1           0.88         0.1         0.2           0.98         0.52);  2 =         2           with muta         1.0         1.0           1.77         1.0         1.0           1.55         0.1.3         1.0           1.66         1.0.1         1.0           1.77         1.0         1.0           1.066         1.0.3         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>Mt EGFR<br>94 [0.65, 1.67]<br>94 [0.50, 2.17]<br>73 [0.14, 3.81]<br>90 [0.76, 1.32]<br>39 [0.63, 1.25]<br>34 [0.59, 1.57]<br>58 [0.70, 3.57]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5FR                        |                                 |
| 1.<br>A<br>IN<br>TT<br>S<br>S<br>H<br>H<br>T<br>G<br>F<br>I<br>S<br>G<br>F<br>I<br>N<br>O<br>T<br>C<br>S<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.3 EGFR-TKIs vs. Che<br>URTAC<br>URTAC<br>URTAC<br>URTAC<br>ITOWG<br>ASS<br>EJ002<br>PTIMAL<br>ORCH<br>VJTOG3405                                                                                                                                                                                                                                                                  | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.2485 & 0.199\\ 0.392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.240\\ 0.0392 & 0.375\\ -0.3147 & 0.843\\ 0 & 0.140\\ -0.1165 & 0.172\\ 0.0392 & 0.209\\ 0.4574 & 0.415\\ 0.174 & 0.220\\ 0.5 \ Chi^2 = 2.41, \ df = 7 \ (P = 1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>11 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>30 [0.7, 1.83]<br>19 [0.77, 1.83]<br>19 [0.77, 1.83]<br>19 [0.77, 1.83]<br>19 [0.77, 1.83]<br>19 [0.77, 1.83]<br>19 [0.78, 1.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FR                         |                                 |
| 1.<br>A<br>IN<br>TT<br>Si<br>H<br>H<br>TT<br>I.<br>EI<br>Fi<br>G<br>G<br>IP<br>N<br>N<br>Si<br>K<br>Si<br>H<br>TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>PTIMAL<br>ORCH<br>JJTOG3405<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.0                                                                                                                                                                                                                | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0; Chi^2 = 2.25, df = 3 (P \\ 1.13 (P = 0.26)\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>Mt EGFR<br>D4 [0.65, 1.67]<br>D4 [0.50, 2.17]<br>73 [0.14, 3.81]<br>D0 [0.76, 1.32]<br>39 [0.63, 1.25]<br>D4 [0.69, 1.57]<br>58 [0.70, 3.57]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5FR                        |                                 |
| 1.<br>A<br>IN<br>TT<br>S<br>S<br>H<br>T<br>T<br>T<br>T<br>T<br>T<br>S<br>S<br>H<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>PPTIMAL<br>ORCH<br>//JTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =                                                                                                                                                                              | $\begin{array}{c} -0.1508 & 0.145\\ -0.0943 & 0.15\\ 0.1398 & 0.19\\ -0.2485 & 0.199\\ 0; Chi^2 = 2.25, df = 3 (P \\ 1.13 (P = 0.26)\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 0.0<br>55 0.9<br>55 0.9<br>11 1.1<br>108 0.0<br>0.52<br>0.52<br>12 = 0.52; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $12 = 0.52$ ; $1$                                                                                                                                                                                                                                                                                                                                                                | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>Mt EGFR<br>D4 [0.65, 1.67]<br>D4 [0.50, 2.17]<br>73 [0.14, 3.81]<br>D0 [0.76, 1.32]<br>39 [0.63, 1.25]<br>D4 [0.69, 1.57]<br>58 [0.70, 3.57]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FR                         |                                 |
| 1.<br>A<br>IN<br>TT<br>S<br>S<br>H<br>H<br>T<br>G<br>F<br>I<br>S<br>G<br>F<br>N<br>O<br>T<br>C<br>S<br>S<br>H<br>T<br>T<br>C<br>S<br>H<br>H<br>T<br>T<br>C<br>S<br>G<br>F<br>I<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>S<br>H<br>H<br>T<br>S<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>S<br>H<br>H<br>T<br>T<br>S<br>S<br>S<br>S         | TLAS<br>TTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>2ASS<br>EJ002<br>IPTIMAL<br>ORCH<br>JJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG                                                                                                                            | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>motherapy in patients<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.245<br>-0.3147 0.843<br>0 0.140<br>-0.1165 0.172<br>0.0392 0.209<br>0.4574 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P<br>0.29 (P = 0.77)<br>motherapy in patients<br>0 0.331<br>-0.3147 0.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35         0.1           35         0.9           35         0.9           36         0.2           0.5         0.2           with muta         0.7           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.2         0.3           1.1         1.1           1.2         1.1           1.2         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1         1.1           1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 [0.65, 1.14]<br>37 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br><b>int EGFR</b><br>04 [0.65, 1.67]<br>94 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>04 [0.69, 1.57]<br>58 [0.70, 3.57]<br>19 [0.77, 1.83]<br>12 <b>[0.88, 1.20]</b><br>= 0%<br><b>type EGFR</b><br>00 [0.52, 1.92]<br>73 [0.14, 3.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FR                         |                                 |
| 1.<br>A'<br>IN<br>TT<br>SS<br>H<br>H<br>T<br>G<br>G<br>I<br>F<br>I<br>S<br>S<br>H<br>T<br>T<br>T<br>S<br>S<br>H<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TLAS<br>TTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>IPTIMAL<br>ORCH<br>UTOG3405<br>ubtotal (95% CI)<br>eterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS                                                                                                                      | -0.1508 0.145<br>-0.0943 0.16<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>motherapy in patients<br>0.0392 0.240<br>0.0392 0.240<br>0.03147 0.843<br>0.03147 0.84 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>37 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>ant EGFR<br>D4 [0.65, 1.67]<br>D4 [0.50, 2.17]<br>73 [0.14, 3.81]<br>D0 [0.76, 1.32]<br>39 [0.63, 1.25]<br>D4 [0.69, 1.57]<br>58 [0.70, 3.57]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>D0 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FR<br>                     |                                 |
| 1.<br>A<br>IN<br>IN<br>IN<br>S<br>S<br>H<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>IPTIMAL<br>ORCH<br>VJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS<br>ORCH                                                                                                            | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>motherapy in patients<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.245<br>-0.3147 0.843<br>0 0.140<br>-0.1165 0.172<br>0.0392 0.209<br>0.4574 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P<br>0.29 (P = 0.77)<br>motherapy in patients<br>0 0.331<br>-0.3147 0.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>31 [0.67, 1.23]<br>35 [0.79, 1.67]<br>78 [0.53, 1.15]<br>34 [0.77, 1.07]<br>35 [0.77, 1.07]<br>36 [0.55, 1.67]<br>30 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>39 [0.68, 1.20]<br>50 %<br>4 [0.88, 1.20]<br>5 [0.70, 3.57]<br>5 [0.70, | FR                         |                                 |
| 1.<br>AAIITT<br>SGIHTT<br>1. EIFGGIPNOT<br>SGIHTT<br>1. FIGGIPTT<br>SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>2ASS<br>UDtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>2ASS<br>ORCH<br>UDTOWG<br>2ASS<br>ORCH<br>UDTOTAL<br>(95% CI)                                                                                                    | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>-0.3147 0.843<br>0 0.146<br>-0.1165 0.172<br>0.0392 0.240<br>0.0392 0.240<br>0.04574 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P<br>0.29 (P = 0.77)<br>-0.3147 0.843<br>0.1655 0.161<br>0.2546 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>00 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]<br>29 [0.97, 1.71]<br>21 [0.99, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FR                         |                                 |
| 1.<br>AAIITT<br>SGHT<br>TO<br>1.<br>EFFGFTN<br>OOTV<br>SGHT<br>TO<br>1.<br>FFGGFFT<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>TO<br>SGHT<br>SGHT<br>SGHT<br>SGHT<br>SGHT<br>SGHT<br>SGHT<br>SGHT | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>IPTIMAL<br>ORCH<br>VJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>.3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS<br>ORCH                                                                                                            | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>motherapy in patients<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0474 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P<br>0.29 (P = 0.77)<br>motherapy in patients<br>0 0.331<br>-0.3147 0.843<br>0.1655 0.161<br>0.2546 0.144<br>0; Chi <sup>2</sup> = 0.91, df = 3 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>00 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]<br>29 [0.97, 1.71]<br>21 [0.99, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FR                         |                                 |
| 1.<br>AAIIT<br>SSI<br>H.<br>T<br>GIPN<br>OT<br>SSI<br>H.<br>T<br>GIPT<br>SSI<br>H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>IPTIMAL<br>ORCH<br>VJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS<br>ORCH<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0                                                 | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>motherapy in patients<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0474 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P<br>0.29 (P = 0.77)<br>motherapy in patients<br>0 0.331<br>-0.3147 0.843<br>0.1655 0.161<br>0.2546 0.144<br>0; Chi <sup>2</sup> = 0.91, df = 3 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>00 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]<br>29 [0.97, 1.71]<br>21 [0.99, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FR                         |                                 |
| 1.<br>A<br>IN<br><b>S</b><br>H<br>H<br>T<br>T<br>T<br>S<br>S<br>H<br>T<br>T<br>S<br>S<br>H<br>T<br>T<br>T<br>S<br>S<br>H<br>T<br>T<br>T<br>S<br>S<br>H<br>H<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>IPTIMAL<br>ORCH<br>VJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS<br>ORCH<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0                                                 | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>motherapy in patients<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0392 0.240<br>0.0474 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P<br>0.29 (P = 0.77)<br>motherapy in patients<br>0 0.331<br>-0.3147 0.843<br>0.1655 0.161<br>0.2546 0.144<br>0; Chi <sup>2</sup> = 0.91, df = 3 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>00 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]<br>29 [0.97, 1.71]<br>21 [0.99, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br><br>                   |                                 |
| 1.<br>AAIIT7<br>SSHT<br>1. EFFGFFFF<br>NOOT<br>VSSHT<br>1. FFGGFFT<br>SGHT<br>T<br>SGHT<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>PPTIMAL<br>ORCH<br>VJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS<br>ORCH<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =                  | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P = 1<br>1.13 (P = 0.26)<br>-0.3147 0.843<br>0 0.146<br>-0.3147 0.843<br>0 0.146<br>-0.1165 0.172<br>0.0392 0.206<br>0.4574 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P = 0.29)<br>-0.3147 0.843<br>0.03147 0.843<br>0.1655 0.161<br>0.2546 0.144<br>0; Chi <sup>2</sup> = 0.91, df = 3 (P = 1.84 (P = 0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>00 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]<br>29 [0.97, 1.71]<br>21 [0.99, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br><br>                   | 5 1 2 5<br>TKIs Favours control |
| 1. A MITTISS HITT<br>SI HITT<br>1. EIFIG IPINO TANSI HITT<br>1. FIG IPITTSSI HITT<br>SI HITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TLAS<br>JTACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>IPTIMAL<br>ORCH<br>VJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS<br>ORCH<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0                                                 | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P = 1<br>1.13 (P = 0.26)<br>-0.3147 0.843<br>0 0.146<br>-0.3147 0.843<br>0 0.146<br>-0.1165 0.172<br>0.0392 0.206<br>0.4574 0.415<br>0.174 0.220<br>0; Chi <sup>2</sup> = 2.41, df = 7 (P = 0.29)<br>-0.3147 0.843<br>0.03147 0.843<br>0.1655 0.161<br>0.2546 0.144<br>0; Chi <sup>2</sup> = 0.91, df = 3 (P = 1.84 (P = 0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>00 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]<br>29 [0.97, 1.71]<br>21 [0.99, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br><br>                   |                                 |
| 1.<br>AA<br>IN<br>F<br>S<br>S<br>H<br>T<br>T<br>C<br>S<br>S<br>H<br>T<br>T<br>C<br>S<br>H<br>T<br>T<br>T<br>C<br>S<br>H<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TLAS<br>ITACT1-2<br>ALENT<br>RIBUTE<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.3 EGFR-TKIs vs. Che<br>URTAC<br>irst-SIGNAL<br>ITOWG<br>PASS<br>EJ002<br>PPTIMAL<br>ORCH<br>VJTOG3405<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>3.4 EGFR-TKIs vs. Che<br>irst-SIGNAL<br>ITOWG<br>PASS<br>ORCH<br>ubtotal (95% CI)<br>leterogeneity: Tau <sup>2</sup> = 0.0<br>est for overall effect: Z =<br>ekter Verglei | -0.1508 0.145<br>-0.0943 0.15<br>0.1398 0.19<br>-0.2485 0.199<br>0; Chi <sup>2</sup> = 2.25, df = 3 (P<br>1.13 (P = 0.26)<br>motherapy in patients<br>0.0392 0.240<br>0.0392 0.200<br>0.4574 0.415<br>0.174 0.220<br>0.29 (P = 0.77)<br>motherapy in patients<br>0 0.331<br>-0.3147 0.843<br>0.1655 0.174<br>0.2546 0.144<br>0; Chi <sup>2</sup> = 0.91, df = 3 (P = 1.84 (P = 0.07)<br><b>Ch:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36 [0.65, 1.14]<br>91 [0.67, 1.23]<br>15 [0.79, 1.67]<br>78 [0.53, 1.15]<br>14 [0.77, 1.07]<br>= 0%<br>mt EGFR<br>04 [0.65, 1.67]<br>04 [0.65, 1.67]<br>04 [0.50, 2.17]<br>73 [0.14, 3.81]<br>00 [0.76, 1.32]<br>39 [0.63, 1.25]<br>39 [0.63, 1.25]<br>19 [0.77, 1.83]<br>12 [0.88, 1.20]<br>= 0%<br>type EGFR<br>00 [0.52, 1.92]<br>73 [0.14, 3.81]<br>18 [0.86, 1.62]<br>29 [0.97, 1.71]<br>21 [0.99, 1.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>0.2 0<br>Favours EGFR- | TKIs Favours control            |

|                                  | Hazard Ratio Hazard Ratio<br>Study or Subgroup log[Hazard Ratio] SE IV, Random, 95% Cl IV, Random, 95% Cl                                                                                                                                       |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | 1.4.1 Indirect comparison on PFS and OS in patients with mutant EGFR<br>Overall survival 0.145 0.0778 1.16 [0.99, 1.35]                                                                                                                         |
|                                  | Progression free survival 0.3001 0.1396 1.35 [1.03, 1.77]                                                                                                                                                                                       |
|                                  | 1.4.2 Indirect comparison on PFS and OS in patients with wild-type EGFR         Overall Survival       -0.2849       0.0645       0.75 [0.66, 0.85]       +                                                                                     |
|                                  | Progression free survival -0.964 0.0923 0.38 [0.32, 0.46] +                                                                                                                                                                                     |
|                                  | 0.1 0.2 0.5 1 2 5 10<br>Favours EGFR-TKIs Favours control                                                                                                                                                                                       |
|                                  | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                |
|                                  | In summary, addition of chemotherapy to EGFR-TKIs as first-line treatment                                                                                                                                                                       |
|                                  | did confer an additive benefit over EGFR-TKIs alone in patients with wild-type                                                                                                                                                                  |
|                                  | EGFR tumors, but was inferior to EGFR-TKIs alone in patients with mutant EGFR tumors.                                                                                                                                                           |
|                                  | Imitation of the power of indirect comparison                                                                                                                                                                                                   |
|                                  | <ul> <li>not an individual patient data-based meta-analysis</li> <li>affect of betavaganaity paged to be taken into appount.</li> </ul>                                                                                                         |
|                                  | effect of heterogeneity needs to be taken into account                                                                                                                                                                                          |
| Luo L et al.,<br>2015 [35].      | 1. Fragestellung                                                                                                                                                                                                                                |
|                                  | This systematic review and meta-analysis was performed to assess the                                                                                                                                                                            |
| Comparing<br>single-agent        | efficacy and side effects between single-agent and doublet chemotherapy<br>in first-line treatment of advanced non-small cell lung cancer with                                                                                                  |
| with doublet                     | performance status 2 (PS2).                                                                                                                                                                                                                     |
| chemotherapy in first-line       | 2. Methodik                                                                                                                                                                                                                                     |
| treatment of                     | Population:                                                                                                                                                                                                                                     |
| advanced non-<br>small cell lung | cytologically or pathologically confirmed with NSCLC and in clinical stages                                                                                                                                                                     |
| cancer with performance          | Interventionen und Komparatoren:                                                                                                                                                                                                                |
| status 2: A                      | efficacy or toxicity of single-agent chemotherapy with doublet                                                                                                                                                                                  |
| meta-analysis                    | chemotherapy in PS2 patients                                                                                                                                                                                                                    |
|                                  | (when participants received prior chemotherapy or surgery, these studies were excluded; and (v) prior radiation therapy was permitted if it did not encompass the index lesion and it was completed 2 or more weeks before protocol enrollment) |
|                                  | Endpunkte:                                                                                                                                                                                                                                      |
|                                  | efficacy and toxicity [nicht näher spezifiziert]                                                                                                                                                                                                |
|                                  | Suchzeitraum:                                                                                                                                                                                                                                   |
|                                  | Bis 7/2013                                                                                                                                                                                                                                      |
|                                  | Anzahl eingeschlossene Studien/Patienten (Gesamt):                                                                                                                                                                                              |
|                                  | 6 (776); RCTs                                                                                                                                                                                                                                   |
|                                  | Qualitätsbewertung der Studien:                                                                                                                                                                                                                 |
| L                                |                                                                                                                                                                                                                                                 |

| Jad | lad | sca | e |
|-----|-----|-----|---|
|     |     |     |   |

### Heterogenitätsuntersuchungen: I<sup>2</sup>

### 3. Ergebnisdarstellung

Table 1 Characteristics of included studies

| Jadad Clinical trial<br>study Journal scale phase<br>Perrone <i>et al.</i> Journal of 3 Phase III trial<br>2004° Clinical |                                    |                                                        |                 | Treatment                                                                       | Case | Median<br>age<br>(year) | Median<br>survival<br>(month) | Objective<br>response<br>rate (%) |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|------|-------------------------|-------------------------------|-----------------------------------|
|                                                                                                                           |                                    | GEM 1000 mg/m <sup>2</sup><br>NVB 25 mg/m <sup>2</sup> | 44              | >70                                                                             | 5.8  | 9.1                     |                               |                                   |
|                                                                                                                           | Oncology                           |                                                        |                 | NVB 30 mg/m <sup>2</sup>                                                        | 45   | >70                     | 3.5                           | 13.3                              |
| Lilenbaum<br>2005                                                                                                         | Journal of<br>Clinical             | 3                                                      | Phase III trial | TAX 225 mg/m <sup>2</sup><br>CBP AUC = $6$                                      | 49   | —                       | 4.7                           | 24                                |
|                                                                                                                           | Oncology                           |                                                        |                 | TAX 225 mg/m <sup>2</sup>                                                       | 50   | _                       | 2.4                           | 10                                |
| Kosmidis <i>et al.</i><br>2007 <sup>11</sup>                                                                              | Journal of<br>Thoracic<br>Oncology | 3                                                      | Phase II trial  | GEM 1250 mg/m <sup>2</sup><br>d1,d14<br>CBP AUC = 3                             | 43   | 70.5                    | 6.7                           | 14                                |
|                                                                                                                           |                                    |                                                        |                 | GEM 1250 mg/m <sup>2</sup><br>d1,d14                                            | 47   | 73                      | 4.8                           | 4                                 |
| Hainsworth<br>et al. 2007 <sup>12</sup>                                                                                   | Cancer                             | 3                                                      | Phase III trial | TXT 36 mg/m <sup>2</sup><br>d1,d8,d15<br>GEM 800 mg/m <sup>2</sup><br>d1,d8,d15 | 65   | _                       | 4.8                           | _                                 |
|                                                                                                                           |                                    |                                                        |                 | TXT 36 mg/m <sup>2</sup><br>d1,d8,d15                                           | 57   | —                       | 3.9                           | —                                 |
| Reynolds <i>et al.</i> 2009 <sup>13</sup>                                                                                 | Journal of<br>Clinical<br>Oncology | 3                                                      | Phase III trial | GEM 1000 mg/m <sup>2</sup><br>d1,d8<br>CBP AUC = 5<br>d1                        | 85   | 72.9                    | 6.7                           | 43.9                              |
|                                                                                                                           |                                    |                                                        |                 | GEM 1250 mg/m <sup>2</sup><br>d1,d8                                             | 85   | 75.0                    | 5.1                           | 16.4                              |
| Zukin 2013                                                                                                                | Journal of<br>Clinical             | 2                                                      | Phase III trial | PEM 500 mg/m <sup>2</sup><br>CBP AUC = 5                                        | 103  | 65                      | 9.3                           | 24                                |
|                                                                                                                           | Oncology                           |                                                        |                 | PEM 500 mg/m <sup>2</sup>                                                       | 102  | 65                      | 5.3                           | 10                                |

CBP, carboplatin; GEM, gemcitabine; NVB, vinorelbine; PEM, pemetrexed; TAX, paclitaxel; TXT, docetaxel.

Efficacy of single-agent with doublet chemotherapy efficacy in first-line treatment of advanced non-small cell lung cancer with PS2 (a: meta-analysis of OS; b: meta-analysis of 1-year survival rate; c: meta-analysis of ORR).

| A                                                                  |             |                         |                       |                         | 1         | Hazard Ratio                       | Hazard Ratio                                 |
|--------------------------------------------------------------------|-------------|-------------------------|-----------------------|-------------------------|-----------|------------------------------------|----------------------------------------------|
| Study or Subgroup                                                  | log[Haz     | ard Ratio]              | S                     | E Weig                  | aht P     | V, Fixed, 95%                      | CI IV, Fixed, 95% CI                         |
| 1.1.1 carboplatin-con                                              | ntaining    |                         |                       |                         |           |                                    | 1957                                         |
| Kosmidis                                                           |             |                         |                       |                         |           | 0.77 [0.45, 1.3                    |                                              |
| Reynolds                                                           |             |                         |                       |                         |           | 0.84 [0.55, 1.2                    |                                              |
| Lilenbuam                                                          |             |                         |                       |                         |           | 0.60 (0.40, 0.9                    |                                              |
| Zukin                                                              |             | -0.478                  | 0.152                 |                         |           | 0.62 (0.46, 0.8                    |                                              |
| Subtotal (95% CI)                                                  |             |                         |                       |                         | 3% (      | 0.68 [0.56, 0.8                    | 2]                                           |
| Heterogeneity: Chi <sup>2</sup> =<br>Test for overall effect:      |             |                         |                       | 0%                      |           |                                    |                                              |
| 1.1.2 non carboplatir                                              | 1           | 0 0005                  | 0.047                 | · · · · ·               | 201       | 0 70 /0 /7 / /                     |                                              |
| Perrone<br>Hainsworth                                              |             |                         |                       |                         |           | 0.72 [0.47, 1.1                    |                                              |
| Subtotal (95% CI)                                                  |             | -0.0943                 | 0.195                 |                         |           | 0.91 [0.62, 1.3<br>).82 [0.62, 1.0 |                                              |
| Heterogeneity: Chi <sup>2</sup> =<br>Test for overall effect:      |             |                         | 2); l² = 1            |                         |           |                                    |                                              |
| Total (95% CI)                                                     |             |                         |                       | 100.                    | 0% 0      | 0.72 [0.61, 0.8                    | 4]                                           |
| Heterogeneity: Chi <sup>2</sup> =                                  |             |                         |                       | 0%                      |           |                                    | 0.5 0.7 1 1.5 2                              |
| Test for overall effect:                                           | Z = 4.04    | (P < 0.000              | 1)                    |                         |           |                                    | Favours doublet Favours single age           |
| Test for subaroup dif                                              | ferences:   | Chi <sup>2</sup> = 1.20 | 0. df = 1             | (P = 0.2                | 27), l²   | = 16.6%                            | r avours doublet i ravours single age        |
| В                                                                  | single a    | nent d                  | loublet               |                         |           | Risk Differen                      | ce Risk Difference                           |
| Study or Subgroup                                                  |             |                         |                       | otal We                 |           |                                    |                                              |
| 1.3.1 carboplatin-cont                                             |             |                         |                       |                         |           |                                    |                                              |
| Kosmidis                                                           | 8           | 47                      | 8                     | 43 11                   | 6%        | -0.02 [-0.17, 0                    | 0.141                                        |
| Lilenbuam                                                          | 5           | 50                      |                       |                         |           | -0.08 [-0.22, 0                    |                                              |
| Reynolds                                                           | 18          | 85                      |                       |                         |           | -0.09 [-0.23, 0                    |                                              |
| Zukin                                                              | 22          | 102                     | 41 1                  | 103 26                  | .5%       | -0.18 [-0.31, -0                   | 0.06]                                        |
| Subtotal (95% CI)                                                  |             | 284                     | 2                     | 280 72                  | 2.8%      | -0.11 [-0.18, -0                   | 0.04]                                        |
| Total events                                                       | 53          |                         | 84                    |                         |           |                                    |                                              |
| Heterogeneity: Chi <sup>2</sup> = 2                                |             |                         | ; I <sup>2</sup> = 0% | 5                       |           |                                    |                                              |
| Test for overall effect: 2                                         | Z = 3.17 (F | ° = 0.002)              |                       |                         |           |                                    |                                              |
| 4.2.3 nen earbenlatin                                              |             |                         |                       |                         |           |                                    |                                              |
| 1.3.2 non carboplatin<br>Hainsworth                                | 10          | 57                      | 10                    | GE 15                   | 70/       | 0.01 ( 0.15 (                      | . 1 21                                       |
| Perrone                                                            | 9           | 45                      |                       |                         |           | -0.01 [-0.15, 0                    |                                              |
| Subtotal (95% CI)                                                  | 5           | 102                     |                       |                         |           | -0.02 [-0.12, 0                    |                                              |
| Total events                                                       | 19          | 102                     | 22                    |                         |           | 0.021.01.1210                      |                                              |
| Heterogeneity: Chi2 = (                                            |             | 1 (P = 0.87)            |                       | 5                       |           |                                    |                                              |
| Test for overall effect 2                                          |             |                         |                       |                         |           |                                    |                                              |
|                                                                    |             |                         |                       |                         |           |                                    |                                              |
| Total (95% CI)                                                     | -           | 386                     |                       | 389 100                 | 0.0%      | -0.09 [-0.14, -0                   | 0.03]                                        |
| Total events                                                       | 72          |                         | 106                   |                         |           |                                    |                                              |
| Heterogeneity: Chi <sup>2</sup> = 4<br>Test for overall effect: 2  |             |                         | , r= 0%               | ,                       |           |                                    | -1 -0.5 Ó 0.5                                |
| Test for subaroup diffe                                            |             |                         | df = 1/P              | P = 0.14                | $1^2 = 6$ | 3 4 %                              | Favours doublet Favours single age           |
|                                                                    |             |                         |                       | - <b>9</b> .14).        | 0         |                                    |                                              |
| С                                                                  | single      | dout                    |                       |                         |           | isk Ratio                          | Risk Ratio                                   |
| Study or Subgroup I                                                |             | otal Events             | Total                 | Weight                  | М-Н,      | Fixed, 95% Cl                      | M-H, Fixed, 95% Cl                           |
| 1.2.1 carboplatin-conta<br>Kosmidis                                |             | 47 0                    | 12                    | 0.00                    | 0         | 20 (0 06 4 4 2)                    |                                              |
| Lilenbuam                                                          | 2<br>5      | 47 6<br>50 12           |                       | 9.9%<br>19.1%           |           | 30 [0.06, 1.43]<br>41 [0.16, 1.07] |                                              |
| Reynolds                                                           | 5           | 85 16                   |                       | 25.3%                   |           | 31 [0.12, 0.81]                    |                                              |
| Zukin                                                              |             | 102 25                  |                       | 39.3%                   |           | 44 [0.23, 0.85]                    |                                              |
| Subtotal (95% CI)                                                  |             | 284                     | 280                   | 93.6%                   |           | 39 [0.25, 0.61]                    | •                                            |
| Total events                                                       | 23          | 59                      | 1                     |                         |           |                                    |                                              |
| Heterogeneity: Chi <sup>2</sup> = 0.<br>Test for overall effect: Z |             |                         | = 0%                  |                         |           |                                    |                                              |
| 1.2.2 non carboplatin                                              |             |                         | 2 220                 |                         | 542       | 17 10 11 11                        |                                              |
| Perrone<br>Subtotal (05% CI)                                       | 6           | 45 4                    | 44                    | 6.4%                    |           | 47 [0.44, 4.85]                    |                                              |
| Subtotal (95% CI)<br>Total events                                  | 6           | 45                      | 44                    | 6.4%                    | 1.4       | 47 [0.44, 4.85]                    |                                              |
| Heterogeneity: Not appl                                            |             | 4                       |                       |                         |           |                                    |                                              |
| Test for overall effect: Z                                         |             | = 0.53)                 |                       |                         |           |                                    |                                              |
| Total (95% CI)                                                     |             | 329                     |                       | 100.0%                  | 0.4       | 46 [0.30, 0.69]                    | ◆                                            |
| Total events                                                       | 29          | 63                      |                       |                         |           |                                    |                                              |
| Heterogeneity: Chi <sup>2</sup> = 4.                               |             |                         | = 13%                 |                         |           |                                    | 0.01 0.1 1 10 10                             |
| Test for overall effect: Z                                         |             |                         | - 1 /D                | 0.040 17                | - 70 4    | ~                                  | Favours doublet therapy Favours single-agent |
|                                                                    | ences: Ch   | r= 4.19. df:            | = 1 (P =              | U.U4),   <sup>2</sup> = | = /6.1    | %                                  |                                              |
| Test for subaroup differ                                           |             |                         |                       |                         |           |                                    |                                              |
| restion subaroub unier                                             |             |                         |                       |                         |           |                                    |                                              |
| restion subaroub ainer                                             |             |                         |                       |                         |           |                                    |                                              |
| Test for subdroub unier                                            |             |                         |                       |                         |           |                                    |                                              |
|                                                                    | sinale.     | agent                   | with                  | doub                    | let r     | chemothe                           | erapy efficacy in first-line                 |
| Side effect of s                                                   | •           | •                       |                       |                         |           |                                    | erapy efficacy in first-line                 |
|                                                                    | •           | •                       |                       |                         |           |                                    | erapy efficacy in first-line                 |

|   | oonoor with D                                                     | <u>60 (a.</u>         |                     | to on                         |                                                                                                                 | of a              | ada 2/4 a                                 | nomicy by moto analysis of                                                                    |
|---|-------------------------------------------------------------------|-----------------------|---------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|
|   |                                                                   | •                     |                     |                               |                                                                                                                 | •                 |                                           | nemia; b: meta-analysis of                                                                    |
|   | -                                                                 | litoper               | lla,                | c. me                         | la-ai                                                                                                           | lalysis           | s or grade                                | 3/4 thrombocytopenia).                                                                        |
|   | A<br>Church an Carbonnour                                         | double                |                     | single                        | -                                                                                                               | 18/2              | Risk Ratio                                | Risk Ratio                                                                                    |
|   | <u>Study or Subgroup</u><br>Kosmidis                              | Events<br>3           | <u>1 otal</u><br>43 | Events<br>1                   | <u>1 otal</u><br>47                                                                                             | eight<br>8.8%     | M-H, Fixed, 95%<br>3.28 (0.35, 30.        |                                                                                               |
|   | Reynolds                                                          | 12                    | 79                  | 6                             | 81                                                                                                              | 54.4%             | 2.05 [0.81, 5.                            | -                                                                                             |
|   | Zukin                                                             | 12                    | 103                 | 4                             | 102                                                                                                             | 36.9%             | 2.97 (0.99, 8.                            | .91]                                                                                          |
|   | Total (95% CI)<br>Total events                                    | 27                    | 225                 | 11                            | 230                                                                                                             | 100.0%            | 2.50 [1.27, 4.                            | 90]                                                                                           |
|   | Heterogeneity: Chi <sup>2</sup> =                                 | 0.33, df=             |                     | 0.85); P                      | = 0%                                                                                                            |                   |                                           | 0.01 0.1 1 10 100                                                                             |
|   | Test for overall effect:<br>B                                     | Z= 2.66 (             | P = 0.0             | 008)                          |                                                                                                                 |                   |                                           | Favours doublet Favours single agent                                                          |
|   |                                                                   | double                | et                  | single                        | agent                                                                                                           |                   | <b>Risk Ratio</b>                         | Risk Ratio                                                                                    |
|   | Study or Subgroup                                                 | Events                | 1007620             |                               | 100 C 100 |                   | M-H, Fixed, 95%                           |                                                                                               |
|   | Kosmidis                                                          | 14                    | 43                  | 4                             | 47                                                                                                              | 27.9%             | 3.83 [1.36, 10.                           |                                                                                               |
|   | Reynolds<br>Zukin                                                 | 46<br>7               | 79<br>103           | 9<br>1                        | 81<br>102                                                                                                       | 64.8%<br>7.3%     | 5.24 [2.75, 9.<br>6.93 [0.87, 55.         | -                                                                                             |
|   |                                                                   |                       |                     |                               |                                                                                                                 |                   |                                           |                                                                                               |
|   | Total (95% CI)                                                    | 67                    | 225                 | 4.4                           | 230                                                                                                             | 100.0%            | 4.97 [2.93, 8.                            | 43]                                                                                           |
|   | Total events<br>Heterogeneity: Chi² =                             | 67<br>0.37, df =      | 2 (P =              | 14<br>0.83); I <sup>2</sup> : | = 0%                                                                                                            |                   |                                           |                                                                                               |
|   | Test for overall effect:                                          |                       |                     |                               |                                                                                                                 |                   |                                           | 0.01 0.1 1 10 100<br>Favours doublet Favours single agent                                     |
|   | С                                                                 |                       |                     |                               |                                                                                                                 |                   |                                           | r avours doublet in avours single agent                                                       |
|   | U U                                                               | double                | t                   | single a                      | agent                                                                                                           |                   | Risk Ratio                                | Risk Ratio                                                                                    |
|   | Study or Subgroup                                                 |                       |                     |                               |                                                                                                                 | Weight            | M-H, Fixed, 95%                           |                                                                                               |
|   | Kosmidis                                                          | 3                     | 43                  | 0                             | 47                                                                                                              |                   | 7.64 [0.41, 143                           |                                                                                               |
|   | Reynolds<br>Zukin                                                 | 35                    | 79                  | 3                             | 81                                                                                                              |                   | 11.96 [3.83, 37                           |                                                                                               |
|   | Zukin                                                             | 1                     | 103                 | 0                             | 102                                                                                                             | 12.7%             | 2.97 (0.12, 72                            | .09]                                                                                          |
|   | Total (95% CI)                                                    |                       | 225                 |                               | 230                                                                                                             | 100.0%            | 10.29 [3.80, 27.                          | .85]                                                                                          |
|   | Total events                                                      | 39<br>0.60 df-        | 2 /D -              | 0 713-18-                     | - 00                                                                                                            |                   |                                           |                                                                                               |
|   | Heterogeneity: Chi <sup>2</sup> =<br>Test for overall effect:     | Sector Contractor     | Solo Transie Inc.   |                               | = 0%                                                                                                            |                   |                                           | 0.01 0.1 1 10 100<br>Favours doublet Favours single agent                                     |
|   | treatment of a                                                    | idvanc<br>lyspne      | ed ı<br>a; b        | non-s<br>o: met               | mall<br>a-ana                                                                                                   | cell lu<br>alysis | ing cancei<br>of grade (                  | erapy efficacy in first-line<br>r with PS2 (a: meta-analysis<br>3/4 fatigue; c: meta-analysis |
|   | A<br>or Subgroup                                                  | doublet<br>Events To  |                     | ingle age                     |                                                                                                                 |                   | Odds Ratio<br>I, Fixed, 95% Cl            | Odds Ratio<br>M-H, Fixed, 95% Cl                                                              |
|   | Reynolds                                                          | 13                    | 81                  | 16                            |                                                                                                                 |                   | 0.75 [0.34, 1.69]                         |                                                                                               |
|   | Zukin                                                             | 6 1                   | 03                  | 11                            |                                                                                                                 |                   | 0.51 [0.18, 1.44]                         |                                                                                               |
|   | Total (95% CI)                                                    | 1                     | 84                  |                               | 181 10                                                                                                          | 0.0% 0            | .65 [0.34, 1.22]                          | •                                                                                             |
|   | Total events                                                      | 19                    |                     | 27                            | ~                                                                                                               |                   |                                           |                                                                                               |
|   | Heterogeneity: Chi <sup>2</sup> = 0<br>Test for overall effect: Z |                       |                     |                               | 70                                                                                                              |                   | ľ                                         | 0.01 0.1 1 10 100<br>Favours doublet Favours single ager                                      |
|   | B<br>y or Subgroup I                                              | doublet<br>Events Tot |                     | ngle agen<br>ents To          |                                                                                                                 |                   | k Difference<br>Random, 95% Cl            | Risk Difference<br>M-H, Random, 95% Cl                                                        |
|   | Hainsworth                                                        | 39 1                  | 74                  | 29 1                          | 71 31.                                                                                                          | 0%                | 0.05 [-0.03, 0.14]                        |                                                                                               |
|   | Lilenbuam<br>Reynolds                                             |                       | 84<br>81            |                               | 277 40.<br>79 28.                                                                                               |                   | 0.01 [-0.02, 0.03]<br>).15 [-0.25, -0.06] |                                                                                               |
| 1 |                                                                   |                       |                     |                               |                                                                                                                 |                   |                                           |                                                                                               |
|   | Total (95% CI)<br>Total events                                    | 49<br>5               | 39                  | 5<br>49                       | 27 100.                                                                                                         | -0%               | 0.02 [-0.12, 0.07]                        | •                                                                                             |
|   | Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z | .01; Chi² = 1         |                     |                               | 0.003); I                                                                                                       | ²= 83%            |                                           | -1 -0.5 0 0.5 1<br>Favours doublet Favours single ager                                        |
|   | с                                                                 | doublet               | si                  | ngle agen                     | t                                                                                                               | c                 | Odds Ratio                                | Odds Ratio                                                                                    |
|   |                                                                   | Events Tot            | al Ev               | ents To                       | tal Wei                                                                                                         |                   | Random, 95% Cl                            | M-H, Random, 95% Cl                                                                           |
|   | Hainsworth<br>Lilenbuam                                           |                       | 74<br>03            |                               | 77 50.<br>02 29.                                                                                                |                   | 0.68 [0.31, 1.51]<br>5.15 [0.59, 44.90]   |                                                                                               |
|   | Reynolds                                                          |                       | 81                  |                               | 79 20.                                                                                                          |                   | 0.10 [0.01, 1.94]                         | <b>← =</b>                                                                                    |
|   | Total (95% CI)                                                    | 3                     | 58                  | 3                             | 58 100.                                                                                                         | 0%                | 0.83 [0.15, 4.46]                         |                                                                                               |
|   | Total events                                                      | 16                    |                     | 21                            |                                                                                                                 |                   |                                           |                                                                                               |
|   | Heterogeneity: Tau <sup>2</sup> = 1<br>Test for overall effect: Z | 27                    |                     | r= 2 (P = (                   | 1.08);  s =                                                                                                     | 28%               |                                           | 0.01 0.1 1 10 100<br>Favours doublet Favours single ager                                      |
| - |                                                                   |                       |                     |                               |                                                                                                                 |                   |                                           |                                                                                               |

|                                                                                  | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  | In conclusion, the results from our meta-analysis imply that carboplatin-<br>containing doublet chemotherapy may well be superior to non-<br>carboplatincontaining treatment. Additional prospective clinical trials are<br>warranted to evaluate treatment combinations.                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                  | Limitierungen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                  | <ul> <li>Some of our selected studies are not blinded.</li> <li>the number of trials is quite small and may not represent the real situation.</li> <li>After a careful retrieval in the different database, we found that there was only one article that reported the quality of life (QOL) comparison of the single-agent with doublet chemotherapy in first-line treatment of advanced NSCLC with PS2. There was no evidence that showed the difference between single-agent and doublet chemotherapy in first-line treatment of advanced NSCLC with PS2. We could not expand the analysis of toxicity comparison about the QOL by a meta-analysis.</li> </ul> |
| Pilkington G et                                                                  | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| al., 2015 [47].<br>A systematic<br>review of the<br>clinical<br>effectiveness of | Our aim was to evaluate the clinical effectiveness of chemotherapy<br>treatments currently licensed in Europe and recommended by the National<br>Institute for Health and Care Excellence (NICE) for the first-line treatment<br>of adult patients with locally advanced or metastatic nonsmall cell lung<br>cancer (NSCLC).                                                                                                                                                                                                                                                                                                                                      |
| first-line<br>chemotherapy                                                       | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| for adult patients                                                               | Population:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| with locally<br>advanced or                                                      | adult patients with locally advanced or metastatic NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| metastatic non-                                                                  | Interventionen und Komparatoren:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| small cell lung<br>cancer                                                        | treatments had to be currently licensed for use in Europe and recommended by NICE, 1. Linie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                  | To reflect current UK treatment pathways (see figure 1), analyses were undertaken and reported for three subpopulations on patients with NSCLC: patients with predominantly squamous disease, patients with predominantly non-squamous disease, and patients who were EGFR M+. In the main, all analyses were conducted on the total population according to randomisation; however, subpopulation data were included in our analyses if used previously for international or national decision making.                                                                                                                                                           |



| Reference treatment vs comparator               | Number of data points<br>(trials with head-to-head<br>comparison) | Number of patients<br>in reference<br>treatment/<br>comparator | Number of deaths in<br>reference treatment/<br>comparator | MA<br>HR (95% CI)<br>N=20 | MTC<br>HR (95% CI)<br>N=20 |
|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|---------------------------|----------------------------|
| Overall survival                                |                                                                   |                                                                |                                                           |                           |                            |
| GEM+PLAT vs VNB+PLAT <sup>8</sup> 9 25-28 35 21 | 8                                                                 | 1075/1077                                                      | 842/860                                                   | 1.08 (0.98 to 1.20)       | 1.08 (0.99 to 1.18)        |
| GEM+PLAT vs PAX+PLAT9 11 23 28 33 34            | 6                                                                 | 1245/1344                                                      | 1053/1186                                                 | 1.03 (0.94 to 1.13)       | 1.06 (0.97 to 1.16)        |
| GEM+PLAT vs DOC+PLAT <sup>34</sup>              | 1                                                                 | 301/304                                                        | 262/271                                                   | 1.06 (0.89 to 1.28)       | 0.99 (0.87 to 1.13         |
| GEM+PLAT vs PEM+PLAT <sup>4 29</sup>            | 2                                                                 | 1084/1087                                                      | 755/772                                                   | 0.85 (0.73 to 1.00)       | 0.85 (0.74 to 0.9          |
| VNB+PLAT vs PAX+PLAT <sup>9</sup> 19 24 28      | 4                                                                 | 625/630                                                        | 496/481                                                   | 0.98 (0.83 to 1.16)       | 0.92 (0.68 to 1.24         |
| VNB+PLAT vs DOC+PLAT <sup>10 20 22 30</sup>     | 4                                                                 | 766/1175                                                       | 607/920                                                   | 0.89 (0.78 to 1.00)       | 0.98 (0.87 to 1.09         |
| VNB+PLAT vs PEM+PLAT                            | 0                                                                 | No trial data                                                  | No trial data                                             | No trial data             | 0.92 (0.82 to 1.03         |
| PAX+PLAT vs DOC+PLAT <sup>34</sup>              | 1                                                                 | 602/304                                                        | 538/271                                                   | 0.98 (0.76 to 1.27)       | 0.79 (0.66 to 0.9          |
| PAX+PLAT vs PEM+PLAT                            | 0                                                                 | No trial data                                                  | No trial data                                             | No trial data             | 0.85 (0.63 to 1.16         |
| DOC+PLAT vs PEM+PLAT                            | 0                                                                 | No trial data                                                  | No trial data                                             | No trial data             | 0.94 (0.81 to 1.09         |
| Progression-free survival                       |                                                                   |                                                                |                                                           |                           |                            |
| GEM+PLAT vs VNB+PLAT <sup>8 26</sup>            | 2                                                                 | 269/269                                                        | 312*                                                      | 1.09 (0.87 to 1.38)       | 1.06 (0.78 to 1.66         |
| GEM+PLAT vs PAX+PLAT <sup>23 34</sup>           | 2                                                                 | 350/651                                                        | 142/304†                                                  | 1.17 (1.00 to 1.36)       | 1.23 (0.77 to 1.65         |
| GEM+PLAT vs DOC+PLAT <sup>34</sup>              | 1                                                                 | 301/304                                                        | 105/114                                                   | 1.15 (0.96 to 1.37)       | 1.08 (0.7 to 1.61)         |
| GEM+PLAT vs PEM+PLAT <sup>4</sup>               | 1                                                                 | 1084/1087                                                      | NR                                                        | 0.90 (0.79 to 1.02)       | 0.90 (0.53 to 1.52)        |
| VNB+PLAT vs PAX+PLAT <sup>19</sup>              | 1                                                                 | 70/70                                                          | 7/14†                                                     | 1.52 (1.06 to 2.17)       | 1.16 (0.6 to 1.65)         |
| VNB+PLAT vs DOC+PLAT <sup>20</sup> 22           | 2                                                                 | 168/165                                                        | 92/86                                                     | 0.92 (0.74 to 1.16)       | 1.02 (0.61 to 1.44         |
| VNB+PLAT vs PEM+PLAT                            | No trial data                                                     | No trial data                                                  | No trial data                                             | No trial data             | 0.85 (0.42 to 1.51         |
| PAX+PLAT vs DOC+PLAT <sup>34</sup>              | 1                                                                 | 602/304                                                        | 130/263†                                                  | 0.97 (0.75 to 1.24)       | 0.88 (0.59 to 1.52)        |
| PAX+PLAT vs PEM+PLAT                            | No trial data                                                     | No trial data                                                  | No trial data                                             | No trial data             | 0.73 (0.42 to 1.53         |
| DOC+PLAT vs PEM+PLAT                            | No trial data                                                     | No trial data                                                  | No trial data                                             | No trial data             | 0.83 (0.43 to 1.65)        |

\*Number of events are for both arms. †Includes progressive disease (PD) only as PFS event (PD or death) not reported. Bold text indicates statistically significant results. DOC, docetaxel; GEM, gemictabine; MA, meta-analysis; MTC, mixed treatment comparison; NSCLC, non-small cell lung cancer; PAX, paclitaxel; PFS, progression-free survival; PEM, pemetrexed; PLAT, platinum; VNB, vinorelbine.

Overall, the quality of the included RCTs was poor-few trials fully reported methods and the definitions of the health outcomes used often differed between trials.

### **OS, PFS**

| Reference treatment vs comparator  | Total deaths/patients in both arms | MA<br>HR (95% CI)<br>N=3 | MTC<br>HR (95% CI)<br>N=3 |
|------------------------------------|------------------------------------|--------------------------|---------------------------|
| Overall survival                   |                                    |                          |                           |
| PAX+PLAT vs GEF <sup>5 31 36</sup> | 199*/448                           | 0.94 (0.74 to 1.18)      | 0.94 (0.67 to 1.3)        |
| DOC+PLAT vs GEF <sup>32</sup>      | NR/172                             | 1.64 (0.75 to 3.58)†     | 1.64 (0.54 to 4.96)       |
| PAX+PLAT vs DOC+PLAT               | No trial data                      | No trial data            | 0.57 (0.18 to 1.81)       |
| Progression-free survival          |                                    |                          |                           |
| PAX+PLAT vs GEF <sup>5 31 36</sup> | NR/488                             | 0.38 (0.24 to 0.60)      | 0.39 (0.29 to 0.52        |
| DOC+PLAT vs GEF <sup>32</sup>      | NR/172                             | 0.49 (0.33 to 0.73)†     | 0.49 (0.28 to 0.86        |
| PAX+PLAT vs DOC+PLAT               | No trial data                      | No trial data            | 0.79 (0.42 to 1.48)       |

Direct evidence. Bold text indicates statistically significant results. DOC, docetaxel; GEF, geftinib; MA, meta-analysis; MTC, mixed treatment comparison; NR, not reported; NSCLC, non-small cell lung cancer, PAX, paclitaxel; PLAT, platinum.

### **Quality of Life**

Only 12 trials reported outcomes relating to QoL, with QoL being the primary outcome in two trials. MA was not performed due to limited data and variability in the outcome assessment measures reported. ...

Eight trials did not report any significant difference in QoL between treatment groups. Four trials reported some significant differences between treatment groups for QoL; in one trial results after two cycles of chemotherapy favoured the paclitaxel+carboplatin arm, whereas results after four cycles favoured the vinorelbine+cisplatin arm.

UE

|                                                                                                      |                                                                                                                                                                                                | ) adverse events by chemot                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                    |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                                      | DOC+PLAT                                                                                                                                                                                       | GEM+PLAT                                                                                                                                                                                                                                                                                                          | PAX+PLAT                                                                                                                                                                                                                                        | PEM+PLAT                                                                                                                                                                                                                            | VNB+PLAT                                                                                                                                            | GEF                                                                                                |
|                                                                                                      | Neutropenia<br>71.4%                                                                                                                                                                           | Granulocytopenia<br>48.8%                                                                                                                                                                                                                                                                                         | Neutropenia<br>62.5%                                                                                                                                                                                                                            | Granulocytopenia<br>37.9%                                                                                                                                                                                                           | Neutropenia<br>68.3%                                                                                                                                | Aminotransferase<br>elevation<br>33.8%                                                             |
|                                                                                                      | Leucopenia<br>43.5%                                                                                                                                                                            | Asthenia<br>40.3%                                                                                                                                                                                                                                                                                                 | Leucopenia<br>31.9%                                                                                                                                                                                                                             | Blood transfusions<br>26.9%                                                                                                                                                                                                         | Leucopenia<br>47.2%                                                                                                                                 | Appetite loss<br>5.3%                                                                              |
|                                                                                                      | Weakness                                                                                                                                                                                       | Neutropenia                                                                                                                                                                                                                                                                                                       | Weakness                                                                                                                                                                                                                                        | Infection                                                                                                                                                                                                                           | Oedema                                                                                                                                              | Rash/acne                                                                                          |
|                                                                                                      | 16.0%                                                                                                                                                                                          | 36.4%                                                                                                                                                                                                                                                                                                             | 14.5%                                                                                                                                                                                                                                           | 16.4%                                                                                                                                                                                                                               | 24.0%                                                                                                                                               | 3.3%<br>Toxic deaths                                                                               |
|                                                                                                      | Pneumonitis<br>11.5%                                                                                                                                                                           | Thrombocytopenia<br>34.6%                                                                                                                                                                                                                                                                                         | Cancer pain<br>13.2%                                                                                                                                                                                                                            | Neutropenia<br>15.1%                                                                                                                                                                                                                | Anaemia<br>19.3%                                                                                                                                    | 3.1%                                                                                               |
|                                                                                                      | Anaemia                                                                                                                                                                                        | Anorexia                                                                                                                                                                                                                                                                                                          | Nausea                                                                                                                                                                                                                                          | Alopecia                                                                                                                                                                                                                            | Phlebitis                                                                                                                                           | Diarrhoea                                                                                          |
|                                                                                                      | 11.2%<br>Asthenia                                                                                                                                                                              | 27.0%<br>Leucopenia                                                                                                                                                                                                                                                                                               | 10.3%<br>Anaemia                                                                                                                                                                                                                                | 11.9%<br>Leucopenia                                                                                                                                                                                                                 | 15.7%<br>Nausea/vomiting                                                                                                                            | 3.1%<br>Neutropenia                                                                                |
|                                                                                                      | 10.2%                                                                                                                                                                                          | 20.1%                                                                                                                                                                                                                                                                                                             | 10.0%                                                                                                                                                                                                                                           | 8.2%                                                                                                                                                                                                                                | 11.5%                                                                                                                                               | 2.8%                                                                                               |
|                                                                                                      | Nausea<br>9.9%                                                                                                                                                                                 | Transfusion<br>18.5%                                                                                                                                                                                                                                                                                              | Lethargy<br>9.4%                                                                                                                                                                                                                                | Thrombocytopenia<br>8.1%                                                                                                                                                                                                            | Vomiting<br>10.3%                                                                                                                                   | Pneumonitis<br>2.6%                                                                                |
|                                                                                                      | Vomiting<br>9.8%                                                                                                                                                                               | Alopecia<br>17.2%                                                                                                                                                                                                                                                                                                 | Thrombocytopenia<br>8.3%                                                                                                                                                                                                                        | Anaemia<br>7.0%                                                                                                                                                                                                                     | Nausea<br>9.9%                                                                                                                                      | Fatigue<br>2.5%                                                                                    |
|                                                                                                      | Cancer pain                                                                                                                                                                                    | Weakness                                                                                                                                                                                                                                                                                                          | Neuropathy                                                                                                                                                                                                                                      | Fatigue                                                                                                                                                                                                                             | Asthenia                                                                                                                                            | Infection                                                                                          |
|                                                                                                      | 8.4%                                                                                                                                                                                           | 17.0%                                                                                                                                                                                                                                                                                                             | 7.9%                                                                                                                                                                                                                                            | 6.7%                                                                                                                                                                                                                                | 9.4%                                                                                                                                                | 1.8%                                                                                               |
|                                                                                                      | Infection<br>7.5%                                                                                                                                                                              | Anaemia<br>16.5%                                                                                                                                                                                                                                                                                                  | Vomiting<br>7.4%                                                                                                                                                                                                                                | Nausea<br>6.2%                                                                                                                                                                                                                      | Pain<br>8.3%                                                                                                                                        | Anaemia<br>1.6%                                                                                    |
|                                                                                                      |                                                                                                                                                                                                | erkungen/Fazi                                                                                                                                                                                                                                                                                                     | , paclitaxel; PEM, pemetrexed; PLA                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                    |
|                                                                                                      | unere                                                                                                                                                                                          | ences in OS be                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                    |
|                                                                                                      | impro<br>gefitin<br>pricing<br>still co<br><b>5. Anme</b><br>• Das<br>• 4 S<br>unk<br>• Unt                                                                                                    | vement in PFS<br>hib compared v<br>g, third-genera<br>ompetitive option<br>erkungen der<br>s Ende des Su<br>tudien waren r<br>klar.<br>terschiedlich la                                                                                                                                                           | cel+platinum. T<br>with gefitinib of<br>with paclitaxel+<br>tion chemother<br>ons for most pa<br><b>FBMed:</b><br>chzeitraumes l<br>hicht adäquat g                                                                                             | here is a statis<br>compared with<br>platinum. Due t<br>rapy regimens                                                                                                                                                               | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war                                                 | ant<br>Itinum and<br>Ineric<br>Ibine) are                                                          |
| •                                                                                                    | impro<br>gefitin<br>pricing<br>still co<br>5. Anme<br>• Das<br>• 4 S<br>unk<br>• Unt<br>1. Frage                                                                                               | vement in PFS<br>hib compared v<br>g, third-genera<br>ompetitive option<br><b>erkungen der</b><br>s Ende des Su<br>tudien waren r<br>klar.<br>terschiedlich la                                                                                                                                                    | cel+platinum. T<br>with gefitinib of<br>with paclitaxel+<br>tion chemother<br>ons for most pa<br>FBMed:<br>chzeitraumes I<br>nicht adäquat g                                                                                                    | here is a statis<br>compared with<br>platinum. Due t<br>rapy regimens<br>atients.<br>iegt relativ weit<br>epowert bei ein<br>-Zeiten: von 11                                                                                        | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war<br>bis 36 Woch                                  | ant<br>Itinum and<br>neric<br>Ibine) are                                                           |
| <b>4 [37].</b><br>gle-agent<br>sus<br>ubination                                                      | impro<br>gefitin<br>pricing<br>still co<br>5. Anme<br>• Das<br>• 4 S<br>unk<br>• Unt<br>1. Frage<br>The p<br>first-lin<br>patier                                                               | vement in PFS<br>hib compared v<br>g, third-genera<br>ompetitive option<br>erkungen der<br>s Ende des Su<br>tudien waren r<br>klar.<br>terschiedlich la<br>estellung<br>hurpose of this<br>ne treatment w                                                                                                         | cel+platinum. T<br>with gefitinib of<br>with paclitaxel+<br>tion chemother<br>ons for most pa<br><b>FBMed:</b><br>chzeitraumes I<br>nicht adäquat g<br>unge Follow-Up<br>study was to co<br>vith combination<br>ced non-small of                | here is a statis<br>compared with<br>platinum. Due t<br>rapy regimens<br>atients.<br>iegt relativ weit<br>epowert bei ein                                                                                                           | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war<br>bis 36 Woch<br>cacy and toler<br>agent chemo | ant<br>Itinum and<br>Ineric<br>Ibine) are<br>Ibine) are<br>dies<br>en<br>rability of<br>therapy in |
| r <b>th C et al.,</b><br><b>4 [37].</b><br>gle-agent<br>sus<br>nbination<br>motherapy<br>irst-line   | impro<br>gefitin<br>pricing<br>still co<br>5. Anme<br>• Das<br>• 4 S<br>unk<br>• Unt<br>1. Frage<br>The p<br>first-lin<br>patier                                                               | vement in PFS<br>nib compared v<br>g, third-genera<br>ompetitive option<br>erkungen der<br>s Ende des Su<br>studien waren r<br>dar.<br>terschiedlich la<br>estellung<br>ourpose of this<br>ne treatment w<br>nats with advance<br>mance status                                                                    | cel+platinum. T<br>with gefitinib of<br>with paclitaxel+<br>tion chemother<br>ons for most pa<br><b>FBMed:</b><br>chzeitraumes I<br>nicht adäquat g<br>unge Follow-Up<br>study was to co<br>vith combination<br>ced non-small of                | here is a statis<br>compared with<br>platinum. Due t<br>rapy regimens<br>atients.<br>iegt relativ weit<br>epowert bei ein<br>-Zeiten: von 11<br>compare the effi<br>n versus single                                                 | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war<br>bis 36 Woch<br>cacy and toler<br>agent chemo | ant<br>Itinum and<br>neric<br>Ibine) are<br>dies<br>en<br>rability of<br>therapy in                |
| <b>4 [37].</b><br>Ile-agent<br>us<br>bination<br>notherapy<br>rst-line                               | impro<br>gefitin<br>pricing<br>still co<br>5. Anme<br>• Das<br>• 4 S<br>unk<br>• Unt<br>1. Frage<br>The p<br>first-lin<br>patier<br>perfor<br>2. Methe                                         | vement in PFS<br>hib compared v<br>g, third-general<br>ompetitive option<br>erkungen der<br>s Ende des Su<br>studien waren r<br>dar.<br>terschiedlich la<br>estellung<br>hurpose of this<br>ne treatment w<br>hts with advance<br>mance status<br>odik                                                            | cel+platinum. T<br>with gefitinib of<br>with paclitaxel+<br>tion chemother<br>ons for most pa<br><b>FBMed:</b><br>chzeitraumes I<br>nicht adäquat g<br>unge Follow-Up<br>study was to co<br>vith combination<br>ced non-small of                | here is a statis<br>compared with<br>platinum. Due t<br>rapy regimens<br>atients.<br>iegt relativ weit<br>epowert bei ein<br>-Zeiten: von 11<br>ompare the effi<br>n versus single<br>cell lung cancer                              | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war<br>bis 36 Woch<br>cacy and toler<br>agent chemo | ant<br>Itinum and<br>neric<br>Ibine) are<br>dies<br>en<br>rability of<br>therapy in                |
| <b>4 [37].</b><br>gle-agent<br>sus<br>abination<br>motherapy<br>irst-line<br>atment for<br>ents with | impro<br>gefitin<br>pricing<br>still co<br>5. Anme<br>• Das<br>• 4 S<br>unk<br>• Unt<br>1. Frage<br>The p<br>first-lin<br>patier<br>perfor<br>2. Methe<br><i>Popu</i>                          | vement in PFS<br>hib compared v<br>g, third-general<br>ompetitive option<br>erkungen der<br>s Ende des Su<br>studien waren r<br>dar.<br>terschiedlich la<br>estellung<br>ourpose of this<br>ne treatment wo<br>the with advance<br>mance status<br>odik                                                           | kel+platinum. T<br>b with gefitinib of<br>vith paclitaxel+<br>tion chemother<br>ons for most pace<br><b>FBMed:</b><br>chzeitraumes I<br>nicht adäquat g<br>inge Follow-Up<br>study was to co<br>vith combination<br>ced non-small of<br>(PS) 2. | here is a statis<br>compared with<br>platinum. Due to<br>rapy regimens<br>atients.<br>iegt relativ weit<br>epowert bei ein<br>-Zeiten: von 11<br>ompare the effi<br>n versus single<br>cell lung cancer                             | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war<br>bis 36 Woch<br>cacy and toler<br>agent chemo | ant<br>Itinum and<br>neric<br>Ibine) are<br>dies<br>en<br>rability of<br>therapy in                |
| <b>4 [37].</b><br>gle-agent<br>sus<br>bination<br>motherapy<br>irst-line<br>tment for                | impro<br>gefitin<br>pricing<br>still co<br>5. Anme<br>• Das<br>• 4 S<br>unk<br>• Unt<br>1. Frage<br>The p<br>first-lin<br>patier<br>perfor<br>2. Metho<br>Popu<br>Interv                       | vement in PFS<br>hib compared v<br>g, third-general<br>ompetitive option<br>erkungen der<br>s Ende des Su<br>studien waren r<br>dar.<br>terschiedlich la<br>estellung<br>ourpose of this<br>ne treatment w<br>ints with advance<br>mance status<br>odik<br>vention: advance<br>vention: combi                     | cel+platinum. T<br>with gefitinib of<br>vith paclitaxel+<br>tion chemother<br>ons for most pa<br><b>FBMed:</b><br>chzeitraumes I<br>nicht adäquat g<br>inge Follow-Up<br>study was to co<br>vith combination<br>ced non-small of<br>(PS) 2.     | here is a statis<br>compared with<br>platinum. Due to<br>rapy regimens<br>atients.<br>iegt relativ weit<br>epowert bei ein<br>-Zeiten: von 11<br>ompare the effi<br>n versus single<br>cell lung cancer<br>PS 2<br>herapy           | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war<br>bis 36 Woch<br>cacy and toler<br>agent chemo | ant<br>Itinum and<br>neric<br>Ibine) are<br>dies<br>en<br>rability of<br>therapy in                |
| [37].<br>e-agent<br>is<br>bination<br>notherapy<br>st-line<br>ment for<br>nts with<br>nced non-      | impro<br>gefitin<br>pricing<br>still co<br>5. Anme<br>• Das<br>• 4 S<br>unk<br>• Uni<br>1. Frage<br>The p<br>first-lin<br>patier<br>perfor<br>2. Methe<br><i>Popu</i><br><i>Interv</i><br>Komp | vement in PFS<br>hib compared v<br>g, third-general<br>ompetitive option<br>erkungen der<br>s Ende des Su<br>studien waren r<br>dar.<br>terschiedlich la<br>estellung<br>burpose of this<br>ne treatment w<br>ints with advance<br>mance status<br>odik<br>vention: advance<br>vention: combi-<br>parator: single | kel+platinum. T<br>with gefitinib of<br>vith paclitaxel+<br>tion chemother<br>ons for most pa<br><b>FBMed:</b><br>chzeitraumes I<br>nicht adäquat g<br>inge Follow-Up<br>study was to co<br>vith combination<br>ced non-small of<br>(PS) 2.     | here is a statis<br>compared with<br>platinum. Due to<br>rapy regimens<br>atients.<br>iegt relativ weit<br>epowert bei ein<br>-Zeiten: von 11<br>ompare the effi<br>n versus single<br>cell lung cancer<br>PS 2<br>herapy<br>nerapy | tically significa<br>docetaxel+pla<br>to reduced gen<br>(except vinore<br>zurück.<br>her Studie war<br>bis 36 Woch<br>cacy and toler<br>agent chemo | ant<br>Itinum and<br>neric<br>Ibine) are<br>dies<br>en<br>rability of<br>therapy in                |

| status 2: a                    | Anzahl eing                                                                                                                                                                                                   | jeschlossen                                                                                                                                                                                                                                                                       | e Studi                                                                                                                                                                                                      | en/Pat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ienten (Ge                                                                                                                                                                                                                                                                               | esamt): 12/1 1                                                                                                                                                                                                             | 14                                                                                           |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| literature-based               | Qualitätsbe                                                                                                                                                                                                   | wertung der                                                                                                                                                                                                                                                                       | Studie                                                                                                                                                                                                       | <b>n:</b> Coc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hrane's ris                                                                                                                                                                                                                                                                              | k of bias tool                                                                                                                                                                                                             |                                                                                              |
| meta-analysis of<br>randomized | Heterogenia                                                                                                                                                                                                   | tätsuntersuo                                                                                                                                                                                                                                                                      | hunger                                                                                                                                                                                                       | <b>r:</b> Durc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hgeführt (I                                                                                                                                                                                                                                                                              | <sup>2</sup> )                                                                                                                                                                                                             |                                                                                              |
| studies                        | 3. Ergebnisda                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>0</b> (                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                            |                                                                                              |
|                                | •                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                 | ntonli                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                              |
|                                | OS (11 Studien                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                              |
|                                | compare<br>0.88, p-v<br>both for s<br>performe<br>0.87 for s<br>studies v<br>improver<br>based co<br>0.61–0.8<br>platinum<br>for subgr<br>no statist                                                          | d with single<br>alue < 0.001<br>studies dedic<br>d subgroup a<br>studies dedic<br>vith subgroup<br>nent in OS w<br>ombination ve<br>1) while no d<br>based comb<br>roup difference<br>tical heteroge<br>azard Ratio SE<br>combi0.51 0.21-0.55 0.32-0.38 0.37-0.46 0.16-0.16 0.24 | -agent c<br>ated to p<br>analy-sis<br>atedto F<br>banaly-sis<br>as more<br>as more<br>ersus sin<br>ifference<br>ination (<br>ce = 0.00<br>ceneity wa<br>nation Monoth<br>Total<br>49<br>29<br>15<br>61<br>43 | hemot<br>batient<br>base<br>S 2 ar<br>S 2 ar<br>s, p-va<br>pronc<br>gle-ag<br>e was<br>HR: 0.<br>09) (Fin<br>as obs<br>rapy<br>Total wei<br>50 7:<br>28 3:<br>15 2:<br>28 3:<br>15 2:<br>28 3:<br>21 2:<br>28 3:<br>28 3:<br>29 3:<br>20 3:<br>20 4:<br>20 4:<br>20 5:<br>20 5 | herapy (HF<br>s with PS 2<br>d on PS (H<br>nd HR: 0.83<br>lue for sub-<br>punced in tr<br>ent therap<br>observed in<br>96, 95% C<br>g. 2)<br>erved<br>hazard Ratio<br>htt IV, Fixed, 95% CI<br>3% 0.66 (0.40, 0.911<br>% 0.52 (0.28, 0.98)<br>% 0.68 (0.33, 1.41)<br>% 0.68 (0.33, 1.41) | A contraction treatm<br>R:0.79, 95% C<br>2 and those the<br>R: 0.73, 95% C<br>3, 95% CI: 0.7<br>group difference<br>rials with platin<br>y (HR: 0.71, 92<br>n studies with<br>I: 0.80–1.15) (<br>Hazard Ra<br>N, Fixed, 95 | I: 0.71–<br>at<br>CI: 0.62–<br>2–0.96 for<br>ce = 0.30)<br>num-<br>5% CI:<br>non-<br>p-value |
|                                | Le Chevalier et al 2001<br>USO-03012<br>Zukin 2013                                                                                                                                                            | -0.01 0.19<br>-0.21 0.18<br>-0.48 0.15                                                                                                                                                                                                                                            | 42<br>85<br>103                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%         0.99 [0.68, 1.44]           0%         0.81 [0.57, 1.15]           2%         0.62 [0.46, 0.83]                                                                                                                                                                               | -<br>-                                                                                                                                                                                                                     |                                                                                              |
|                                | Subtotal (95% CI)<br>Heterogeneity: Chi <sup>2</sup> = 7.12, df = 7<br>Test for overall effect: Z = 4.93 (P                                                                                                   |                                                                                                                                                                                                                                                                                   | 427                                                                                                                                                                                                          | 435 63.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7% 0.71 (0.61, 0.81)                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                          |                                                                                              |
|                                | 1.1.2 Non-platinum based chem<br>Hainsworth et al 2007<br>MILES_1<br>MILES_2<br>Subtotal (95% CI)<br>Heterogeneity: Chi <sup>2</sup> = 0.20, df = 2<br>Test for overall effect: Z = 0.46 (P<br>Total (95% CI) | otherapy<br>-0.1 0.2<br>-0.01 0.12<br>-0.09 0.23<br>: (P = 0.91); P = 0%<br>= 0.65)                                                                                                                                                                                               | 65<br>44<br>0<br>109<br>536                                                                                                                                                                                  | 45 22.:<br>41 6.:<br>143 36.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0% 0.90 [0.61, 1.34]<br>2% 0.99 [0.78, 1.26]<br>0% 0.91 [0.58, 1.43]<br>3% 0.96 [0.80, 1.15]                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                                                              |
|                                | Heterogeneity: Chi <sup>2</sup> = 14.08, df = 10 (P = 0.17); l <sup>2</sup> = 29%         Test for overall effect: Z = 4.21 (P < 0.0001)                                                                      |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                              |
|                                | Fig. 2. Forest plot fo                                                                                                                                                                                        | or overall surviva                                                                                                                                                                                                                                                                | al (with sul                                                                                                                                                                                                 | ogroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | analysis base                                                                                                                                                                                                                                                                            | ed on the adminis                                                                                                                                                                                                          | tration of                                                                                   |
|                                | platinum-based or n                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                          |                                                                                              |
|                                | squares indicates the weight of the study. Error bars represent 95% confidence intervals (CIs).<br>The diamond indicates the summary hazard ratio. Values lowerthan one indicate survival                     |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                              |
|                                | advantage of combi                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                            | allo. va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iues iowertria                                                                                                                                                                                                                                                                           | an one indicate st                                                                                                                                                                                                         | IIVIVAI                                                                                      |
|                                | Table 2                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                   | crapy.                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                              |
|                                | Meta-analyses of grade III–IV advers<br>Toxicity grade III–IV                                                                                                                                                 | se events.<br>No of studies                                                                                                                                                                                                                                                       | No o                                                                                                                                                                                                         | f patients ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | yzed                                                                                                                                                                                                                                                                                     | Pooled OR (95% CI)                                                                                                                                                                                                         | p-Value                                                                                      |
|                                | Hematologic<br>Anemia<br>Trombocytopenia<br>Neutropenia                                                                                                                                                       | 4<br>4<br>4                                                                                                                                                                                                                                                                       | 519<br>519<br>519                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          | 3.12 (1.55–6.27)<br>12.81 (4.65–33.10)<br>7.91 (3.97–15.78)                                                                                                                                                                | 0.001<br><0.001<br><0.001                                                                    |
|                                | Non-hematologic<br>Febrile neutropenia<br>Fatigue<br>Nausea                                                                                                                                                   | 3<br>3<br>3                                                                                                                                                                                                                                                                       | 432<br>349<br>432                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          | 0.32 (0.05–2.06)<br>0.75 (0.40–1.40)<br>1.21 (0.05–29.34)                                                                                                                                                                  | 0.23<br>0.36<br>0.91                                                                         |
|                                | PFS (5 Studien,                                                                                                                                                                                               | 522 Patiente                                                                                                                                                                                                                                                                      | en)                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                              |

|                                                                      | combination chemotherapy resulted in statisticallysignificant longer PFS compared with single agent chemotherapy(HR: 0.61, 95% CI: 0.45–0.84, p-value = 0.002)                                                                                                                                        |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      | grades III and IV toxicity (4 Studien)                                                                                                                                                                                                                                                                |
|                                                                      | Due to lack of adequate data, we could not perform meta-analysis on the incidence of other toxicities.                                                                                                                                                                                                |
|                                                                      | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                      |
|                                                                      | This meta-analysis provides evidence supporting the use of combination<br>chemotherapy in patients with NSCLC and PS 2. However, the patients<br>should be informed about the higher risk for toxicity with the combination<br>chemotherapy and the final treatment strategy should be individualized |
|                                                                      | Einschränkungen:                                                                                                                                                                                                                                                                                      |
|                                                                      | unable to investigate whether the survival benefit with combination chemotherapy is similar on different histological subtypesof lung cancer                                                                                                                                                          |
|                                                                      | Anmerkungen FB Med:                                                                                                                                                                                                                                                                                   |
|                                                                      | <ul> <li>eine Phase II Studie eingeschlossen</li> <li>study funded by the Centre for Clinical ResearchSörmland, Uppsala<br/>University</li> <li>authors have no conflict of interest to declare</li> </ul>                                                                                            |
| Brown T et al.,                                                      | 1. Fragestellung                                                                                                                                                                                                                                                                                      |
| <b>2013 [8].</b><br>Clinical<br>effectiveness<br>and cost-           | To evaluate the clinical effectiveness and cost-effectiveness of first-line chemotherapy currently licensed in Europe and recommended by NICE, for adult patients with locally advanced or metastatic nonsmall cell lung cancer (NSCLC).                                                              |
| effectiveness of<br>first-line                                       | 2. Methodik                                                                                                                                                                                                                                                                                           |
| chemotherapy                                                         | Population: locally advanced or metastatic NSCLC                                                                                                                                                                                                                                                      |
| for adult patients<br>with locally<br>advanced or<br>metastatic non- | <b>Intervention</b> : chemotherapy drug regimens that are currently licensed in Europe and are recommended by NICE in a monotherapy or in combination, first line                                                                                                                                     |
| small cell lung                                                      | Komparator: platinum (PLAT) drug                                                                                                                                                                                                                                                                      |
| cancer: a<br>systematic<br>review and                                | <b>Endpunkte</b> : Overall survival (OS), OS at 1 and 2 years, progression-free survival (PFS), time to progression (TTP), tumour overall response rate, quality of life (QoL) and adverse events (AEs).                                                                                              |
| economic<br>evaluation                                               | Suchzeitraum: 1990 bis 2010                                                                                                                                                                                                                                                                           |
|                                                                      | Anzahl eingeschlossene Studien/Patienten (Gesamt): 23/11 428                                                                                                                                                                                                                                          |
|                                                                      | Qualitätsbewertungen der Studien: All included trials were assessed for methodological quality using criteria based on the Centre for Reviews and Dissemination (CRD) guidance.                                                                                                                       |

### 3. Ergebnisdarstellung

### Quality assessment

Overall, the quality of the included RCTs was poorer than expected: there were few trials with fully reported methods and the definitions of the health outcomes used often differed between trials.

• 23 trials involving > 11,000 patients in total met the inclusion criteria

### patients with squamous disease

• no statistically significant differences in <u>OS</u> between treatment regimes

### patients with non-squamous disease (mixed-treatment comparison)

- pemetrexed (Alimta®, Eli Lilly and Company; PEM) + platinum (PLAT) increases <u>OS</u> statistically significantly compared with gemcitabine (Gemzar®, Eli Lilly and Company; GEM) + PLAT [hazard ratio (HR) = 0.85; 95% confidence interval (CI) 0.74 to 0.98]
- docetaxel (Taxotere®, Sanofi-aventis; DOC) + PLAT increases <u>OS</u> statistically significantly compared with paclitaxel (Abraxane®, Celgene Corporation; PAX) + PLAT (HR = 0.79, 95% CI 0.66 to 0.93)
- It remains unknown whether or not the clinical effectiveness of PEM + PLAT is superior to that of GEF monotherapy for patients with nonsquamous disease.

### patients with EGFR M+ status

- none of the comparisons found any statistically significant differences in <u>OS</u>
- direct metaanalysis: statistically significant improvement in <u>PFS</u> with gefitinib (Iressa®, AstraZeneca; GEF) compared with DOC + PLAT and PAX + PLAT (HR = 0.49; 95% CI 0.33 to 0.73; and HR = 0.38; 95% CI 0.24 to 0.60, respectively), with significant quantitative heterogeneity between the two trials

### QoL (insgesamt 12 Studien)

Measuring QoL outcomes in patients with advanced NSCLC is difficult mainly because of the severity of symptoms, the side effects of chemotherapy and early deaths associated with NSCLC. However, the British Thoracic Oncology Group Trial 2 has shown that it is feasible to collect QoL data in patients with performance status (PS) 0–2, stage IIIB/IV NSCLC disease within a clinical trial setting.

• employed instruments/tools: EORTC QLQ-C30 + lung cancer-specific module QLQ-LC13 (5 trials), LCSS (3 trials), FACT-L32 (3 trials)

Four reported some significant differences between treatment groups for QoL; however, in one of these trials, results after two cycles of chemotherapy favoured the PAX + CARB arm over the VNB + CIS arm, and results after four cycles favoured the VNB + CIS arm. In one trial, significantly more patients in the GEF group than in the PAX + CARB group had a clinically relevant improvement in QoL, as assessed by scores on the FACT-L

|                                | questionnaire (odds ratio = 1.34; 95% CI 1.06 to 1.69; $p = 0.01$ ) and by scores on the Trial Outcome Index (TOI) (which is the sum of the physical well-being, functional well-being and lung cancer subscale scores of FACT-L; odds ratio = 1.78; 95% CI 1.40 to 2.26; $p < 0.001$ ). Seven trials reported no significant difference in QoL between treatment groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                | AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                | Across all the chemotherapy arms of the included trials, the most common<br>AEs were neutropenia, anaemia and leucopenia. Rates of haematological<br>AEs were similar for all the chemotherapy drugs with the exception of GEF,<br>which appears to be associated with a significantly lower evere AE rate than<br>some of the other drugs. The trials often varied in the way that AEs were<br>defined, measured and reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                                | Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                                | Poor trial quality and a lack of evidence for all drug comparisons complicated<br>and limited the data analysis. Outcomes and adverse effects are not<br>consistently combined across the trials. Few trials reported quality-of-life data<br>despite their relevance to patients and clinicians.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                | 4. Anmerkungen/ Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                | The results of this comprehensive review are unique to NSCLC and will assist clinicians to make decisions regarding the treatment of patients with advanced NSCLC. The design of future lung cancer trials needs to reflect the influence of factors such as histology, genetics and the new prognostic biomarkers that are currently being identified. In addition, trials will need to be adequately powered so as to be able to test for statistically significant clinical effectiveness differences within patient populations. New initiatives are in place to record detailed information on the precise chemotherapy (and targeted chemotherapy) regimens being used, together with data on age, cell type, stage of disease and performance status, allowing for very detailed observational audits of management and outcomes at a population level. It would be useful if these initiatives could be expanded to include the collection of health economics data. |  |  |  |  |  |  |
| Zhang X et al.,                | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 2013 [65].<br>Pemetrexed       | To systematically evaluate pemetrexed/platinum as firstline treatment for advanced NSCLC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| plus platinum                  | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| or gemcitabine plus platinum   | Population: patients with stage IIIB or stage IV NSCLC. First-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| for advanced                   | Intervention: pemetrexed/platinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| non-small cell<br>lung cancer: | Komparator: gemcitabine/platinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| final survival                 | Endpunkte: OS, toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| analysis from a                | Qualitätsbewertung dre Primärstudien: Jadad scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| L                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |

### multicentre randomized phase II trial in the East Asia region and a meta-analysis

| Suchzeitraum: up to 2010                                            |  |
|---------------------------------------------------------------------|--|
| Anzahl eingeschlossene Studien/Patienten (Gesamt): 3/2 412          |  |
| 3. Ergebnisdarstellung                                              |  |
| Table 4 Characteristics of the trials included in the meta-analysis |  |

| Study                                    | Total<br>accrual | Treatment dose and sched ule                                                                                                       | Stage<br>IV (%) | ECOG<br>PS=2(%) | Non-squamous<br>(%) | Fernale<br>(%) | Median OS<br>(95% CI)<br>(month) | 1-year<br>survival<br>rate (%) | 2-year<br>survival<br>nate (%) |
|------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------------------|----------------|----------------------------------|--------------------------------|--------------------------------|
| Scagliotti<br>et al. (2008) <sup>7</sup> | 1725             | Pemetrexed 500 mg/m <sup>2</sup> plus cisplatin 75 mg/m <sup>2</sup> on d1,<br>every 3 weeks for up to six cycles                  | 76.2            | 0               | 71.7                | 29.8           | 10.3 (9.8, 11.2)                 | 43.5                           | 18.9                           |
|                                          |                  | Gemoitabine 1,250 mg/m² on d1 and d8, plus cisplatin<br>75 mg/m² on d1, every 3 weeks for up to six cycles                         | 75.7            | 0               | 73.5                | 29.9           | 10.3 (9.6, 10.9)                 | 41.9                           | 14.0                           |
| arøn berg<br>et al. (2009) <sup>9</sup>  | 436              | Pemetrexed 500 mg/m <sup>2</sup> plus carboplatin AUC5 on d1,<br>every 3 weeks for up to four cycles                               | 71              | 22              | 74                  | 44             | 7.3 (6.1, 8.6)                   | 34                             | NR                             |
|                                          |                  | Gemcitabine 1,000 mg/m <sup>2</sup> on d1 and d8, plus carboplatin<br>AUC5 on d1, every 3 weeks for up to four cycles              | 72              | 23              | 77                  | 41             | 7.0 (5.8, 8.2)                   | 31                             | NR                             |
| Zhang <i>et al.</i><br>(current study)   | 251              | Pemetrexed 500 mg/m <sup>2</sup> plus cisplatin 75 mg/m <sup>2</sup> on d1,<br>every 3 weeks for up to six cycles                  | 64.6            | 0               | 82.7                | 38.6           | 15.3 (12.2, 18.9)                | 59.6                           | 27.3                           |
|                                          |                  | Gemcitabine 1,000 mg/m <sup>2</sup> on d1 and d8, plus cisplatin<br>75 mg/m <sup>2</sup> on d1, every 3 weeks for up to six cycles | 71.8            | 0               | 80.6                | 37.9           | 16.9 (14.6, 20.3)                | 65.9                           | 27.9                           |

AUC, area under concentration/time curve; Cl, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status; NR, not reported; OS, overall survival

### Overall survival:

- Overall population: no statistically significant difference
- Female population: statistically significant difference in favor of pemetrexed/platinum (HR 0.81; 95% CI 0.69–0.96, significant heterogeneity)
- Non squamous cell lung cancer: statistically significant difference in favor of pemetrexed/platinum (HR 0.83; 95% CI 0.73–0.95, significant heterogeneity)
- Squamous cell lung cancer:statistically significant difference in favor of gemcitabine/platinum (HR 1.26; 95% Cl 1.03–1.54, significant heterogeneity)



**Toxicity**: pemetrexed-platinum treatment was associated with significantly lower ORs for <u>leukopenia</u> (OR 0.43; 95% CI 0.29-0.65; p < 0.0001),

|                                                                                     | <u>thrombocytopenia</u> (OR 0.28; 95% CI 0.21–0.37; p < 0.001) and <u>neutropenia</u> (OR 0.57; 95% CI 0.45–0.74; p < 0.001).                                                                                                                                                                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                     | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                     | Meta-analysis supports the use of pemetrexed-platinum as first-line treatment for female patients and those with the non-squamous cell subtype of advanced NSCLC.                                                                                                                                    |  |  |  |  |  |
|                                                                                     | Anmerkungen der FB Med:                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                     | <ul> <li>1 Phase II Studie mit chinesischen Patient*innen eingeschlossen</li> <li>JH and JL received consulting fees from QILU Pharmaceutical Co.<br/>Ltd. JW and PM are employed by QILU Pharmaceutical Co. Ltd.</li> </ul>                                                                         |  |  |  |  |  |
| Ou Yang PY et                                                                       | 1. Fragestellung                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| al., 2013 [44].<br>Combination of<br>EGFR-TKIs and<br>Chemotherapy<br>as First-Line | Controversy continues regarding the role of the addition of EGFR–TKIs in patients receiving chemotherapy. Therefore, we conducted this meta-analysis to comprehensively estimate the treatment effect of the combined regimen on PFS and overall survival (OS) based on characteristics of patients. |  |  |  |  |  |
| Therapy for                                                                         | 2. Methodik                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Advanced                                                                            | Population: chemotherapy-naive patients with advanced NSCLC                                                                                                                                                                                                                                          |  |  |  |  |  |
| NSCLC: A<br>Meta-Analysis                                                           | Intervention: Chemotherapy, first-line treatment                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                     | <b>Komparator</b> : EGFR–TKI monotherapy or the combined regimen of EGFR–<br>TKI and chemotherapy                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                     | Endpunkte: PFS, OS                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                     | Suchzeitraum: k.A.                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                     | Anzahl eingeschlossene Studien/Patienten (Gesamt): 8/4 585                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                     | Qualitätsbewertung der Studien: examined the randomization procedure,<br>estimation of sample size, blinding, loss to follow-up, dropout and if the<br>intention-to-treat analysis (prospective randomized controlled trials (phase II<br>or III)                                                    |  |  |  |  |  |
|                                                                                     | Heterogenitätsuntersuchungen: Chi-square test and I2 statistic                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                     | Publication bias: Begg's test and Egger's test                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                     | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                     | <ul> <li>3 Phase II Studien, 5 Phase III Studien eingeschlossen</li> <li>all studies were of high quality – blinding, showing randomization procedure, conducting estimation of sample size, mostly reporting dropout and following the principle of intention to-treat analysis</li> </ul>          |  |  |  |  |  |
|                                                                                     | Unselected Patients (4 Studien)                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                     | <b>PFS:</b> Significant PFS benefit was observed from the combined regimen of TKIs and chemotherapy (HR= $0.81$ , $95\%$ CI $0.69-0.95$ , P = $0.01$ ; Figure 2a) based on random-effects model, due to significant heterogeneity (Chi2 =                                                            |  |  |  |  |  |

| 35.17, P<0.001                          | ; l <sup>2</sup> = 80%).                                      |                                        |                                                                  |
|-----------------------------------------|---------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|
|                                         | , ,                                                           | t in OS with                           | the combined regimen (HR=                                        |
|                                         | .93–1.08, P = 0.8                                             |                                        | <b>C</b> (                                                       |
| Figure 2. Forest plots                  | s in unselected patients.                                     |                                        |                                                                  |
| A                                       |                                                               | Hazard Ratio                           | Hazard Ratio                                                     |
|                                         |                                                               | IV. Random, 95% CI                     | IV. Random, 95% Cl                                               |
| CALGB 30406(2012)                       | -0.2107 0.1793 9.4%                                           | 0.81 [0.57, 1.15]                      |                                                                  |
| FASTACT(2009)                           | -0.7472 0.1844 9.2%<br>-0.563 0.098 13.8%                     | 0.47 [0.33, 0.68]                      |                                                                  |
| FASTACT-II(2013)<br>Hirsch et al.(2011) | -0.0305 0.2202 7.7%                                           | 0.57 [0.47, 0.69]<br>0.97 [0.63, 1.49] |                                                                  |
| INTACT 1(2004)                          | -0.0513 0.0877 14.4%                                          | 0.95 [0.80, 1.13]                      |                                                                  |
| INTACT 2 (2004)                         | -0.1508 0.0836 14.6%                                          | 0.86 [0.73, 1.01]                      |                                                                  |
| TALENT(2007)                            | -0.0202 0.0666 15.5%                                          | 0.98 [0.86, 1.12]                      | -                                                                |
| TRIBUTE(2005)                           | -0.0651 0.0705 15.3%                                          | 0.94 [0.82, 1.08]                      |                                                                  |
| 1112012(2000)                           | -0.0001 0.0100 10.010                                         | area forest treat                      |                                                                  |
| Total (95% CI)                          | 100.0%                                                        | 0.81 [0.69, 0.95]                      | •                                                                |
|                                         | Chi <sup>2</sup> = 35.17, df = 7 (P < 0.0001); l <sup>2</sup> |                                        |                                                                  |
| Test for overall effect: Z = 2.         |                                                               |                                        | 0.5 0.7 1 1.5 2<br>Favours TKIs plus CT Favours CT or TKIs alone |
| в                                       |                                                               | Hazard Ratio                           | Hazard Ratio                                                     |
| Study or Subgroup log                   | [Hazard Ratio] SE Weight                                      | IV. Fixed, 95% CI                      | IV. Fixed. 95% Cl                                                |
| CALGB 30406(2012)                       | 0.1044 0.2069 3.4%                                            | 1.11 [0.74, 1.87]                      |                                                                  |
| FASTACT(2009)                           | 0.0862 0.2259 2.9%                                            | 1.09 [0.70, 1.70]                      |                                                                  |
| FASTACT-II(2013)                        | -0.2282 0.1113 11.8%                                          | 0.80 [0.64, 0.99]                      |                                                                  |
| Hirsch et al.(2011)                     | 0.27 0.2778 1.9%                                              | 1.31 [0.76, 2.26]                      |                                                                  |
| INTACT 1(2004)                          |                                                               | 1.06 [0.88, 1.28]                      |                                                                  |
| INTACT 2 (2004)                         | 0.01 0.094 16.5%                                              | 1.01 [0.84, 1.21]                      |                                                                  |
| TALENT(2007)                            | 0.0583 0.0835 20.9%                                           | 1.06 [0.90, 1.25]                      |                                                                  |
| TRIBUTE(2005)                           | -0.005 0.0744 26.4%                                           | 1.00 [0.86, 1.15]                      |                                                                  |
| Total (95% CI)                          | 100.0%                                                        | 1.01 [0.93, 1.08]                      | •                                                                |
| Heterogeneity: Chi <sup>2</sup> = 6.40, |                                                               |                                        | -+                                                               |
| Test for overall effect: Z = 0.         |                                                               |                                        | 0.5 0.7 1 1.5 2<br>Favours TKIs plus CT Favours CT or TKIs alone |
|                                         |                                                               |                                        |                                                                  |
| Selected Patie                          | ents by EGFR-Mu                                               | tation Sta                             | tus (4 Studien)                                                  |
| PFS: combined                           | l regimen was sup                                             | perior over                            | chemotherapy or TKIs                                             |
| monotherapy w                           | vith a significant in                                         | nprovemen                              | t in PFS (HR= 0.48, 95% CI 0.28-                                 |
| 0.83, P = 0.009                         | ); combined regin                                             | nen also sh                            | owed significant PFS benefit in                                  |
|                                         |                                                               |                                        | red with chemotherapy or TKIs                                    |
|                                         | 0                                                             | •                                      | , p= 0.02, Figure 3a)                                            |
|                                         |                                                               |                                        |                                                                  |
|                                         | •                                                             | •                                      | d OS of EGFR-mutation positive                                   |
|                                         |                                                               |                                        | 0.05), but not EGFR-mutation                                     |
| negative patier                         | nts (HR =0.91, 95%                                            | % CI 0.77–                             | 1.08, p= 0.27, Figure 3b)                                        |
| Figure 3. Forest plot                   | s in selected patients                                        |                                        |                                                                  |
| i igaio o. i orost plot                 |                                                               |                                        |                                                                  |
|                                                                | A<br>Study or Subgroup LogHa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | zard Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE W                                                                                                                   | Veight                                                                                            | Hazard Ratio<br>IV. Random, 95% CI                                                                                                                                                           | Hazard Ratio<br>IV. Random, 95% Cl                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | Study or Subgroup log[Ha<br>EGFR-mutation positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a read of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96 11                                                                                                                  | rengin                                                                                            | TT, Agingvill, 22/2 GL                                                                                                                                                                       | TT DEBUSCH SY A VI                                                                                                                                                                                                                                                                                                                                                     |
|                                                                | CALGB 30406(2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.178 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        | 8.3%                                                                                              | 0.84 [0.43, 1.61]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | FASTACT-II(2013)<br>INTACT1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.3871 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        | 11.4%<br>4.6%                                                                                     | 0.25 [0.16, 0.39]<br>0.55 [0.19, 1.60]                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | TALENT(2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.5239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.529                                                                                                                  | 4.8%                                                                                              | 0.59 [0.21, 1.67]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | TRIBUTE(2005)<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.7136 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        | 5.8%<br>34.9%                                                                                     | 0.49 [0.20, 1.20]                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | Heterogeneity: Tau <sup>2</sup> = 0.23; Chi <sup>2</sup><br>Test for overall effect: Z = 2.61 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        |                                                                                                   | 0.48 [0.28, 0.83]<br>1%                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | EGFR-mutation negative<br>FASTACT-II(2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0318 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1731 1                                                                                                                 | 13.1%                                                                                             | 0.97 [0.69, 1.36]                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | Hirsch et al.(2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.2471 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        | 11.4%                                                                                             | 0.78 [0.50, 1.22]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | INTACT1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3125 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        | 13.4%                                                                                             | 0.73 [0.53, 1.01]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | TALENT(2007)<br>TRIBUTE(2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.054 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        | 13.3%<br>13.9%                                                                                    | 0.95 [0.68, 1.32]<br>0.80 [0.60, 1.07]                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        | 65.1%                                                                                             | 0.84 [0.72, 0.98]                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | Heterogeneity: Tau <sup>x</sup> = 0.00; Chi <sup>x</sup><br>Test for overall effect: Z = 2.25 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (P = 0.72                                                                                                              | 2); l <sup>2</sup> = 09                                                                           | 6                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | Test for subgroup differences: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 1 (P = 0.                                                                                                            | .05), l² =                                                                                        | 73.1%                                                                                                                                                                                        | 0.2 0.5 1 2 5<br>Favours TKIs plus CT Favours CT or TKIs alone                                                                                                                                                                                                                                                                                                         |
|                                                                | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        |                                                                                                   | Hazard Ratio                                                                                                                                                                                 | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                           |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | azard Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE 1                                                                                                                   | Weight                                                                                            | IV. Fixed, 95% CI                                                                                                                                                                            | IV. Fixed, 95% Cl                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | EGFR-mutation positive<br>CALGB 30406(2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.2814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4378                                                                                                                 | 3.3%                                                                                              | 0.75 [0.32, 1.78]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | FASTACT-II(2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.7418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                        | 7.6%                                                                                              | 0.48 [0.27, 0.84]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | INTACT1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        | 1.5%                                                                                              | 1.77 [0.50, 6.25]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | TALENT(2007)<br>TRIBUTE(2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                        | 1.0%                                                                                              | 0.95 [0.19, 4.72]<br>0.88 [0.20, 3.90]                                                                                                                                                       | 74                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        | 14.6%                                                                                             | 0.67 [0.44, 1.00]                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | Heterogeneity: Chi <sup>2</sup> = 4.04, df =<br>Test for overall effect: Z = 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P = 1%                                                                                                                 |                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | EGFR-mutation negative<br>FASTACT-II(2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.2653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1888                                                                                                                 | 18.0%                                                                                             | 0.77 [0.53, 1.11]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | Hirsch et al.(2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        | 7.2%                                                                                              | 1.09 [0.61, 1.96]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | INTACT1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.155                                                                                                                  | 26.6%                                                                                             | 0.91 [0.67, 1.23]                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | TALENT(2007)<br>TRIBUTE(2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        | 17.5%                                                                                             | 1.15 [0.79, 1.67]<br>0.78 [0.53, 1.16]                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        | 85.4%                                                                                             | 0.91 [0.77, 1.08]                                                                                                                                                                            | +                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | Heterogeneity: Chi <sup>2</sup> = 3.24, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (P = 0.62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l <sup>2</sup> = 0%                                                                                                    |                                                                                                   | 2                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | Test for subgroup differences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (P = 0.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                        | 0.17), P                                                                                          | - 46.5%                                                                                                                                                                                      | 0.2 0.5 1 2 5<br>Favours TKIs plus CT Favours CT or TKIs alone                                                                                                                                                                                                                                                                                                         |
|                                                                | Test for overall effect: Z = 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (P = 0.27)<br>Chi <sup>2</sup> = 1.87, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f= 1 (P =                                                                                                              |                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: 0<br>4. Anmerkungen/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (P = 0.27)<br>Chi <sup>2</sup> = 1.87, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Au                                                                                                                  | utor                                                                                              | en                                                                                                                                                                                           | Favours TKIs plus CT Favours CT or TKIs alone                                                                                                                                                                                                                                                                                                                          |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: 0<br>4. Anmerkungen/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (P = 0.27)<br>Chi <sup>2</sup> = 1.87, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Au                                                                                                                  | utor                                                                                              | en                                                                                                                                                                                           | Favours TKIs plus CT Favours CT or TKIs alone                                                                                                                                                                                                                                                                                                                          |
|                                                                | Test for subgroup differences: I<br>Test for subgroup differences: I<br>4. Anmerkungen/F<br>In conclusion, on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (P = 0.27)<br>Ch <sup>p</sup> = 1.87, df<br>Fazit de<br>basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er Au<br>of th                                                                                                         | u <b>tor</b>                                                                                      | <b>en</b><br>eta-analys                                                                                                                                                                      | Favours TKIs plus CT Favours CT or TKIs alone                                                                                                                                                                                                                                                                                                                          |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences:         4. Anmerkungen/F         In conclusion, on the and chemotherapy lease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (P = 0.27)<br>Chi <sup>2</sup> = 1.87, df<br>Fazit de<br>basis<br>eads to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of th                                                                                                                  | u <b>tor</b><br>iis m<br>S bei                                                                    | <b>en</b><br>eta-analys<br>nefit as firs                                                                                                                                                     | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR-TKIs<br>t-line treatment for advanced                                                                                                                                                                                                                                                         |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences:         4. Anmerkungen/F         In conclusion, on the and chemotherapy lease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (P = 0.27)<br>Chi <sup>2</sup> = 1.87, df<br>Fazit de<br>basis<br>eads to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of th                                                                                                                  | u <b>tor</b><br>iis m<br>S bei                                                                    | <b>en</b><br>eta-analys<br>nefit as firs                                                                                                                                                     | Favours TKIs plus CT Favours CT or TKIs alone                                                                                                                                                                                                                                                                                                                          |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences:         4. Anmerkungen/F         In conclusion, on the and chemotherapy le NSCLC, regardless of the NSCLC is a subgroup of the subgroup  | (P = 0.27)<br>ChP = 1.87, eff<br>Fazit de<br>basis<br>eads to<br>of EGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of th<br>PFS                                                                                                           | utor<br>is m<br>S bei<br>utati                                                                    | <b>en</b><br>eta-analys<br>nefit as firs<br>on status,                                                                                                                                       | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable                                                                                                                                                                                                                              |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences:         4. Anmerkungen/F         In conclusion, on the and chemotherapy le NSCLC, regardless of the NSCLC is a subgroup of the subgroup  | (P = 0.27)<br>ChP = 1.87, eff<br>Fazit de<br>basis<br>eads to<br>of EGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of th<br>PFS                                                                                                           | utor<br>is m<br>S bei<br>utati                                                                    | <b>en</b><br>eta-analys<br>nefit as firs<br>on status,                                                                                                                                       | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR-TKIs<br>t-line treatment for advanced                                                                                                                                                                                                                                                         |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences:         4. Anmerkungen/F         In conclusion, on the and chemotherapy lead the subgroup differences is and chemotherapy lead the subgroup defined and chemotherapy lead to the subgroup defined and the subgroup def | (P = 0.27)<br>ch <sup>2</sup> = 1.87, d<br>Fazit de<br>basis<br>e basis<br>e ads to<br>of EGF<br>here is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of th<br>PFS<br>R-m<br>a lar                                                                                           | utor<br>iis m<br>S bei<br>utati<br>rger                                                           | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude                                                                                                                                 | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian                                                                                                                                                                                                  |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>4. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And th<br>patients, with sequer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (P = 0.27)<br>ch <sup>2</sup> = 1.87, at<br><b>Fazit de</b><br>e basis<br>e ads to<br>of EGF<br>here is<br>ntial ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of th<br>PFS<br>R-m<br>a lar                                                                                           | utor<br>is m<br>S bei<br>utati<br>rger<br>strat                                                   | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF                                                                                                                   | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.                                                                                                                                                                      |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>4. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And th<br>patients, with sequer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (P = 0.27)<br>ch <sup>2</sup> = 1.87, at<br><b>Fazit de</b><br>e basis<br>e ads to<br>of EGF<br>here is<br>ntial ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of th<br>PFS<br>R-m<br>a lar                                                                                           | utor<br>is m<br>S bei<br>utati<br>rger<br>strat                                                   | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF                                                                                                                   | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian                                                                                                                                                                                                  |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences:         4. Anmerkungen/F         In conclusion, on the and chemotherapy letter NSCLC, regardless of impact on OS. And the patients, with sequent EGFR-mutation states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (P = 0.27)<br>chP = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>e basis<br>e basis<br>of EGF<br>here is<br>ntial ad<br>us is sti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of th<br>PFS<br>R-m<br>a lar<br>minis                                                                                  | utor<br>iis m<br>S bei<br>utati<br>rger<br>strat                                                  | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biom                                                                                                    | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the                                                                                                                                         |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>A. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And the<br>patients, with sequent<br>EGFR-mutation statut<br>combined regimen, f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P = 0.27)<br>chi <sup>2</sup> = 1.87, df<br><b>Fazit de</b><br>e basis<br>e ads to<br>of EGF<br>here is<br>ntial ad<br>us is sti<br>for a lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of th<br>PFS<br>R-m<br>a lar<br>minis<br>ill a p                                                                       | utor<br>is m<br>S bei<br>utati<br>rger<br>strat<br>ored<br>mag                                    | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biomanitude of ir                                                                                       | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>'R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation                                                                                                         |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>A. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And the<br>patients, with sequent<br>EGFR-mutation statut<br>combined regimen, f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P = 0.27)<br>chi <sup>2</sup> = 1.87, df<br><b>Fazit de</b><br>e basis<br>e ads to<br>of EGF<br>here is<br>ntial ad<br>us is sti<br>for a lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of th<br>PFS<br>R-m<br>a lar<br>minis<br>ill a p                                                                       | utor<br>is m<br>S bei<br>utati<br>rger<br>strat<br>ored<br>mag                                    | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biomanitude of ir                                                                                       | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the                                                                                                                                         |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>A. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And th<br>patients, with sequer<br>EGFR-mutation statu<br>combined regimen, f<br>positive patients. Thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (P = 0.27)<br>chP = 1.87, d<br>Fazit de<br>e basis<br>e          | of th<br>PFS<br>R-m<br>a lar<br>minis<br>ill a p<br>rger r<br>egy c                                                    | utor<br>is m<br>S bei<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese                            | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biom<br>nitude of in<br>rved to be                                                                      | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>'R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future                                                                             |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>A. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And the<br>patients, with sequent<br>EGFR-mutation statut<br>combined regimen, f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P = 0.27)<br>chP = 1.87, d<br>Fazit de<br>e basis<br>e          | of th<br>PFS<br>R-m<br>a lar<br>minis<br>ill a p<br>rger r<br>egy c                                                    | utor<br>is m<br>S bei<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese                            | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biom<br>nitude of in<br>rved to be                                                                      | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>'R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future                                                                             |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>A. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And th<br>patients, with sequer<br>EGFR-mutation statu<br>combined regimen, f<br>positive patients. Thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (P = 0.27)<br>ch <sup>2</sup> = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>e basis<br>e basis<br>e basis<br>fazit de<br>e basis<br>e basis<br>e basis<br>fazit de<br>e basis<br>e basis | of th<br>PFS<br>R-m<br>a lar<br>minis<br>ill a p<br>rger r<br>egy c                                                    | utor<br>is m<br>S bei<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese                            | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biom<br>nitude of in<br>rved to be                                                                      | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>'R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future                                                                             |
|                                                                | Test for overall effect: Z = 1.11<br>Test for subgroup differences: I<br>A. Anmerkungen/F<br>In conclusion, on the<br>and chemotherapy le<br>NSCLC, regardless of<br>impact on OS. And th<br>patients, with sequer<br>EGFR-mutation statu<br>combined regimen, f<br>positive patients. This<br>although it is not app<br>Anmerkungen FB Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (P = 0.27)<br>ch <sup>2</sup> = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>e ads to<br>of EGF<br>here is<br>ntial ad<br>us is sti<br>for a lar<br>is strate<br>proved<br>ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of th<br>PFS<br>R-mi<br>a lar<br>minis<br>ill a p<br>rger r<br>egy o<br>for a                                          | utor<br>is m<br>S be<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>dvai                     | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biomanitude of in<br>nitude of in<br>rved to be<br>nced NSCL                                            | Taxours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>'R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.                                                        |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences: If         4. Anmerkungen/F         In conclusion, on the         and chemotherapy le         NSCLC, regardless of         impact on OS. And th         patients, with sequer         EGFR-mutation statu         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P = 0.27)<br>chi <sup>2</sup> = 1.87, d<br><b>Fazit de</b><br>e basis<br>e ads to<br>of EGF<br>here is<br>ntial ad<br>us is sti<br>for a lan<br>is strate<br>proved<br>ed<br>e autho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>minis<br>ill a p<br>rger n<br>egy o<br>for a                                 | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>idvar                   | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>rved to be<br>nced NSCL                                                        | is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.                                                                                                          |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences: If         4. Anmerkungen/F         In conclusion, on the         and chemotherapy le         NSCLC, regardless of         impact on OS. And th         patients, with sequer         EGFR-mutation statu         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P = 0.27)<br>chi <sup>2</sup> = 1.87, d<br><b>Fazit de</b><br>e basis<br>e ads to<br>of EGF<br>here is<br>ntial ad<br>us is sti<br>for a lan<br>is strate<br>proved<br>ed<br>e autho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>minis<br>ill a p<br>rger n<br>egy o<br>for a                                 | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>idvar                   | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>rved to be<br>nced NSCL                                                        | Taxours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>'R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.                                                        |
|                                                                | Test for overall effect: Z = 1.11         Test for subgroup differences: If         4. Anmerkungen/F         In conclusion, on the         and chemotherapy le         NSCLC, regardless of         impact on OS. And th         patients, with sequer         EGFR-mutation statu         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>e basis<br>e basis<br>e basis<br>for EGF<br>here is<br>ntial ad<br>us is striate<br>or a lar<br>is strate<br>or oved<br>e autho<br>nterests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>minis<br>ill a p<br>rger n<br>egy o<br>for a                                 | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>idvar                   | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>rved to be<br>nced NSCL                                                        | is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.                                                                                                          |
| liang .l et al                                                 | Test for overall effect: Z = 1.11         Test for subgroup differences: If         4. Anmerkungen/F         In conclusion, on the         and chemotherapy le         NSCLC, regardless of         impact on OS. And th         patients, with sequer         EGFR-mutation statu         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The         • Competing Ir         interests exist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>e basis<br>e basis<br>e basis<br>for EGF<br>here is<br>ntial ad<br>us is striate<br>or a lar<br>is strate<br>or oved<br>e autho<br>nterests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>minis<br>ill a p<br>rger n<br>egy o<br>for a                                 | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>idvar                   | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>rved to be<br>nced NSCL                                                        | is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.                                                                                                          |
| -                                                              | Test for overall effect: Z = 1.11         Test for subgroup differences: It         4. Anmerkungen/F         In conclusion, on the and chemotherapy let         NSCLC, regardless of impact on OS. And the patients, with sequer         EGFR-mutation statute         combined regimen, f         positive patients. This although it is not apper         Anmerkungen FB Meter         ECompeting Ir         interests exist         1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>e basis<br>e basis<br>e basis<br>for EGF<br>here is<br>ntial ad<br>us is stri<br>for a lar<br>is strate<br>proved<br>e autho<br>nterests<br>st.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>minis<br>ill a p<br>rger i<br>egy o<br>for a<br><i>rs ha</i><br><i>s: Th</i> | utor<br>is m<br>S be<br>utati<br>rger<br>strat<br>pred<br>mag<br>dese<br>advar<br>ave r           | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biomanitude of in<br>ritude of in<br>ritude of in<br>ritude of support<br>nced NSCL                     | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.                                                         |
| -                                                              | Test for overall effect: Z = 1.11         Test for subgroup differences: It         4. Anmerkungen/F         In conclusion, on the and chemotherapy let         NSCLC, regardless of impact on OS. And the patients, with sequer         EGFR-mutation statute         combined regimen, f         positive patients. This although it is not apper         Anmerkungen FB Meter         ECompeting Ir         interests exist         1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>e basis<br>e basis<br>e basis<br>for EGF<br>here is<br>ntial ad<br>us is stri<br>for a lar<br>is strate<br>proved<br>e autho<br>nterests<br>st.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>minis<br>ill a p<br>rger i<br>egy o<br>for a<br><i>rs ha</i><br><i>s: Th</i> | utor<br>is m<br>S be<br>utati<br>rger<br>strat<br>pred<br>mag<br>dese<br>advar<br>ave r           | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive biomanitude of in<br>ritude of in<br>ritude of in<br>ritude of support<br>nced NSCL                     | is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.                                                                                                          |
| 2013 [30].                                                     | Test for overall effect: Z = 1.11         Test for subgroup differences: If         4. Anmerkungen/F         In conclusion, on the         and chemotherapy le         NSCLC, regardless of         impact on OS. And th         patients, with sequer         EGFR-mutation statu         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The         • Competing Ir         interests exist         1. Fragestellung         The aim was to comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (P = 0.27)<br>chi <sup>2</sup> = 1.87, d<br>Fazit de<br>e basis<br>e basis<br>eads to<br>of EGF<br>here is<br>here is<br>ntial ad<br>us is sti<br>for a lar<br>is strate<br>or oved<br>e autho<br>nterests<br>st.<br>pare th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e effi                                                                                                                 | utor<br>iis m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>dvar<br>ave r<br>ne au | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>rved to be<br>nced NSCL<br>no support<br>athors have                           | Arrows TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.<br>or funding to report.<br>declared that no competing   |
| 2 <b>013 [30].</b><br>Non-platinum                             | Test for overall effect: Z = 1.11         Test for subgroup differences: It         4. Anmerkungen/F         In conclusion, on the and chemotherapy let         NSCLC, regardless of impact on OS. And the patients, with sequer         EGFR-mutation statute         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The         • Competing Ir         interests exist         1. Fragestellung         The aim was to compagents (non-platinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>a basis<br>a          | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>ill a p<br>rger i<br>egy o<br>for a<br><i>rs ha</i><br><i>s: Th</i>          | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>advar<br>ave r<br>he au | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>ritude of in<br>ritude of in<br>ritude of support<br>no support<br>of platinum | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.<br>or funding to report.<br>declared that no competing  |
| Jiang J et al.,<br>2013 [30].<br>Non-platinum<br>doublets were | Test for overall effect: Z = 1.11         Test for subgroup differences: It         4. Anmerkungen/F         In conclusion, on the and chemotherapy let         NSCLC, regardless of impact on OS. And the patients, with sequer         EGFR-mutation statute         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The         • Competing Ir         interests exist         1. Fragestellung         The aim was to compagents (non-platinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>a basis<br>a          | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>ill a p<br>rger i<br>egy o<br>for a<br><i>rs ha</i><br><i>s: Th</i>          | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>advar<br>ave r<br>he au | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>ritude of in<br>ritude of in<br>ritude of support<br>no support<br>of platinum | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>'R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.<br>or funding to report.<br>declared that no competing |
| 2013 [30].<br>Non-platinum<br>loublets were                    | Test for overall effect: Z = 1.11         Test for subgroup differences: It         4. Anmerkungen/F         In conclusion, on the         and chemotherapy le         NSCLC, regardless of         impact on OS. And th         patients, with sequer         EGFR-mutation statu         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The         • Competing Ir         interests exist         1. Fragestellung         The aim was to compagents (non-platinum (platinum-based) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>a basis<br>a          | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>ill a p<br>rger i<br>egy o<br>for a<br><i>rs ha</i><br><i>s: Th</i>          | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>advar<br>ave r<br>he au | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>ritude of in<br>ritude of in<br>ritude of support<br>no support<br>of platinum | As a combination of EGFR–TKIs<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.<br>or funding to report.<br>declared that no competing                  |
| 2013 [30].<br>Non-platinum<br>doublets were<br>as effective as | Test for overall effect: Z = 1.11         Test for subgroup differences: It         4. Anmerkungen/F         In conclusion, on the and chemotherapy let         NSCLC, regardless of impact on OS. And the patients, with sequer         EGFR-mutation statute         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The         • Competing Ir         interests exist         1. Fragestellung         The aim was to compagents (non-platinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>a basis<br>a          | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>ill a p<br>rger i<br>egy o<br>for a<br><i>rs ha</i><br><i>s: Th</i>          | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>advar<br>ave r<br>he au | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>ritude of in<br>ritude of in<br>ritude of support<br>no support<br>of platinum | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.<br>or funding to report.<br>declared that no competing  |
| 2013 [30].<br>Non-platinum<br>doublets were                    | Test for overall effect: Z = 1.11         Test for subgroup differences: It         4. Anmerkungen/F         In conclusion, on the         and chemotherapy le         NSCLC, regardless of         impact on OS. And th         patients, with sequer         EGFR-mutation statu         combined regimen, f         positive patients. This         although it is not app         Anmerkungen FB M         • Funding: The         • Competing Ir         interests exist         1. Fragestellung         The aim was to compagents (non-platinum (platinum-based) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (P = 0.27)<br>ChP = 1.87, d<br>Fazit de<br>a basis<br>a          | er Au<br>of th<br>PFS<br>R-mi<br>a lar<br>ill a p<br>rger i<br>egy o<br>for a<br><i>rs ha</i><br><i>s: Th</i>          | utor<br>is m<br>S bel<br>utati<br>rger<br>strat<br>ored<br>mag<br>dese<br>advar<br>ave r<br>he au | en<br>eta-analys<br>nefit as firs<br>on status,<br>magnitude<br>ion of EGF<br>ictive bioma<br>nitude of in<br>ritude of in<br>ritude of in<br>ritude of support<br>no support<br>of platinum | Favours TKIs plus CT Favours CT or TKIs alone<br>is, combination of EGFR–TKIs<br>t-line treatment for advanced<br>but has no demonstrable<br>of PFS benefit for Asian<br>R–TKIs and chemotherapy.<br>arker of benefit with the<br>nprovement in EGFR-mutation<br>considered in the future<br>.C at the moment.<br>or funding to report.<br>declared that no competing  |

| <b>Population</b> : cytologically or pathologically confirmed of NSCLC and in clinical III–IV stage and chemotherapy-naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intervention: non-platinum doublets (two-thirdgeneration agents combination)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Komparator</b> : platinum-based doublets (cisplatin or carboplatin combined with a thirdgeneration agent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Endpunkte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primär: OS, sekundär; PFS, RR; toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Suchzeitraum: 2000 bis 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Anzahl eingeschlossene Studien/Patienten (Gesamt): 16/k.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Qualitätsbewertung der Studien: assessed with the components recommended by the Cochrane Collaboration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Heterogenitätsuntersuchungen: Cochran Q statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pooled HR f (HR = 1.03, 95 % CI = 0.98–1.08, p = 0.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pooled RR = 0.99, 95 % CI = 0.90–1.08, p = 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| pooled HR : platinum-based doublets might have an advantage in PFS compared with non-platinum doublets (HR = $1.06$ , $95 \%$ Cl = $1.01-1.12$ , p = $0.03$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>The Grade 3–4 nausea or vomiting, anemia, neutropenia, thrombocytopenia, alopecia, and hearing loss of vinorelbine plus gemcitabine may be less frequent than platinum-based doublets, while grade 3–4 constipation of vinorelbine plus gemcitabine may be more frequent than platinum-based doublets.</li> <li>The grade 3–4 toxicity of vinorelbine plus paclitaxel may be comparable with platinum-based doublets excepted for neutropenia and allergy, which might be more frequent in vinorelbine plus paclitaxel group.</li> <li>Gemcitabine plus paclitaxel was more tolerable than platinum-based doublets on the whole according to anemia, neutropenia, thrombocytopenia except grade 3–4 peripheral neuropathy and alopecia.</li> <li>Gemcitabine plus carboplatin caused especially more grade 3–4 anemia, neutropenia, thrombocytopenia and hemorrhage than gemcitabine plus paclitaxel.</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                                                                                  | <ul> <li>anemia and neutropenia, but more lung toxicity than platinum-based doublets.</li> <li>Vinorelbine plus cisplatin may cause more grade 3–4 peripheral neuropathy than gemcitabine plus docetaxel.</li> <li><b>4.</b> Anmerkungen/Fazit der Autoren</li> <li>Non-platinum doublets were as effective as platinum-based doublets with different toxicity profile for chemotherapy-nai<sup>°</sup>ve advanced NSCLC in the era of thirdgeneration agents.</li> <li><i>Anmerkungen der FB Med:</i> <ul> <li>Kein Hinweis auf Publikationsbias (Begg's funnel plot)</li> <li>5 Phase II Studien eingeschlossen, "Sensitivity analyses were conducted when the low-quality studies were removed." – no significant differences</li> <li>work supported by the National Natural Science Foundation of China (Grant number 81101551)</li> </ul> </li> </ul> |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                  | Conflict of interest: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Cui J et al.,<br>2013 [11].<br>The Efficacy of<br>Bevacizumab<br>Compared with<br>Other Targeted | 1. Fragestellung<br>The extent of the benefit of bevacizumab combined with chemotherapy in the<br>treatment of advanced nonsmall- cell lung cancer (NSCLC) is still unclear. We<br>performed this meta-analysis to compare the efficacy of bevacizumab with<br>other commonly used targeted drugs for different patients with advanced<br>NSCLC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Drugs for                                                                                        | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Patients with<br>Advanced<br>NSCLC: A                                                            | <b>Population:</b> patients with confirmed stage IIIB, stage IV or recurrent NSCLC based on historical or cytological evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Meta-Analysis                                                                                    | Intervention: bevacizumab (15 mg/kg) with chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| from 30                                                                                          | <b>Komparator</b> : standard chemotherapy alone, 1. und 2. Linie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Randomized<br>Controlled                                                                         | Endpunkt: OS, ORR, PFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Clinical Trials                                                                                  | Suchzeitraum: 1999 to 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                  | Anzahl eingeschlossene Studien/Patienten (Gesamt): 30/k.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                  | Qualitätsbewertung der Primärstudien: Jadad Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                  | Heterogenitätsuntersuchungen: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                  | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                  | 1. Linie (chemotherapy-naive patients)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                  | <ul> <li>the pooled OR of response rate was 2.741(95%CI: 2.046, 3.672),</li> <li>the pooled HR for disease progression was 0.645 (95%CI: 0.561, 0.743),</li> <li>the pooled HR for death was 0.790 (95%CI: 0.674, 0.926),</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |



Bevacizumab accompanied by chemotherapy was found to significantly improve patients' response rate, progression free survival (PFS), and overall survival (OS) among chemotherapy-naive patients compared to other targeted drugs in the treatment of non-small cell lung carcinoma (NSCLC).

### Limitierungen

- Our study included clinical trials with only slightly different enrollment criteria and patient demographics. However patient characteristics (age, gender, ECOG performance status) were found not to be balanced between groups in a small number of trials. Such patient level difference may lead to heterogeneity in the meta-analysis.
- Inconsistency of chemotherapies of the control group did exist in this analysis, which could not be eliminated due to the study background.

|                                                     | <ul> <li>Finally, the clinical trials collected in this study show high<br/>heterogeneity.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                     | Anmerkungen Fb Med:                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                     | <ul> <li>Funding: The work is supported by the National Natural Science<br/>Foundation of China (30972551, 81273187); http://www.nsfc.gov.cn/.<br/>The funders had no role in study design, data collection and analysis,<br/>decision to publish, or preparation of the manuscript.</li> <li>Competing Interests: The authors have declared that no competing<br/>interests exist.</li> </ul>                                                                       |  |  |  |  |  |
| Jiang J et al.,                                     | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| <b>2013 [31].</b><br>Paclitaxel plus<br>platinum or | to compare the efficacy and toxicity of paclitaxel plus platinum (TP) with gemcitabine plus platinum (GP) in untreated advanced non-small-cell lung cancer by a meta-analysis.                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| gemcitabine<br>plus platinum in                     | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| first-line<br>treatment of                          | <b>Population:</b> patients must be cytologically or pathologically confirmed of NSCLC and in clinical III–IV stage, patients must be chemotherapy-naive                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| advanced non-                                       | Intervention: paclitaxel plus platinum (TP)                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| small-cell lung<br>cancer: results                  | Komparator: gemcitabine plus platinum (GP)                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| from 6                                              | Endpunkt: efficacy, toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| randomized controlled trials                        | Suchzeitraum: bis 2010                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| controlled thats                                    | Anzahl eingeschlossene Studien/Patienten (Gesamt): 6/ 2 793                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                     | Qualitätsbewertung der Primärstudien: Jadad score                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                     | Heterogenitätsuntersuchungen: I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                     | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                     | As there were no double-blind trials, the highest quality scores of the 6 trials according to Jadad's method were 3, and all 6 trials scored 3                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                     | <b>1-Jahres-Überleben (6 trials):</b> no statistically significant difference (RR = $0.99, 95\%$ CI = $0.90-1.09, p = 0.87; I^2=6\%$ )                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                     | <b>Gesamtüberleben (6 trials)</b> : no statistically significant difference (RR = $1.06$ , 95% CI = $1.00-1.13$ , p = $0.07$ ; I <sup>2</sup> = $16\%$ )                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                     | <b>Response (6 trials)</b> : no statistically significant difference (RR = 0.99, 95 % CI = $0.88-1.13$ , p = $0.92$ , I <sup>2</sup> =9%)                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                     | <b>Toxicity:</b> Grade 3–4 nausea or vomiting was less frequent in the TP than the GP group (10.5 vs. 17.4 %, RR = 0.53, 95 % CI = $0.35-0.78$ , p = 0.002). Grade 3–4 sensory neuropathy and fatigue were comparable between the TP and GP arms. Grade 3–4 anemia (8.8 vs. 22.4 %, RR = $0.37$ , 95 % CI = $0.30-0.45$ , p<0.00001) and thrombocytopenia (8.8 vs. 47.8 %, RR = $0.20$ , 95 % CI = $0.14-0.27$ , p<0.00001) were less frequent in the TP than the GP |  |  |  |  |  |

|                                                    | group.                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                    | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                    | Our meta-analysis showed that paclitaxel plus platinum had similar efficacy<br>and less toxicity compared with gemcitabine plus platinum in first-line<br>treatment of advanced non-small-cell lung cancer.                                                                                                                           |  |  |  |  |
|                                                    | Anmerkungen FB Med:                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                    | <ul> <li>Acknowledgments This work was supported by grants from the<br/>National Natural Science Foundation of China (81101551).</li> <li>Conflict of interest The authors indicated no potential conflicts of<br/>interest.</li> <li>eine Phase II Studie eingeschlossen, in sensitivitätsanalysen keine<br/>Unterschiede</li> </ul> |  |  |  |  |
| Qi WX et al.,                                      | 1. Fragestellung                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 2012 [50].                                         | to perform a systematic review and meta-analysis of all randomized controlled                                                                                                                                                                                                                                                         |  |  |  |  |
| Doublet versus<br>single<br>cytotoxic agent        | trials that compared the efficacy of doublet versus single third-generation cytotoxic agent as first-line treatment for elderly patients with advanced non-small-cell lung cancer (NSCLC).                                                                                                                                            |  |  |  |  |
| as first-line                                      | 2. Methodik                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| treatment for<br>elderly patients<br>with advanced | <b>Population</b> : elderly (older than 65 years) patients with advanced non-small-cell lung cancer. First-line                                                                                                                                                                                                                       |  |  |  |  |
| non-small-cell                                     | Interventionen: doublet cytotoxic agents                                                                                                                                                                                                                                                                                              |  |  |  |  |
| lung cancer: a systematic                          | Komparator: single third-generation cytotoxic agent                                                                                                                                                                                                                                                                                   |  |  |  |  |
| review and                                         | Endpunkte: OS, TTP, ORR, Toxicity                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| meta-analysis                                      | Suchzeitraum: 1980-2011                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                    | Anzahl eingeschlossene Studien/Patienten (Gesamt): 10/2 510                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                    | Qualitätsbewertung der Studien: Jadad Score                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                    | Heterogenitätsanalysen: I <sup>2</sup>                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                    | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                |  |  |  |  |

| References             | Years                                                                                            | Patient age           | Chemothempy regimens                                                                     | No. of<br>patients | Median TTP<br>(months) | Median PPS<br>(months) | Median OS<br>(months) | 1-year<br>SR (%) | Jada<br>score |
|------------------------|--------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|--------------------|------------------------|------------------------|-----------------------|------------------|---------------|
| Quoix et al. [18]      | 2011                                                                                             | ≥70                   | CBP AUC = 6 d1 + PTX 90 mg/m <sup>2</sup> , d1,8,15 iv q.4.w.                            | 22.5               | NA                     | 6.0                    | 10.3                  | 44.5             | 3             |
| (IFCT-0501)            |                                                                                                  |                       | NVB 25 mg/m <sup>2</sup> , d1,8 ivq.3.w. or GEM 1,150 mg/m <sup>2</sup> , d1,8 iv q.3.w. | 22.6               | NA                     | 2.8                    | 62                    | 25.4             |               |
| Chen et al. [19]       | 2008                                                                                             | ≥70                   | NVB 22.5 mg/m <sup>2</sup> iv, d1,8 + DDP 50 mg/m <sup>2</sup> iv d1 q.3.w.              | 34                 | 5.2                    | NA                     | 11.3                  | 47.2             | 3             |
|                        |                                                                                                  |                       | NVB 25 mg/m <sup>2</sup> , d1,8 iv q.3.w.                                                | 31                 | 3.1                    | NA                     | 12                    | 50.9             |               |
| Comella et al. [20]    | 2004 ≥70 or poor GEM 1,000 mg/m <sup>2</sup> iv, d1,8 + NVB 25 mg/m <sup>2</sup> ,d1,8 iv q.3.w. |                       | 68                                                                                       | NA                 | NA                     | 9.7                    | 32 %                  | 3                |               |
|                        |                                                                                                  | performance<br>status | GEM 1,000 mg/m <sup>2</sup> iv, d1,8 + PTX 80 mg/m <sup>2</sup> iv, d1,8 q.3.w.          | 65                 | NA                     | NA                     | 9.4                   | 44 %             |               |
|                        |                                                                                                  | 34,180,05             | GEM 1,200 mg/m <sup>2</sup> iv, d1,8,15 q.4.w.                                           | 68                 | NA                     | NA                     | 5.1                   | 29 %             |               |
|                        |                                                                                                  |                       | PTX 100 mg/m2 iv, d1,8,15 q.4.w.                                                         | 63                 | NA                     | NA                     | 64                    | 25 %             |               |
| Gridelli et al. [7]    | 2003                                                                                             | ≥70                   | GEM 1,000 mg/m <sup>2</sup> iv, d1,8 + NVB 25 mg/m <sup>2</sup> iv, d1,8 q.3.w.          | 23.2               | 19 weeks               | NA                     | 30 weeks              | 30               | 3             |
| (MILES)                |                                                                                                  |                       | GEM 1,200 mg/m <sup>2</sup> iv, d1,8 q.3.w.                                              | 233                | 17 weeks               | NA                     | 28 weeks              | 28               |               |
|                        |                                                                                                  |                       | GEM 1,000 mg/m <sup>2</sup> iv, d1,8 + NVB 25 mg/m <sup>2</sup> iv, d1,8 q.3.w.          | 23.2               | 19 weeks               | NA                     | 30 weeks              | 30               |               |
|                        |                                                                                                  |                       | NVB 30 mg/m <sup>2</sup> iv, d1,8q.3.w.                                                  | 233                | 18 weeks               | NA                     | 36 weeks              | 38               |               |
| Hainsworth et al. [21] | 2007                                                                                             | >65 ar paor           | GEM 800 mg/m <sup>2</sup> iv, d1,8,15 + TXT 30 mg/m <sup>2</sup> iv, d1,8,15 q.4.w.      | 174                | 4.8                    | NA                     | 5.5                   | 26 %             | 3             |
|                        |                                                                                                  | performance<br>status | TXT 36 mg/m <sup>2</sup> iv, d1,8,15 q.4.w.                                              | 171                | 2.9                    | NA                     | 5.1                   | 24 %             |               |
| Prasci et al. [22]     | 2000                                                                                             | ≥70                   | GEM 1,200 mg/m <sup>2</sup> iv, d1,8 + NVB 30 mg/m <sup>2</sup> iv, d1,8 q.3.w.          | 60                 | NA                     | NA                     | 29 weeks              | 30 %             | 3             |
|                        |                                                                                                  |                       | NVB 30 mg/m <sup>2</sup> iv, d1,8 q.3.w.                                                 | 60                 | NA                     | NA                     | 18 weeks              | 13 %             |               |
| Rijavec et al. [23]    | 2010                                                                                             | ≥70                   | TXT 35 mg/m <sup>2</sup> iv, d1,8,15 + GEM 800 mg/m <sup>2</sup> iv, d1,8,15 q.4.w.      | 36                 | 3.9                    | NA                     | 7.2                   | NA               | 2             |
|                        |                                                                                                  |                       | TXT 35 mg/m <sup>2</sup> iv, d1,8,15q.4.w.                                               | 33                 | 7.4                    | NA                     | 7.9                   | NA               |               |
| Kammpeanis et al. [24] | 2010                                                                                             | ≥70                   | TXT 30 mg/m <sup>2</sup> iv, d1,8 + GEM 900 mg/m <sup>2</sup> iv, d1,8 q.3.w.            | 49                 | 3.17                   | NA                     | 15.9                  | NA               | 2             |
|                        |                                                                                                  |                       | GEM 1,200 mg/m <sup>2</sup> iv, d1,8 q.3.w.                                              | 47                 | 2.53                   | NA                     | 12.2                  | NA               |               |
| Fsukada et al. [25]    | 2007                                                                                             | ≥70                   | TXT 20 mg/m <sup>2</sup> iv, d1,8,15 + DDP 25 mg/m <sup>2</sup> iv, d1,8,15 q.4.w.       | 63                 | NA                     | NA                     | NA                    | NA               | 2             |
|                        |                                                                                                  |                       | TXT 25 mg/m <sup>2</sup> iv, d1,8,15 q.4.w.                                              | 63                 | NA                     | NA                     | NA                    | NA               |               |
| Abe et al. [26]        | 2011                                                                                             | ≥70                   | TXT 20 mg/m <sup>2</sup> iv, d1,8,15 + DDP 25 mg/m <sup>2</sup> iv, d1,8,15 q.4 w.       | 139                | NA                     | NA                     | 13.3                  | NA               | 2             |
|                        |                                                                                                  |                       | TXT 60 mg/m <sup>2</sup> iv, d1 q.3.w.                                                   | 137                | NA                     | NA                     | 17.3                  | NA               |               |

**Overall survival (9 trials):** no statistically significant difference, HR of 0.84 (95% CI = 0.71-1.00, p = 0.053, I<sup>2</sup>=76.6%)



**1-year survival** (6 trials statistically significant difference in favor of doublet therapy (RR = 1.17, 95 % CI =  $1.02-1.35, p = 0.03, l^2=47.1\%$ )

# TTP (3 trials):

statistically significant difference in favor of doublet therapy (HR = 0.76, 95 % CI = 0.60-0.96, p=0,022, I<sup>2</sup>=72.2%).

# ORR (10 trials):

statistically significant difference in favor of doublet therapy (RR = 1.54, 95 % CI = 1.36-1.73, p = 0.0001, I<sup>2</sup>=0)

Toxicity:

| <ul> <li>Population: NSCLC patients were previously untreated</li> <li>Interventionen und Komparatoren: PPC (pemetrexed plus cisplatin or carboplatin chemotherapy) with other PBR (third-generation agents plus cisplatin or carboplatin regimens); treated patients had stage IIIB or IV</li> <li>NSCLC, regardless of the publication status (published, conference proceedings, or unpublished)</li> <li>Endpunkte: nicht päspezifiziert</li> <li>Suchzeitraum: 2008 - 2011</li> <li>Anzahl eingeschlossene Studien/Patienten (Gesamt): 4 / 2518, RCTs</li> <li>Qualitätsbewertung der Studien: Jadad Score</li> <li>Heterogenitätsuntersuchungen: Statistical heterogeneity of the trial results was assessed with the Chi-Quadrat test for heterogeneity and the l<sup>2</sup> test for inconsisteny.</li> </ul> |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Interventionen und Komparatoren: PPC (pemetrexed plus cisplatin or<br>carboplatin chemotherapy) with other PBR (third-generation agents plus<br>cisplatin or carboplatin regimens); treated patients had stage IIIB or IV<br>NSCLC, regardless of the publication status (published, conference<br>proceedings, or unpublished)<br>Endpunkte: nicht päspezifiziert<br>Suchzeitraum: 2008 - 2011<br>Anzahl eingeschlossene Studien/Patienten (Gesamt): 4 / 2518, RCTs                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Interventionen und Komparatoren: PPC (pemetrexed plus cisplatin or<br>carboplatin chemotherapy) with other PBR (third-generation agents plus<br>cisplatin or carboplatin regimens); treated patients had stage IIIB or IV<br>NSCLC, regardless of the publication status (published, conference<br>proceedings, or unpublished)<br>Endpunkte: nicht päspezifiziert<br>Suchzeitraum: 2008 - 2011                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Interventionen und Komparatoren: PPC (pemetrexed plus cisplatin or<br>carboplatin chemotherapy) with other PBR (third-generation agents plus<br>cisplatin or carboplatin regimens); treated patients had stage IIIB or IV<br>NSCLC, regardless of the publication status (published, conference<br>proceedings, or unpublished)<br>Endpunkte: nicht päspezifiziert                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Interventionen und Komparatoren: PPC (pemetrexed plus cisplatin or<br>carboplatin chemotherapy) with other PBR (third-generation agents plus<br>cisplatin or carboplatin regimens); treated patients had stage IIIB or IV<br>NSCLC, regardless of the publication status (published, conference<br>proceedings, or unpublished)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Interventionen und Komparatoren: PPC (pemetrexed plus cisplatin or<br>carboplatin chemotherapy) with other PBR (third-generation agents plus<br>cisplatin or carboplatin regimens); treated patients had stage IIIB or IV<br>NSCLC, regardless of the publication status (published, conference<br>proceedings, or unpublished)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Population: NSCLC patients were previously untreated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| The objective of this metaanalysis was to compare the efficacy and toxicitie<br>of PPC with other platinum-based regimens (PBR) in the treatment of patie<br>with previously untreated advanced NSCLC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| <ul> <li>2 Phase II Studien eingeshlossen, aber alle Studien qualitätsbewertet</li> <li>supported by grants from the National Natural Science Foundation of<br/>China (81001191) and Science and Technology Commission of<br/>Shanghai (10PJ1408300).</li> <li>Wei-Xiang Qi, Li-na Tang, Zan Shen, Ai-na He, Feng Lin, and Yao<br/>Yang have no conflicts of interest to disclose.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Anmerkungen der FB Med:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Our results indicated that doublet therapy was superior to a single third-<br>generation cytotoxic agent for elderly patients with advanced NSCLC. The<br>optimal dosage and schedule of platinum-based doublet should be<br>investigated in future prospective clinical trials. Gemcitabine-based doublet<br>could be considered for elderly patients who were not suitable for platinum-<br>based chemotherapy.                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| More incidences of grade 3 or 4 anemia, thrombocytopenia, and neurotoxicity were observed with doublet therapy. With respect to the risk of grade 3 or 4 neutropenia and nonhematologic toxicities such as diarrhea, fatigue, nausea, and vomiting, equivalent frequencies were found between the two groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

| KuchyLengthLengthInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpriseInterpris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                  |                                         |            |          |               |             |            |           |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|-----------------------------------------|------------|----------|---------------|-------------|------------|-----------|------------|
| Scaglioti et al. [7]         3         PEM- som gym2 d1+P-75 mg/m2 d1, q3w         862         61.1         70.2         23.8         76.2         71.7           Genuberg et al. [9]         3         GEM-1,250 mg/m2 d1, 8P-75 mg/m2 d1, q3w         863         61.0         70.1         24.3         75.7         73.5           Genuberg et al. [9]         3         PEM- som gy/m2 d1, 8P-75 mg/m2 d1, q3w         863         61.0         70.1         24.3         75.7         73.5           Genuberg et al. [10]         2         PEM- som gy/m2 d1, 8P-#AUC 5 d1, q3w         217         66         59         29         71         74           Socinski et al. [10]         2         PEM- som gy/m2 d1+P_#AUC 6 d1, q3w         72         65         7         93         70           Rodrigues-Pereira et al. [17]         3         PEM- Som gy/m2 d1+P_#AUC 6 d1, q3w         72         65         7         93         70           Rodrigues-Pereira et al. [17]         3         PEM- Som gy/m2 d1+P_#AUC 6 d1, q3w         72         65         7         7         93         70           Rodrigues-Pereira et al. [17]         3         PEM- Som gy/m2 d1+P_#AUC 6 d1, q3w         72         65         7         7         93         70           Rodrigues-Pere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Study                         | Quality (Scores) | Therapy                                 | Age Median | Male (%) | Stage IIIB(%) | Stage IV (% | () Non-squ | OS Median | PFS Median |
| GEM-1,250 mg/m2 d1, 93-5       GEM -1,250 mg/m2 d1, 94-5       GEM -1,250 mg/m2 mg/                                                                                                                                                                                                 | Scagliotti et al. [7]         | e                | PEM- 500 mg/m2 d1+P-75 mg/m2 d1, q3w    | 51.1       | 70.2     | 23.8          | 76.2        |            | 10.3      | 4.8        |
| Gronberg et al. [9]         3         PEM- 500 mg/m2 d1+ $\#$ AUC 5 d1, q3w         219         64         56         29         71         74           Genvisit et al. [10]         2         PEM-500 mg/m2 d1+ $\#$ AUC 5 d1, q3w         217         66         59         28         72         77         77           Socinski et al. [11]         2         PEM-500 mg/m2 d1+ $\#$ AUC 6 d1, q3w         74         66         55         7         93         70           Rotidues Pereia et al. [17]         3         PEM-500 mg/m2 d1+ $\#$ AUC 6 d1, q3w         72         65         58         8         92         81         100           Rotidues Pereia et al. [17]         3         PEM-500 mg/m2 d1+ $\#$ AUC 6 d1, q3w         106         60.1         60.4         16         84         100           Socies Stervise         PEM-500 mg/m2 d1+ $\#$ AUC 6 d1, q3w         105         58.9         76         78         78         78         70         78           Boldigues Pereia et al. [17]         3         Doc-75 mg/m2 d1+ $\#$ AUC 6 d1, q3w         106         60.4         16         60.4         16         78         100           Boldigues Pereia et al. [17]         3         Doc-75 mg/m2 d1+ $\#$ AUC 5 d1, q3w         105         58.9         4756 </td <td></td> <td></td> <td>GEM-1,250 mg/m2 d1,8+P-75 mg/m2 d1, q3w</td> <td>51.0</td> <td>70.1</td> <td>24.3</td> <td>75.7</td> <td>73.5</td> <td>10.3</td> <td>5.1</td>                                                                                                                                                                                                                                                                                                                                                                                  |                               |                  | GEM-1,250 mg/m2 d1,8+P-75 mg/m2 d1, q3w | 51.0       | 70.1     | 24.3          | 75.7        | 73.5       | 10.3      | 5.1        |
| Genv       Genv       Condent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gronberg et al. [9]           | e                | PEM- 500 mg/m2 d1+P#-AUC 5 d1, q3w      | 5          | 56       | 52            | 71          | 74         | 7.3       | NA         |
| Socinski et al. [10]         2         PEM- 500 mg/m2 d1+P #AUC 6 d1, q3w         74         66         55         7         93         70           Doc-75 mg/m2 d1+P #AUC 6 d1, q3w         72         65         58         8         92         81           Rodrigues-Pereira et al. [17]         3         PEM- 500 mg/m2 d1+P #-AUC 5 d1, q3w         105         60.1         60.4         16         84         100           Mobineviations: PEM, pemetrexed; GEM, genecitabline: Doc, docetaxel; P, cisplatin, P#, carboplatin, Ade, adenocarcinoma; Non-squamous cell carcinoma; AUC, area under the concentre doci10.1371/journalpone.00372291001         21.9         78.1         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                  | GEM-1,000 mg/m2 d1,8+P #-AUC 5 d1, q3w  | 8          | 59       | 28            | 72          | 71         | 7.0       | MA         |
| Doc-75 mg/m2 d1+P#-AUC 6 d1, q3w         72         65         58         8         92         81           Rodrigues-Pereira et al. [17]         PEM- 500 mg/m2 d1+P#-AUC 5 d1, q3w         106         60.1         60.4         16         84         100           Mobineviations: PEM, pemetrexed; GEM, gementations: Dec.75 mg/m2 d1+P#-AUC 5 d1, q3w         105         58.9         47.6         21.9         78.1         100           Oc, overall survivat; progression-free survival.         Doc.75 mg/m2 d1+P#, AUC 5 d1, q3w         105         58.9         47.6         21.9         78.1         100           OG, overall survivat; progression-free survival.         Doc.75 mg/m2 d1+P#, arboplatir, Ade, adenocarcinoma; Non-squamous cell carcinoma; AUC, area under the concentre doi:10.1371/journalpone.00372291.001         AUC         38.9         AD         AD <td< td=""><td>Socinski et al. [10]</td><td>2</td><td>PEM- 500 mg/m2 d1+P#-AUC 6 d1, q3w</td><td>8</td><td>55</td><td>7</td><td>93</td><td>70</td><td>12.7</td><td>NA</td></td<>                                                                                                                                                                                                                                                                                                                                                        | Socinski et al. [10]          | 2                | PEM- 500 mg/m2 d1+P#-AUC 6 d1, q3w      | 8          | 55       | 7             | 93          | 70         | 12.7      | NA         |
| Rodrigues-Pereira et al. [17]       3       PEM- 500 mg/m2 d1+P #-AUC 5 d1, q3w       106       60.1       60.4       16       84       100         Doc-75 mg/m2 d1+P #-AUC 5 d1, q3w       105       58.9       47.6       21.9       78.1       100         Abbreviations: FEM, pemetrexed; GEM, gencitabine; Doc, docetaxel; P, cisplatin; P#, carboplatin; Ade, adenocarcinoma; Non-squ, non-squamous cell carcinoma; AUC, area under the concentration: 1371/journalpone.00372291001       ADM       Addition 1371/journalpone.00372291001       ADM       Administration administratintration administration administration admini |                               |                  | Doc-75 mg/m2 d1+P#-AUC 6 d1, q3w        | 55         | 58       | 8             | 92          | 81         | 9.2       | MA         |
| Doc-75 mg/m2 d1+P #-AUC 5 d1, q3w     105     58.9     47.6     21.9     78.1     100       Abbreviations: PEM, pemetrexecti GEM, gemcitabine; Doc, docetaxel; P, cisplatin; P#, carboplatin; Ade, adenocarcinoma; Non-squ, non-squamous cell carcinoma; AUC, area under the concentra OS, overall survivat; progression-free survival.     Abbreviation: 73.1/journalpone.0037229.001     78.1     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rodrigues-Pereira et al. [17] |                  | PEM- 500 mg/m2 d1+P #-AUC 5 d1, q3w     | 50.1       | 60.4     | 16            | 84          | 100        | 14.9      | 5.8        |
| Abbreviations: FEM, pemetreved: GEM, gemcitabine; Doc, docetaxel; P, cisplatin; P#, carboplatin; Ade, adenocarcinoma; Non-squ, non-squamous cell carcinoma; AUC, area under the concentr<br>OS, overall survival; progression-free survival.<br>docti0.1371/journalpone.00372291.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                  | Doc-75 mg/m2 d1+P#-AUC 5 d1, q3w        | 58.9       | 47.6     | 21.9          | 78.1        | 100        | 14.7      | 6.0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                  |                                         |            |          |               |             |            |           |            |

| Study or Subgroup log[Hazard                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                                    |                                          | Hazard Ratio                                                                                     |                                  |                                       | Hazard                          |                      |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|---------------------------------|----------------------|---------|
| 1.1.1 Pemetrexed vs Gemcitabin                                                                                                                                                                                                                                                                                                                                  |                                                                               | SE                                                 | Weight                                   | IV, Fixed, 95% CI                                                                                | Year                             |                                       | IV, Fixed.                      | . 95% CI             |         |
| Scagliotti                                                                                                                                                                                                                                                                                                                                                      |                                                                               | 0.057                                              | 66.3%                                    | 0.94 [0.84, 1.05]                                                                                | 2008                             |                                       | -                               | -                    |         |
| Gronberg                                                                                                                                                                                                                                                                                                                                                        | -0.138                                                                        | 0.1                                                |                                          | 0.87 [0.72, 1.06]                                                                                |                                  |                                       | -                               | -                    |         |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                               | 0-0.00                                                                        |                                                    |                                          | 0.92 [0.84, 1.02]                                                                                |                                  |                                       | •                               |                      |         |
| Heterogeneity: Chi <sup>a</sup> = 0.46, df = 1<br>Test for overall effect: Z = 1.60 (P =                                                                                                                                                                                                                                                                        | A                                                                             | ; 1= 0'                                            | 76                                       |                                                                                                  |                                  |                                       |                                 |                      |         |
| 1.1.2 Pemetrexed vs Docetaxel                                                                                                                                                                                                                                                                                                                                   |                                                                               | 0.2                                                | E 10                                     | 0.67 (0.46.0.00)                                                                                 | 204.0                            |                                       |                                 |                      |         |
| Socinski<br>Rodrigues-Pereira                                                                                                                                                                                                                                                                                                                                   | -0.4<br>-0.07 (                                                               | 0.2                                                |                                          | 0.67 [0.45, 0.99]<br>0.93 [0.66, 1.32]                                                           |                                  |                                       |                                 |                      |         |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                               | -0.07 (                                                                       |                                                    |                                          | 0.81 [0.62, 1.05]                                                                                |                                  |                                       | -                               |                      |         |
| Heterogeneity: Chi <sup>2</sup> = 1.52, df = 1<br>Test for overall effect: Z = 1.62 (P                                                                                                                                                                                                                                                                          |                                                                               | ; <b> </b> ² = 3                                   |                                          |                                                                                                  |                                  |                                       |                                 |                      |         |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                  |                                                                               |                                                    | 100.0%                                   | 0.91 [0.83, 1.00]                                                                                |                                  |                                       | ٠                               |                      |         |
| Heterogeneity: Chi <sup>2</sup> = 2.91, df = 3                                                                                                                                                                                                                                                                                                                  | (P = 0.41)                                                                    | ;  ² = 0'                                          |                                          | the former mool                                                                                  |                                  |                                       | -                               | 1                    |         |
| Test for overall effect: Z = 2.06 (P =                                                                                                                                                                                                                                                                                                                          |                                                                               | 10 10                                              | 75<br>2011 - 2010 - 2010                 |                                                                                                  |                                  | 0.2 0.5<br>Eavours page               |                                 | 2<br>Favours other i | regimen |
| Test for subgroup differences: Ch                                                                                                                                                                                                                                                                                                                               | i² = 0.93, (                                                                  | df = 1 (                                           | (P = 0.34)                               | ), I² = 0%                                                                                       |                                  | i avouis peri                         | en even                         | avours outer l       | egimen  |
|                                                                                                                                                                                                                                                                                                                                                                 | 10-5-1                                                                        |                                                    | 184-1-44                                 | Hazard Ratio                                                                                     |                                  |                                       | d Ratio                         |                      |         |
| Study or Subgroup log[Hazard                                                                                                                                                                                                                                                                                                                                    | Ratio]                                                                        | SE                                                 | Weight                                   | IV, Fixed, 95% Cl                                                                                |                                  | IV, Fixed                             | 1, 95% CI                       |                      |         |
| 2.1.1 Cisplatin regimen<br>Gronberg                                                                                                                                                                                                                                                                                                                             | 0.02 (                                                                        | 0 1 3 7                                            | 21 / 02                                  | 1 02 0 70 1 220                                                                                  |                                  | 7 <u> </u>                            | -                               |                      |         |
| Rodrigues-Pereira                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                    |                                          | 1.02 [0.78, 1.33]<br>0.93 [0.66, 1.32]                                                           |                                  |                                       |                                 |                      |         |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                          |                                                    |                                          | 0.99 [0.80, 1.22]                                                                                |                                  | -                                     |                                 |                      |         |
| Heterogeneity: $Chi^2 = 0.16$ , df = 1<br>Test for overall effect: Z = 0.12 (P                                                                                                                                                                                                                                                                                  |                                                                               | ; l <sup>2</sup> = 09                              | %                                        |                                                                                                  |                                  |                                       |                                 |                      |         |
| 2.1.2 Carboplatin regimen                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                    |                                          |                                                                                                  |                                  |                                       |                                 |                      |         |
| Scagliotti                                                                                                                                                                                                                                                                                                                                                      | -0.21 0                                                                       | 0.078                                              |                                          | 0.81 [0.70, 0.94]                                                                                |                                  | -                                     |                                 |                      |         |
| Subtotal (95% CI)<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.69 (P :                                                                                                                                                                                                                                                                    | = 0.007)                                                                      |                                                    | 66.0%                                    | 0.81 [0.70, 0.94]                                                                                |                                  | •                                     |                                 |                      |         |
|                                                                                                                                                                                                                                                                                                                                                                 | 00-90.000 (00.000)                                                            |                                                    |                                          |                                                                                                  |                                  |                                       |                                 |                      |         |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                  |                                                                               |                                                    |                                          | 0.87 [0.77, 0.98]                                                                                | <u></u>                          | +                                     |                                 |                      |         |
| Heterogeneity: Chi <sup>2</sup> = 2.32, df = 2                                                                                                                                                                                                                                                                                                                  |                                                                               | ; 12 = 14                                          | 4%                                       |                                                                                                  | 0.2                              | 0.5                                   | i                               | 2 5                  |         |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | df = 1 /                                           | P = 0.14                                 | I <sup>2</sup> = 53.7%                                                                           | Favo                             | urs Pemetrexed                        | Favours                         | Other regimen:       |         |
| Test for overall effect: Z = 2.26 (P =<br>Test for subgroup differences: Ch                                                                                                                                                                                                                                                                                     | - 4.10,1                                                                      | Sec. 1. 1. 1. 1.                                   | 1                                        |                                                                                                  |                                  |                                       |                                 |                      | v plati |
| Test for overall effect: Z = 2.26 (P =                                                                                                                                                                                                                                                                                                                          | all survi                                                                     |                                                    |                                          |                                                                                                  |                                  |                                       |                                 |                      |         |
| Test for overall effect: Z = 2.26 (P<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over                                                                                                                                                                                                                                                       | all survi                                                                     |                                                    |                                          | breviations: SE, stan                                                                            |                                  |                                       | iance; Čl, (                    | confidence inter     |         |
| Test for overall effect: Z = 2.26 (P<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu                                                                                                                                                                                                                     | rall survi<br>ım-based                                                        | l regim                                            | nens. Abł                                | breviations: SE, stan<br>Hazard Ratio                                                            | idard ern                        |                                       | iance; Čl, o<br>Hazard          | confidence inter     |         |
| Test for overall effect: Z = 2.26 (P :<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br>Study or Subgroup log[Hazar                                                                                                                                                                                    | rall survi<br>ım-based<br><u>d Ratio]</u>                                     | l regim                                            | weight                                   | breviations: SE, stan<br>Hazard Ratio<br>IV. Fixed, 95% CI                                       | dard erro                        |                                       | iance; Čl, (                    | confidence inter     |         |
| Test for overall effect: Z = 2.26 (P<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br>Study or Subgroup log[Hazarr<br>Scagliotti                                                                                                                                                                       | rall survi<br>ım-based<br><u>d Ratio1</u><br>0.04                             | SE<br>0.05                                         | Weight<br>90.0%                          | Hazard Ratio<br>IV, Fixed, 95% CI<br>1.04 [0.94, 1.15]                                           | Year<br>2008                     |                                       | iance; Čl, o<br>Hazard          | confidence inter     |         |
| Test for overall effect: Z = 2.26 (P :<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br>Study or Subgroup log[Hazar                                                                                                                                                                                    | rall survi<br>ım-based<br><u>d Ratio1</u><br>0.04                             | SE<br>0.05                                         | Weight<br>90.0%                          | breviations: SE, stan<br>Hazard Ratio<br>IV. Fixed, 95% CI                                       | Year<br>2008                     |                                       | iance; Čl, o<br>Hazard          | confidence inter     |         |
| Test for overall effect: Z = 2.26 (P<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br><u>Study or Subgroup</u> log[Hazar<br>Scagliotti<br>Rodrigues-Pereira                                                                                                                                            | rall survi<br>ım-based<br><u>d Ratio1</u><br>0.04                             | SE<br>0.05<br>0.15                                 | Weight<br>90.0%<br>10.0%                 | Hazard Ratio<br>IV. Fixed. 95% CI<br>1.04 [0.94, 1.15]<br>0.91 [0.68, 1.23]                      | Year<br>2008<br>2011             |                                       | iance; Čl, o<br>Hazard          | confidence inter     |         |
| Test for overall effect: Z = 2.26 (P :<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br><u>Study or Subgroup log[Hazar</u><br>Scagliotti<br>Rodrigues-Pereira<br>Total (95% CI)                                                                                                                        | rall survi<br>um-based<br><u>d Ratio]</u><br>0.04<br>-0.09                    | SE<br>0.05<br>0.15                                 | Weight<br>90.0%<br>10.0%                 | Hazard Ratio<br>IV, Fixed, 95% CI<br>1.04 [0.94, 1.15]                                           | Year<br>2008<br>2011             | or; IV, inverse var                   | Hazard                          | confidence inter     |         |
| Test for overall effect: Z = 2.26 (P<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br><u>Study or Subgroup</u> log[Hazar<br>Scagliotti<br>Rodrigues-Pereira                                                                                                                                            | rall survi<br>Im-based<br><u>d Ratio]</u><br>0.04<br>-0.09<br>(P = 0.41)      | SE<br>0.05<br>0.15                                 | Weight<br>90.0%<br>10.0%                 | Hazard Ratio<br>IV. Fixed. 95% CI<br>1.04 [0.94, 1.15]<br>0.91 [0.68, 1.23]                      | Year<br>2008<br>2011             | or; IV, inverse var                   | Hazard<br>IV. Fixed             | d Ratio<br>1, 95% Cl | val.    |
| Test for overall effect: Z = 2.26 (P :<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br>Study or Subgroup log[Hazar<br>Scagliotti<br>Rodrigues-Pereira<br>Total (95% CI)<br>Heterogeneity: Chi <sup>2</sup> = 0.68, df = 1                                                                             | rall survi<br>Im-based<br><u>d Ratio]</u><br>0.04<br>-0.09<br>(P = 0.41)      | SE<br>0.05<br>0.15                                 | Weight<br>90.0%<br>10.0%                 | Hazard Ratio<br>IV. Fixed. 95% CI<br>1.04 [0.94, 1.15]<br>0.91 [0.68, 1.23]                      | Year<br>2008<br>2011             | or; IV, inverse var                   | Hazard<br>IV. Fixed             | confidence inter     | val.    |
| Test for overall effect: Z = 2.26 (P :<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br>Study or Subgroup log[Hazar<br>Scagliotti<br>Rodrigues-Pereira<br>Total (95% CI)<br>Heterogeneity: Chi <sup>2</sup> = 0.68, df = 1                                                                             | rall survi<br>im-based<br>0.04<br>-0.09<br>(P = 0.41)<br>= 0.57)<br>sion-free | <u>SE</u><br>0.05<br>0.15<br>); I <sup>2</sup> = 0 | Weight<br>90.0%<br>10.0%<br>100.0%<br>1% | Hazard Ratio<br>IV, Fixed, 95% CI<br>1.04 [0.94, 1.15]<br>0.91 [0.66, 1.23]<br>1.03 [0.94, 1.13] | Year<br>2008<br>2011<br>d plus p | I I I I I I I I I I I I I I I I I I I | Hazard<br>IV, Fixed<br>hetrexed | d Ratio<br>1, 95% Cl | val.    |
| Test for overall effect: Z = 2.26 (P :<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br>Study or Subgroup log[Hazar<br>Scagliotti<br>Rodrigues-Pereira<br>Total (95% Cl)<br>Heterogeneity: Chi <sup>2</sup> = 0.68, df = 1<br>Test for overall effect: Z = 0.57 (P :<br>igure 4. Comparison of progres | rall survi<br>im-based<br>0.04<br>-0.09<br>(P = 0.41)<br>= 0.57)<br>sion-free | <u>SE</u><br>0.05<br>0.15<br>); I <sup>2</sup> = 0 | Weight<br>90.0%<br>10.0%<br>100.0%<br>1% | Hazard Ratio<br>IV, Fixed, 95% CI<br>1.04 [0.94, 1.15]<br>0.91 [0.66, 1.23]<br>1.03 [0.94, 1.13] | Year<br>2008<br>2011<br>d plus p | I I I I I I I I I I I I I I I I I I I | Hazard<br>IV, Fixed<br>hetrexed | d Ratio<br>1, 95% Cl | val.    |
| Test for overall effect: Z = 2.26 (P :<br>Test for subgroup differences: Ch<br>Figure 3. Comparison of over<br>chemotherapy and other platinu<br>Study or Subgroup log[Hazar<br>Scagliotti<br>Rodrigues-Pereira<br>Total (95% Cl)<br>Heterogeneity: Chi <sup>2</sup> = 0.68, df = 1<br>Test for overall effect: Z = 0.57 (P :<br>igure 4. Comparison of progres | rall survi<br>im-based<br>0.04<br>-0.09<br>(P = 0.41)<br>= 0.57)<br>sion-free | <u>SE</u><br>0.05<br>0.15<br>); I <sup>2</sup> = 0 | Weight<br>90.0%<br>10.0%<br>100.0%<br>1% | Hazard Ratio<br>IV, Fixed, 95% CI<br>1.04 [0.94, 1.15]<br>0.91 [0.66, 1.23]<br>1.03 [0.94, 1.13] | Year<br>2008<br>2011<br>d plus p | I I I I I I I I I I I I I I I I I I I | Hazard<br>IV, Fixed<br>hetrexed | d Ratio<br>1, 95% Cl | val.    |



|                                                                                     | squamous histology (HR = 0.87, 95% CI: 0.77–0.98, p = 0.02). No statistically significant improvement in either PFS or RR was found in PPC group as compared with PBR group (HR = 1.03, 95% CI: 0.94–1.13, p = 0.57; OR = 1.15, 95% CI: 0.95–1.39, p = 0.15, respectively). Compared with PBR, PPC led to less grade 3–4 neutropenia and leukopenia but more grade 3–4 nausea. However, hematological toxicity analysis revealed significant heterogeneities.<br>Our results suggest that PPC in the first-line setting leads to a significant survival advantage with acceptable toxicities for advanced NSCLC patients, especially those with non-squamous histology, as compared with other PRB. PPC could be considered as the first-line treatment option for advanced NSCLC patients, especially those with non-squamous histology. |  |  |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Wang F et al.,                                                                      | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 2011 [61].<br>Gefitinib                                                             | To define the efficacy of gefitinib in chemotherapy-naive patients with advanced non-small cell lung cancer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Compared with<br>Systemic                                                           | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Chemotherapy                                                                        | Population: Chemotherapy-naive patients with NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| as First-line<br>Treatment for                                                      | Intervention: Gefitinib therapy as first-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Chemotherapy-                                                                       | Komparator: Conventional therapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| naive Patients                                                                      | Endpunkt: PFS, OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| with Advanced<br>Non-small Cell<br>Lung Cancer: A<br>Meta-analysis of<br>Randomised | <b>Qualitätsbewertung der Primärstudien</b> : (1) generation of allocation concealment, (2) description of drop-outs, (3) masking of randomisation, intervention, outcome assessment, (4) intention-to-treat analyses, (5) final analysis reported; each criterion rated as yes, no or unclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Controlled Trials                                                                   | Suchzeitraum: up to 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                                     | Anzahl eingeschlossene Studien/Patienten (Gesamt): 8/4 656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                                     | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                     | Gefitinib monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                     | OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                     | <ul> <li>Patients with lung adenocarcinoma: statistically significant difference in favor of gefitinib monotherapy compared to chemotherapy. HR 0.89 (0.81, 0.99); p = 0.03</li> <li>EGFR mutant treated with gefitinib monotherapy: no statistically significant difference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                     | Combination of conventional chemotherapy with gefitinib: no statistically significant difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                     | PFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                     | <ul> <li>EGFR mutant treated with gefitinib monotherapy: statistically significant<br/>difference in favor of gefitinib monotherapy compared to chemotherapy</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |

|                                                | <ul> <li>HR 0.43 (0.32, 0.58) (p &lt; 0.001)</li> <li>Patients with lung adenocarcinoma: statistically significant difference in favor of gefitinib monotherapy compared to chemotherapy HR 0.71 (0.60, 0.83) (p &lt; 0.001)</li> <li>Patients without EGFR mutant: statistically significant difference in favor of chemotherapy compared to gefitinib monotherapy. HR 2.16 (1.17, 3.99) p = 0.01</li> <li>Patients with lung non- adenocarcinoma: no statistically significant difference</li> </ul> |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                | First-line treatment with gefitinib conferred prolonged progression-free<br>survival than treatment with systemic chemotherapy in a molecularly or<br>histologically defined population of patients with non-small cell lung cancer,<br>and improved survival in the subgroup of patients with lung adenocarcinoma.                                                                                                                                                                                    |
|                                                | Anmerkungen der FB Med:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | keine Infos zu Col und Finanzierung verfügbar                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chen P et al.,                                 | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2011 [10].<br>EGFR-targeted                    | to systematically evaluate EGFR targeted therapies plus chemotherapy for advanced NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                |
| therapies combined with                        | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| chemotherapy<br>for treating<br>advanced non-  | <b>Population:</b> adults (aged 18 or older) with advanced NSCLC. Patients previously exposed to EGFR-directed agents or radiotherapy were excluded (alle first-line)                                                                                                                                                                                                                                                                                                                                  |
| small-cell lung<br>cancer: a meta-<br>analysis | Intervention: EGFR targeted therapies plus platinum-based doublet chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                | Komparator: platinum-based doublet chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                | Endpunkt: OS, PFS, ORR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                | Suchzeitraum: up to 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                | Qualitätsbewertung: scoring system developed by Jadad                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                | Heterogenitätsuntersuchung: I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                | Anzahl eingeschlossene Studien/Patienten (Gesamt): 10/5 936                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                | Niedermolekulare TKIs + Chemotherapie vs. Chemotherapie (basierend auf 6<br>Studien mit 3 918 Erkrankten: 3 trials mit Erlotinib, 2 trials mit Gefitinib, 1 trial<br>mit Vandetanib):                                                                                                                                                                                                                                                                                                                  |

| Study                 | Number of patients | Mean age<br>(years) | Year of study | Center      | Median OS<br>(month) | First-line<br>treatment | EGFR-targeted<br>therapies used | Chemotherapy used                        | Jadad<br>score |
|-----------------------|--------------------|---------------------|---------------|-------------|----------------------|-------------------------|---------------------------------|------------------------------------------|----------------|
| Gatzemeier [12]       | 1,159              | 60/59.1             | 2007          | multicenter | 9.9/10.2             | Yes                     | Erlotinib                       | Gemcitabine, Cisplatin                   | 5              |
| Herbst [9]            | 1,079              | 62.7/626            | 2005          | multicenter | 10.6/10.5            | Yes                     | Erlotinib                       | Paclitaxel, Carboplatin                  | 3              |
| Mok [20]              | 154                | 57.5/57             | 2009          | multicenter | 6.8/5.1              | Yes                     | Erlotinib                       | Gemcitabine, Cisplatin<br>or Carboplatin | 3              |
| Roy S. Herbst<br>[14] | 690                | 61/63               | 2004          | multicenter | 9.8/9.9              | Yes                     | Gefitinib                       | Paclitaxel, Carboplatin                  | 5              |
| Giaccone [13]         | 728                | 59/61               | 2004          | multicenter | 9.9/10.9             | Yes                     | Gefitinib                       | Gemcitabine, Cisplatin                   | 5              |
| Heymach [15]          | 108                | 60/59               | 2008          | unclear     | 10.2/12.6            | Yes                     | vandetanib                      | Paclitaxel, Carboplatin                  | 4              |
| Pirker [17]           | 1,125              | 59/60               | 2009          | multicenter | 11.3/10.1            | Yes                     | Cetuximab                       | Cisplatin, Vinorelbine                   | 3              |
| Butts [19]            | 131                | 66/64               | 2007          | multicenter | 11.9/9.26            | Yes                     | Cetuximab                       | Gemcitabine, Cisplatin<br>or Carboplatin | 2              |
| Rosell [18]           | 86                 | 58/57               | 2008          | multicenter | 8.3/7.3              | Yes                     | Cetuximab                       | Vinorelbine, Cisplatin                   | 3              |
| Lynch [16]            | 676                | 64/65               | 2010          | multicenter | 9.69/8.38            | Yes                     | Cetuximab                       | Paclitaxel or Docetaxel,<br>Carboplatin  | 4              |

# Overall survival: Kein stat. signifikanter Unterschied zwischen den Gruppen



Fig. 2 Overall survival of epidermal growth factor receptor (EGFR)-targeted combination therapies vs. platinum-based doublet chemotherapy (PBDC). \*Erlotinib administered, & gefitinib administered, # vandetanib administered, HR hazard ratio, 95% CI 95% confidence interval, HR<1 numerically longer survival than control chemotherapy group, HR>1 numerically shorter survival than control chemotherapy group, 95% CI not including the number 1 statistical difference between groups

**PFS:** stat. signifikanter Vorteil unter der Kombinationstherapie (HR=0.87, 95% KI: 0.76–0.99, p=0.030 bei gleichzeitig hoher Heterogenität I<sup>2</sup>=68,2%)

**ORR**: stat. signifikanter Vorteil unter der Kombinationstherapie (RR 1.10 95% Cl, 1.00–1.20).

### 4. Anmerkungen/Fazit der Autoren

... Small-molecule TKIs plus PBDC lead to a slightly additive efficacy compared with PBDC alone.

|                                                                                                      | Anmerku                                                                                                                                                                                                                                                                                                                   | ng Fl                                                                                                        | 3 Med:                                                                     |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|-----------------------------------|---------------------|----------------------|------------------|-----------------|--------------|-------------------|-----------------|------------------|
|                                                                                                      |                                                                                                                                                                                                                                                                                                                           | <ul><li>Vandetanib nicht zugelassen</li><li>All authors declare no potential conflict of interest.</li></ul> |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| Gao G et al.,                                                                                        | 1. Frage                                                                                                                                                                                                                                                                                                                  | stellu                                                                                                       | ing                                                                        |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| <b>2011 [16].</b><br>Epidermal<br>growth factor<br>receptor-<br>tyrosine kinase<br>inhibitor therapy | The results of comparing the EGFR-TKI with standard platinum-based<br>doublet chemotherapy as the first-line treatment in advanced NSCLC patients<br>with activated EGFR mutation were still controversial. A meta-analysis was<br>performed to derive a more precise estimation of these regimens.<br><b>2. Methodik</b> |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| is effective as<br>first-line                                                                        | <b>Population</b> : patients >18 years, pathologically proven NSCLC with EGFR mutation-positive, clinical IIIB-IV stage, previously untreated                                                                                                                                                                             |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| treatment of                                                                                         | Intervention: EGFR-TKI, first-line                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| advanced non-<br>small-cell lung                                                                     | Komparator: platinum-based doublet chemotherapy                                                                                                                                                                                                                                                                           |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| cancer with                                                                                          | Endpunkt: PFS, OS, ORR                                                                                                                                                                                                                                                                                                    |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| mutated EGFR:<br>a meta-analysis                                                                     | Suchzeitraum: 1966 bis 06/2011                                                                                                                                                                                                                                                                                            |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| from six phase                                                                                       | Anzahl eingeschlossene Studien/Patienten (Gesamt): 6/1 021                                                                                                                                                                                                                                                                |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
| III randomized controlled trials                                                                     | <b>Qualitätsbewertung der Primärstudien</b> : with particular emphasis on randomization, masking of patients and clinicians, concealment of allocation, documentation of dropouts and withdrawals and intent-to-treat (ITT) analysis                                                                                      |                                                                                                              |                                                                            |                            |                                   |                     |                      |                  |                 |              |                   |                 |                  |
|                                                                                                      | Heterog                                                                                                                                                                                                                                                                                                                   | enitä                                                                                                        | suntersuchur                                                               | ng: Is                     | st erfo                           | lgt (               | 12)                  |                  |                 |              |                   |                 |                  |
|                                                                                                      | -                                                                                                                                                                                                                                                                                                                         |                                                                                                              | darstellung                                                                | factor recepto             | r-tyrosine kinas                  | se inhibitor        | (EGFR-TKI) with Chem | notherapy for    | r patients      | withpre      | eviously untreate | ed NSCLC wit    | h mutated        |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                                                                            | Deleveration               | Filelble for                      | Family              | Adenocarcinoma       | Never<br>smokers | Type o          |              | CR+PR (%)         | prc.            | 05               |
|                                                                                                      | Study<br>IPASS:                                                                                                                                                                                                                                                                                                           | Country<br>East Asia <sup>1</sup>                                                                            | Group<br>Gefitinib 250 mg/day                                              | Primary<br>endpoint<br>PFS | Eligible for<br>evaluation<br>132 | Female<br>(%)<br>NR | (%)<br>NR            | (%)<br>NR        | deletio<br>50.0 |              | L858R<br>71.2     | (Months)<br>9.5 | (Months)<br>21.6 |
|                                                                                                      | Mork TS et al                                                                                                                                                                                                                                                                                                             |                                                                                                              | PTX 200 mg/m <sup>2</sup> ,d1,q3w + CBP                                    |                            | 139                               | NR                  | NR                   | NR               | 57.4            | 36.4         | 47.3              | 6.3             | 21.9             |
|                                                                                                      | First-SIGNAL:                                                                                                                                                                                                                                                                                                             | Korea                                                                                                        | $(AUC = 5-6) d1,q3w \times 6 cycles$<br>Gefitinib 250 mg/day               | 05                         | 26                                | NR                  | 100                  | 100              | NR              | NR           | 84.6              | 8.4             | 30.6             |
|                                                                                                      | Lee JS et al                                                                                                                                                                                                                                                                                                              |                                                                                                              | GEM 1,250 mg/m <sup>2</sup> d1,8,q3w + DDP                                 |                            | 16                                | NR                  | 100                  | 100              | NR              | NR           | 37.5              | 6.7             | 26.5             |
|                                                                                                      | Maemondo M et al                                                                                                                                                                                                                                                                                                          | Japan                                                                                                        | 80 mg/m², d1,q3w × 9 cycles<br>Gefitinib 250 mg/day                        | PFS                        | 114                               | 63.2                | 90.4                 | 65.8             | 50.9            | 43.0         | 73.7              | 10.8            | 30.5             |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                              | PTX 200 mg/m²,d1,q3w + CBP<br>(AUC = 6) d1,q3w × >3 cycles                 |                            | 114                               | 64.0                | 96.5                 | 57.9             | 51.8            | 42.1         | 30.7              | 5.4             | 23.6             |
|                                                                                                      | Mitsudomi T et al                                                                                                                                                                                                                                                                                                         | Japan                                                                                                        | Gefitinib 250 mg/day<br>DXT 60 mg/m²,d1,q3w + DDP                          | PFS                        | 86<br>86                          | 68.6<br>69.8        | 96.5<br>97.7         | 70.9<br>66.3     | 58.1<br>43.0    | 41.9<br>57.0 | 62.1<br>32.2      | 9.2<br>6.3      | 30.9<br>NR       |
|                                                                                                      | OPTIMAL:                                                                                                                                                                                                                                                                                                                  | China                                                                                                        | 80 mg/m <sup>2</sup> ,d1,q3w × 3–6 cycles<br>Erlotinib 150 mg/d <i>a</i> y | PFS                        | 83                                | 59.0                | 88.0                 | 72.0             | 52.0            | 48.0         | 83.0              | 13.1            | NR               |
|                                                                                                      | Zhou CC et al                                                                                                                                                                                                                                                                                                             |                                                                                                              | GEM 1,000 mg/m <sup>2</sup> d1,8,q3w + $CPP(AUC = E) d1 a3w × 6 array$     |                            | 82                                | 60.0                | 86.0                 | 69.0             | 54.0            | 46.0         | 36.0              | 4.6             | NR               |
|                                                                                                      | EURTAC:<br>Rosell R et al                                                                                                                                                                                                                                                                                                 | Europe <sup>2</sup>                                                                                          | CBP(AUC = 5) d1,q3w × 4 cycles<br>Erlotinib 150 mg/                        | PFS                        | 77                                | 68.0                | NR                   |                  | 70.0            | 64.0         | 55.0              | 9.4             | 18.9             |
|                                                                                                      | KOSELIK ET AL                                                                                                                                                                                                                                                                                                             |                                                                                                              | Standard platinum-based                                                    |                            | 76                                | 79.0                | NR                   |                  | 74.0            | 63.0         | 11.0              | 5.2             | 14.4             |

<sup>1</sup>East Asla: China, Hong Kong, Japan, Taiwan, Singapore, Malaysia, Philippines, Thailand, <sup>2</sup>Europe: Spain, France, Italy, <sup>3</sup>Standard platinum-based doublet chemothemapy options: GEM 1.250 mg/m<sup>2</sup> d1.8 + ODP 75 mg/m<sup>2</sup>, d1 or DX7 75 mg/m<sup>2</sup>, d1 + D0P 75 mg/m<sup>2</sup>, d1 or CK 175 mg/m<sup>2</sup>, d1 + CEPAUC = 6) d1. Abbrwidshore PKY pacitized; GPC raboplatin DDPC risplating GRM generalishing: KDM complete maporesi (PR) partial response; PK pacitized; GPC and GPC an

# PFS

The patients receiving EGFR-TKI as front-line therapy had a significantly longer progression-free survival (PFS) than patients treated with chemotherapy [median PFS was 9.5 versus 5.9 months; hazard ratio (HR) 5



| Receptor<br>Tyrosine-Kinase                                     | Population: patients with metastatic or advanced NSCLC (stage IIIB or IV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inhibitor<br>Monotherapy<br>Versus                              | Intervention/Komparator: Firstline, exclusively among mutated patients $\rightarrow$ platinum-based doublet chemotherapy vs. EGFR TKI monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chemotherapy<br>in Patients with                                | Endpunkte: OS, PFS and toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Advanced Non-<br>Small-Cell Lung<br>Cancer?: A<br>Meta-Analysis | Suchzeitraum (Aktualität der Recherche): Publications were identified by an electronic search using online using PubMed, updated on March 6, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | Anzahl eingeschlossene Studien/Patienten (Gesamt): 8 studies included 2962 patients (780 males, 2182 females, mostly Asian, median age 60 years), 2909 adenocarcinomas (98 %), 1739 mutated tumors (897 exon 19 deletion, 699 L858 mutation), 448 stage IIIB, and 2222 stage IV (75 %) tumours and 2453 never smokers (83 %). Four studies assessed gefitinib, two studies assessed erlotinib, and two studies assessed afatinib. Chemotherapies were doublets including a platinum salt. All studies included patients with EGFR mutations, but six studies included only EGFR mutated patients <u>Hinweis</u> : Only Phase III studies included                                                                                                                                                                                                                                          |
|                                                                 | Qualitätsbewertung der Studien: We did not assess the quality of studies<br>by Jadad score because there is no general agreement on the suitability of<br>such scores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 | <ul> <li>OS was similar among patients who first received TKI or chemotherapy.</li> <li>Conversely, compared with chemotherapy, EGFR TKIs significantly improved PFS in patients with EGFR-mutated tumours (HR 0.37, 95 % CI 0.29-0.49, random effect model).</li> <li>Concerning side effects, rash (RR 6.29, 95 % CI 4.05-9.77), diarrhoea (RR 3.51, 95 % CI 2.15-5.75), stomatitis (RR 3.57, 95 % CI 1.81-7.04), and interstitial lung disease (RR 6.07, 95 % CI 1.66-22.2) were significantly more frequent after TKIs.</li> <li>As expected, fatigue (RR 0.38, 95 % CI 0.32-0.45), nausea/vomiting (RR 0.19, 95 % CI 0.11-0.32), and haematological disorders, including thrombocytopenia (RR 0.18, 95 % CI 0.09-0.35), anaemia (RR 0.22, 95 % CI 0.15-0.33), and grade 3-4 neutropenia (RR 0.06, 95 % CI 0.04-0.08), were significantly more frequent after chemotherapy.</li> </ul> |
|                                                                 | 4. Fazit der Autoren: The present MA shows no benefit on OS of first-line<br>TKIs monotherapy compared with first-line chemotherapy in NSCL C.<br>However, afatinib shows promising results in del19 patients. In EGFR-<br>mutated patients, TKIs should be prescribed as first line therapy due to a<br>better safety profile. Ongoing studies aim to compare the effects of various<br>TKIs in order to determine the best therapeutic option. In wild-type patients or                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                                                                    | patients with unknown mutational status, first-line treatment should be chemotherapy.                                                                                                                                                                          |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | 5. Hinweise durch FB Med                                                                                                                                                                                                                                       |
|                                                                    | <ul> <li>Fehlende Bewertung der eingeschlossenen Studien, lediglich Angaben,<br/>dass ausschließlich Phase III Studien berücksichtigt wurden.</li> </ul>                                                                                                       |
| Haspinger ER                                                       | 1. Fragestellung                                                                                                                                                                                                                                               |
| et al., 2015 [27].<br>Is there                                     | We performed a systematic review and meta-analysis <u>using indirect</u><br><u>comparisons</u> to estimate the risk/benefit associated witheach drug.                                                                                                          |
| evidence for<br>different effects                                  | 2. Methodik                                                                                                                                                                                                                                                    |
| among EGFR-<br>TKIs?<br>Systematicrevie                            | Population: patients of any age and race, with histologically proven NSCLC harboring an activating EGFR-mutation                                                                                                                                               |
| w and meta-<br>analysis of                                         | Intervention: First line EGFR-TKI                                                                                                                                                                                                                              |
| EGFR tyrosine<br>kinase inhibitors<br>(TKIs)versus<br>chemotherapy | Komparator: Standard chemotherapy (platinum-based doublet, at any dosage or number ofcycles), generally considered of similar clinical efficacy                                                                                                                |
| as first-line<br>treatment for<br>patients                         | <ul> <li>Endpunkte:</li> <li><u>Primary</u>: PFS → whenever possible only independently reviewed data were extracted</li> </ul>                                                                                                                                |
| harboring<br>EGFRmutations                                         | <ul> <li><u>Secondary outcomes</u>: PFS in exon 19 deletion, PFS in L858R<br/>mutation, OS, ORR (complete and/or partialand/or stable assessed<br/>using RECIST criteria) and treatment related toxic events assessed<br/>with the NCI CT Criteria.</li> </ul> |
|                                                                    | Suchzeitraum (Aktualität der Recherche): up to June 2014                                                                                                                                                                                                       |
|                                                                    | Anzahl eingeschlossene Studien/Patienten (Gesamt): The remaining 9<br>RCTs, which involved globally 1.774 EGFR-mutated patients, met all the inclusion/exclusion criteria and were included in the meta-analysis                                               |
|                                                                    | Qualitätsbewertung der Studien: Cochrane Handbook for Systematic<br>Reviews of Interventions                                                                                                                                                                   |
|                                                                    | 3. Ergebnisdarstellung                                                                                                                                                                                                                                         |
|                                                                    | Qualität der Studien:                                                                                                                                                                                                                                          |



Gefitinib versus chemotherapy alone

- Four RCTs enrolling 699 EGFR-mutation-positivepatients compared the treatment effects of gefitinib versus chemotherapy on PFS. Pooled results showed a statistically significant difference for PFS and ORR. The combined HRs for PFS and ORR were 0.43 (95% Cl0.32–0.56; l2= 54%) and 2.45 (95% Cl 2.03–2.95; l2= 0%) respectively, favoring gefitinib versus chemotherapy.
- Analyzing PFS separately for exon 19 deletion and L858R mutations, the results were still in favor of gefitinib (HR:0.40; 95% CI 0.29–0.55; I2= 0% and HR: 0.53; 95% CI0.38–0.76; I2= 0%).
- There was a non-statistically significant difference for OS, treatment-related death
- Gefitinib was associated with a statistically significant risk for diarrhea (RR: 2.00; 95% CI 1.40–2.85; I2= 80%), rash (RR: 4.42; 95%CI 2.82–6.92; I2= 84%), hypertransaminasemia (RR: 2.54;95% CI 1.51–4.29; I2= 84%) compared with chemotherapy,but there was less risk of treatment discontinuation (RR: 0.51;95% CI 0.36–0.73).

### Erlotinib versus chemotherapy alone

- Three RCTs enrolling 366 EGFR-mutation-positive patients compared the treatment effects of erlotinib versus chemotherapy
- There was a statistically significantbenefit with erlotinib over chemotherapy for PFS (HR: 0.32;95% CI 0.16–0.65; I2= 84%), ORR (RR: 2.54, 95% CI1.80–3.59; I2= 28%). Analyzing PFS separately for exon19 deletion and L858R mutations, the results were still infavor of erlotinib (HR: 0.20; 95% CI 0.09–0.46; I2= 76% andHR: 0.38; 95% CI 0.18–0.79; I2= 64%).
- non-significant difference between erlotinib andchemotherapy for OS, treatment-related death, hypertransaminasemia
- Erlotinib was associated with significantly worsediarrhea (RR: 2.55, 95%

CI 1.42–4.56; I2= 75%) and rash(RR: 4.42, 95% CI 1.57–12.44; I2= 93%) than chemotherapy, but the risk of treatment discontinuation was lower (RR:0.52, 95% CI 0.27–0.99; I2= 0%).

Afatinib versus chemotherapy alone

- Two RCTs enrolling 709 EGFR-mutation-positive patients compared the effects of afatinib versus chemotherapy
- These two studies showed a statistically significant benefit in PFS for afatinib versus chemotherapy (HR: 0.41,95% CI 0.20–0.82; I2= 90%), confirmed for exon 19 mutation (HR: 0.24, 95% CI 0.17–0.33; I2= 4%), but not for L858R mutation. Analysis showed even an advantage in ORR (RR: 2.70, 95% CI 2.12–3.45, *I*<sub>2</sub>= 0%).
- Comparison for OS was based ondata not yet mature for both trials with a non statisticallysignificant result
- There were a statistically significant differences in diar-rhea (RR: 6.98, 95% CI 4.97–9.81, I2= 0%), and rash (RR:10.90, 95% CI 6.89–17.24, I2= 0%). Afatinib did not seemto be associated with hypertransaminasemia, treatment dis-continuation and treatment-related deaths.

### Indirect comparisons

# Gefitinib versus afatinib

- statistically non-significant difference between gefitinib and afatinib in PFS as a whole and PFS for patients with L858R mutation.
- For patients with exon 19 deletion afatinib seemed to be associ-ated with better PFS. No differences were observed even in ORR.
- Indirect comparison for OS gave a statistically non-significant result.
- Gefitinib seemed less toxic than afatinib fordiarrhea (RR: 0.29, 95% CI 0.20–0.41) and rash (RR: 0.41,95% CI 0.25–0.65), but patients experienced more hypertransaminasemia (RR: 2.02, 95% CI 1.17–3.46).
- There were no differences in treatment discontinuation and treatmentrelated deaths.

### Erlotinib versus afatinib:

- The indirect comparison of erlotinib and afatinib showed a statistically non-significant difference in PFS as a whole and for exon 19 deletion andL858R mutation.
- No differences were found in ORR and in OS).
- Like gefitinib, erlotinib had a smalle rnumber of events than afatinib for diarrhea (RR: 0.36, 95%CI 0.25–0.54) and rash (RR: 0.41, 95% CI 0.25– 0.66).
- There were no differences in hypertransaminasemia, treatment discontinuation and treatment-related deaths.

# Gefitinib versus erlotinib:

• Gefitinib and erlotinib gave the same benefit and safetyprofiles for all the outcomes except hypertransaminasemia where erlotinib is likely to be the

|                                                             | favored drug (RR: 2.29,95% CI 1.63-3.23).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                             | 4. Fazit der Autoren: In conclusion, also after this attempt we are unable toselect a drug up-front based on clinical evidence. Further-more, the real clinical unmet need on how to treat patientsafter disease progression and how to overcome acquired resis-tance remains still unsolved and without any approved drugs. For the 10% of EGFR-mutated patients, after nine phase3 trials we are unable to choose the best drug for first-linetreatment. In fact, due to a lack of direct comparisons madein the research carried out so far, prescriptive choice willnot presently be based on scientific evidence. Therefore, webelieve that "me too" drugs should be accepted by the regu-latory agencies only when there is the final proof of greaterefficacy or demonstrated less toxicity. |  |  |  |  |  |
| Yang XQ et al.,                                             | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 2015 [64].<br>Comparison of                                 | To compare the efficacy and toxicity of irinotecan-based chemotherapy (IB and non-irinotecan-based chemotherapy (NIBC) as first-line treatment for stage IIIB/IV non-small cell lung cancer (NSCLC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| first-line                                                  | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| chemotherapy<br>based on<br>irinotecan or<br>other drugs to | Population: patients locally advanced (stage IIIB) or metastatic (stage IV)<br>NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| treat non-small cell lung cancer                            | Intervention: IBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| in stage IIIB/IV:<br>a systematic                           | Komparator: NIBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| review and meta-analysis.                                   | Endpunkte: overall response rate (ORR), OS and frequencies of toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                             | Suchzeitraum (Aktualität der Recherche): up to 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                             | Anzahl eingeschlossene Studien/Patienten (Gesamt): Seven RCTs (6<br>RCTs from Asian population and 1 from non-Asian population) involving<br>1473 patients with previously untreated stage IIIB/IV NSCLC.<br>In total, 590 patients with stage IIIB/IV NSCLC were randomized to receive<br>IBC, and 883 patients to receive NIBC. The IBC regimen was irinotecan<br>and platinum in five trials and irinotecan and docetaxel or gemcitabine in<br>the remaining trials.                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                             | Qualitätsbewertung der Studien: modified Jadad score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                             | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                             | Qualität der Studien: The quality of the seven trials was assessed using the modified Jadad score. The full score was seven points. As none of the trials was double-blinded, no trials received the highest possible score.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

| Study or Subgroup         log[Hazard Ratio]           1.2.2 Asian         -0.201           Han JY 2008         -0.201           Negoro S 2003         -0.163           Ohe Y 2007-1         -0.102           Ohe Y 2007-2         0.009           Ohe Y 2007-3         -0.16 | 0.187                 |             | IV, Fixed, 95% Cl                      | IV, Fixed     | 95% CI         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------------------------------------|---------------|----------------|
| Han JY 2008         -0.201           Negoro S 2003         -0.163           Ohe Y 2007-1         -0.102           Ohe Y 2007-2         0.009                                                                                                                                 |                       |             |                                        |               |                |
| Negoro S 2003         -0.163           Ohe Y 2007-1         -0.102           Ohe Y 2007-2         0.009                                                                                                                                                                      |                       |             |                                        |               |                |
| Ohe Y 2007-1         -0.102           Ohe Y 2007-2         0.009                                                                                                                                                                                                             |                       | 7.8%        | 0.82 [0.57, 1.18]                      | _             | _              |
| Ohe Y 2007-2 0.009                                                                                                                                                                                                                                                           |                       |             | 0.85 [0.65, 1.11]                      |               |                |
|                                                                                                                                                                                                                                                                              |                       |             | 0.90 [0.69, 1.19]<br>1.01 [0.76, 1.34] | _             | -              |
| -0.10                                                                                                                                                                                                                                                                        |                       |             | 0.85 [0.65, 1.11]                      |               | _              |
| Takiguchi Y 2000 0.043                                                                                                                                                                                                                                                       | 0.142                 |             | 1.04 [0.79, 1.38]                      |               | -              |
| Yamamoto N 2004 0.136                                                                                                                                                                                                                                                        |                       | 6.7%        | 1.15 [0.77, 1.70]                      |               |                |
| Zhao WY 2012 0.021                                                                                                                                                                                                                                                           |                       |             | 1.02 [0.75, 1.39]                      |               | <b>—</b>       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                            |                       | 95.6%       | 0.94 [0.85, 1.04]                      | •             | •              |
| Heterogeneity: $Chi^2 = 3.72$ , df = 7 (P = 0.81); I<br>Test for overall effect: Z = 1.14 (P = 0.25)                                                                                                                                                                         | l <sup>2</sup> = 0%   |             |                                        |               |                |
| 1.2.3 non-Asian                                                                                                                                                                                                                                                              |                       |             |                                        |               |                |
| Rocha Lima CM 2004 0.6259                                                                                                                                                                                                                                                    | 0.248                 | 4.4%        | 1.87 [1.15, 3.04]                      |               |                |
| Subtotal (95% CI)                                                                                                                                                                                                                                                            |                       | 4.4%        |                                        |               |                |
| Heterogeneity: Not applicable<br>Test for overall effect: Z = 2.52 (P = 0.01)                                                                                                                                                                                                |                       |             |                                        |               |                |
| Total (95% CI)                                                                                                                                                                                                                                                               |                       | 100.0%      | 0.97 [0.88, 1.07]                      | •             | •              |
| Heterogeneity: Chi <sup>2</sup> = 11.06, df = 8 (P = 0.20);                                                                                                                                                                                                                  | : l <sup>2</sup> = 28 |             |                                        | L             | <u> </u>       |
| Test for overall effect: Z = 0.59 (P = 0.56)                                                                                                                                                                                                                                 |                       |             |                                        | 0.2 0.5 1     | 2 5            |
| Test for subgroup differences: Chi <sup>2</sup> = 7.33. df                                                                                                                                                                                                                   | = 1 (P                | = 0.007). I | <sup>2</sup> = 86.4%                   | Favours [IBC] | Favours [NIBC] |
|                                                                                                                                                                                                                                                                              |                       |             |                                        |               |                |
| There was no significant                                                                                                                                                                                                                                                     | diffe                 | rence       | for hematol                            | ogical toxici | ty and         |
| _                                                                                                                                                                                                                                                                            |                       |             |                                        | -             |                |
| significant worse for non-                                                                                                                                                                                                                                                   |                       | -           | •                                      | •             | 55 /001. 1.00  |
| to3.24, p < 0.001), when                                                                                                                                                                                                                                                     | IBC                   | compa       | ared to NIB                            | С.            |                |
| · · · · · · ·                                                                                                                                                                                                                                                                |                       | ľ           |                                        |               |                |
| 4. Fazit der Autoren: As the a                                                                                                                                                                                                                                               |                       | labla a     | vidonoo au                             | agosts that I | PC and NID     |
|                                                                                                                                                                                                                                                                              |                       |             | -                                      |               |                |
| are equivalent in terms of OF                                                                                                                                                                                                                                                | RR. I                 | PFS. (      | DS. at least                           | in Asian pat  | tients, we     |
| •                                                                                                                                                                                                                                                                            |                       |             |                                        | •             |                |
| recommend that IBC be cons                                                                                                                                                                                                                                                   | sidei                 | red as      | a first-line t                         | reatment in   | Asian patier   |
| with stage IIIB/IV NSCLC. He                                                                                                                                                                                                                                                 | owe                   | ver th      | e non-hema                             | atological to | vicity of IRC  |
| •                                                                                                                                                                                                                                                                            | 0000                  | , ui        |                                        |               |                |
| must be considered.                                                                                                                                                                                                                                                          |                       |             |                                        |               |                |
|                                                                                                                                                                                                                                                                              |                       |             |                                        |               |                |
|                                                                                                                                                                                                                                                                              |                       |             |                                        |               |                |
|                                                                                                                                                                                                                                                                              |                       |             |                                        |               |                |
| 5. Hinweise der FBMed:                                                                                                                                                                                                                                                       |                       |             |                                        |               |                |
| 5. Hinweise der FBMed:                                                                                                                                                                                                                                                       |                       |             |                                        |               |                |
| <ul><li>5. Hinweise der FBMed:</li><li>meta-analysis aggregated</li></ul>                                                                                                                                                                                                    | d pa                  | tients      | with various                           | histological  | types of       |

# Systematische Reviews (Zweitlinientherapie)

| Vale CL et al., 2015                                                                          | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <b>[60].</b><br>Should Tyrosine<br>Kinase Inhibitors Be                                       | We assessed the effect of TKIs as second-line therapy and maintenance<br>therapy after first-line chemotherapy in two systematic reviews and meta-<br>analyses, focusing on patients without EGFR mutations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Considered for<br>Advanced Non-<br>Small-Cell Lung<br>Cancer Patients With<br>Wild Type EGFR? | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                                                                               | <b>Population:</b> advanced NSCLC irrespective of sex, age, histology, ethnicity, smoking history, or EGFR mutational status. Patients should not have received previous TKIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Two Systematic                                                                                | Interventionen und Komparatoren: TKI (erlotinib or gefitinib) vs. chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Reviews and Meta-<br>Analyses of                                                              | Endpunkte: PFS, OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Randomized Trials                                                                             | Suchzeitraum: bis 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                                                                                               | Anzahl eingeschlossene Studien/Patienten (Gesamt):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                                                                                               | Second line: 14 (4388) Maintenance: 6 (2697)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                                                                               | <b>Qualitätsbewertung der Studien:</b> The risk of bias of individual trials was assessed with a low risk of bias being desirable for sequence generation, allocation concealment, and completeness of outcome data reporting. Trials in the maintenance setting should have also been at low risk of bias for blinding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                                                                               | Heterogenitätsuntersuchungen: I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                                                                               | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                                                                                               | Studiencharakteristika: siehe Anhang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                                                                               | Zweitlinienbehandlung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                                                                                               | Trials compared TKIs with either docetaxel or pemetrexed chemotherapy and<br>were conducted between 2003 and 2012. Six trials were carried out in<br>predominantly Asian populations. Randomized patients had good performance<br>status (0-2) and median age ranged from 54.5 to 67.5 years (range, 20-88 years).<br>Most were men and either current or former smokers. One tria included<br>considerably more women (85%) and only neversmokers. Three trials randomized<br>patients with wild type EGFR exclusively. Five trials evaluated EGFR mutation<br>status using a range of methods (including DAKO EGFR Pharma DX and<br>Eppendorf Piezo-electric microdissector). Mutation status was not evaluated in 5<br>trials. Twelve trials (3963 patients, 90% of total) reported PFS and 14 trials (4355<br>patients, 99% of total) reported OS. |  |  |  |  |  |  |
|                                                                                               | One trial, published in Chinese language, was judged to be unclear for all domains. The remaining 13 trials were all at low risk of bias regarding incomplete outcome data. Missing data on EGFR mutational status largely resulted from unavailable tumor samples or because the trials were conducted before widespread testing. All were judged to be at low risk of bias for sequence generation. For allocation concealment, 10 trials were judged to be at low risk of                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |



|                                      | Trial                                                                                                                                                    |            |            |              |                        |            |              |                        |            | HR (95% CI), I                                   | P value                       |         |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|------------------------|------------|--------------|------------------------|------------|--------------------------------------------------|-------------------------------|---------|
|                                      | TITAN <sup>31</sup>                                                                                                                                      |            | -          |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      | INTEREST <sup>29</sup>                                                                                                                                   | _          |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      | V-15-3227                                                                                                                                                |            |            | _            |                        | -          |              | _                      |            |                                                  |                               |         |
|                                      | KCSG LU08-0133                                                                                                                                           |            | -          |              |                        | -          |              |                        |            |                                                  |                               |         |
|                                      |                                                                                                                                                          |            |            | <            | $\Leftrightarrow$      |            |              |                        |            | 0.34 (0.20-0.6<br>rogeneity P = .:               |                               |         |
|                                      |                                                                                                                                                          |            | .1         |              |                        | 1          |              |                        |            | 10                                               |                               |         |
|                                      |                                                                                                                                                          |            |            | Fa           | vors TKI               | F          | avors        | chemoth                |            |                                                  |                               |         |
|                                      |                                                                                                                                                          |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      | ~~~                                                                                                                                                      |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      | OS                                                                                                                                                       |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      | Table 2   Results for 0v                                                                                                                                 | erall Surv | ival       |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      |                                                                                                                                                          | Trial,     | Patient,   | HR           | Fixed Effect<br>95% CI | Р          | Ra<br>HR     | andom Effec<br>95% Cl  | t<br>P     | Interaction HR <sup>a</sup><br>(95% CI) <i>P</i> | Interaction                   |         |
|                                      | Second-Line Treatment                                                                                                                                    | n          | n          |              |                        |            |              |                        |            |                                                  | Heterogeneity, P              |         |
|                                      | EGFR wild type<br>EGFR mutations                                                                                                                         | 9<br>4     | 1400<br>97 | 1.06<br>0.90 | 0.93-1.22<br>0.49-1.64 | .37<br>.72 | 1.06<br>0.90 | 0.93-1.20<br>0.49-1.64 | .37<br>.72 | 1.15 (0.60-2.18) .68                             | .37                           |         |
|                                      | Maintenance Treatment<br>EGFR wild type                                                                                                                  | 3          | 707        | 0.85         | 0.72-1.02              | .06        | 0.87         | 0.70-1.07              | .70        | 1.40 (0.76-2.57) .28                             | .49                           |         |
|                                      | EGFR mutations                                                                                                                                           | 3          | 120        | 0.59         | 0.33-1.05              | .07        | 0.59         | 0.33-1.05              | .07        |                                                  |                               |         |
|                                      | Abbreviations: EGFR = epidermal g $^{\rm a}{\rm Interaction}~{\rm HR}>1$ shows greater                                                                   |            |            |              | o; TKI = tyrosine      | kinase in  | hibitor.     |                        |            |                                                  |                               |         |
|                                      |                                                                                                                                                          |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      | 4. Anmerkungen/Fazit der Autoren                                                                                                                         |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      | For patients with wild type EGFR, TKIs seem to be an ineffective second-line treatment compared with chemotherapy, but might be effective as maintenance |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      |                                                                                                                                                          | •          |            |              |                        |            |              | •                      |            |                                                  |                               |         |
|                                      | treatment, con                                                                                                                                           | •          |            |              |                        |            |              | nt. In b               | oth        | settings,                                        | I KIS Offer P                 | F2      |
|                                      | benefits to pa                                                                                                                                           |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
|                                      |                                                                                                                                                          |            |            |              |                        |            |              |                        |            |                                                  | urvival (PFS                  | ,       |
|                                      |                                                                                                                                                          |            |            |              |                        |            |              |                        |            |                                                  | , 2.69; P = .                 |         |
|                                      |                                                                                                                                                          |            |            |              |                        |            |              |                        |            |                                                  | HR, 1.31; P                   |         |
|                                      | -                                                                                                                                                        |            |            |              | -                      |            |              |                        |            | -                                                | ; P = .0002)<br>efits of TKIs |         |
|                                      |                                                                                                                                                          |            |            | •            |                        |            |              | •                      |            | ,                                                | ith wild type                 |         |
|                                      | EGFR                                                                                                                                                     |            |            |              | 101003                 | '''y I     | prop         | 0110113                |            |                                                  |                               | •       |
|                                      |                                                                                                                                                          |            |            | enan         | ice the                | rapy       | v (26        | 97 pat                 | ient       | ts) were in                                      | cluded. Res                   | sults   |
|                                      |                                                                                                                                                          |            |            |              |                        | • •        |              | •                      |            | ,                                                | ed on EGFR                    |         |
|                                      |                                                                                                                                                          |            |            | •            |                        |            |              |                        |            | •                                                | s (wild type                  |         |
|                                      | •                                                                                                                                                        |            |            |              |                        |            |              |                        |            | P < .0001)                                       | · · ·                         |         |
|                                      | There                                                                                                                                                    | was a      | a sugg     | estic        | on that                | ber        | nefits       | s of TK                | ls c       | on PFS de                                        | creased with                  | h       |
|                                      | increas                                                                                                                                                  | sing p     | ropor      | tions        | of pat                 | ient       | s wit        | h wild                 | typ        | e EGFR (I                                        | <sup>D</sup> = .11).          |         |
| Zhao N et al., 2014                  | 1. Fragestell                                                                                                                                            | lung       |            |              |                        |            |              |                        |            |                                                  |                               |         |
| [66].                                | We sought to                                                                                                                                             | evalu      | ate th     | e eff        | ective                 | nes        | s of I       | EGFR-                  | ΤK         | l as secon                                       | d-line treatn                 | nent in |
| Efficacy of epidermal                | EGFR wild-typ                                                                                                                                            | be NS      | SCLC.      |              |                        |            |              |                        |            |                                                  |                               |         |
| growth factor<br>receptor inhibitors | 2. Methodik                                                                                                                                              |            |            |              |                        |            |              |                        |            |                                                  |                               |         |
| versus chemotherapy                  | Population: p                                                                                                                                            | orevio     | usly tr    | eate         | ed adva                | ance       | ed N         | SCLC                   | witł       | n wild-type                                      | EGFR                          |         |

# as second-line treatment in advanced non-smallcell lung cancer with wild-type EGFR: a meta-analysis of randomized controlled clinical trials

# Intervention: EGFR TKIs

## Komparator: chemotherapy

*Endpunkte:* progression-free survival (PFS), overall survival (OS), objective response rate (ORR)

Suchzeitraum: bis 07/ 2013

Anzahl eingeschlossene Studien/Patienten (Gesamt): 6/990 (5 phase III)

# Qualitätsbewertung der Studien: Jadad scale

*Heterogenitätsuntersuchungen:*  $x^2$ -based Q test; p > 0,05 indicates low heterogeneity;  $p \le 0,05$  reflects high heterogeneity, if significant random-effects model used, if not significant FEM used

"Publication bias": tested by funnel plot

# 3. Ergebnisdarstellung

| Author, study                                    | Year | Experimental<br>and control | Detection<br>method    | Primary<br>endpoint | Method of<br>assessment | EGFR-WT<br>patients | PR/CR<br>patients | ORR (%)    | Median-PFS<br>(Mon) | HR (95%CI, P)                     | Median-OS<br>(Mon) | HR (95% CI, P)                      | Jadad<br>score |
|--------------------------------------------------|------|-----------------------------|------------------------|---------------------|-------------------------|---------------------|-------------------|------------|---------------------|-----------------------------------|--------------------|-------------------------------------|----------------|
| Kim E.S.<br>NTEREST [20]<br>Douillard J.Y. [25]) | 2008 | Gefitinib<br>Docetaxel      | Direct<br>sequencing   | OS                  | Subgroup<br>analysis    | 106<br>123          | 7<br>12           | 6.6<br>9.8 | 1.7<br>2.6          | HR=1.24<br>(0.94-1.64,<br>P=0.14) | 6.4<br>6.0         | HR= 1.02<br>(0.78–1.33,<br>P= 0.91) | 3              |
| iuleanu T.                                       | 2012 | Erlotinib                   | Direct<br>sequencing   | OS                  | Subgroup<br>analysis    | 75                  | 6                 | 7.9        | 1.4                 | HR=1.25<br>(0.88-1.78,<br>P=0.20) | 6.6                | HR=0.85<br>(0.59-1.22,<br>P=0.37)   | 3              |
| TITAN [21]                                       |      | Doc/Pem                     | bequeiting             |                     |                         | 74                  | 5                 | 6.3        | 2.0                 |                                   | 4.4                |                                     |                |
| Sun J.M.                                         | 2012 | Gefitinib                   | Direct sequencing      | PFS                 | Subgroup<br>analysis    | 18                  | NA                |            | 5.9                 | HR=0.56<br>(0.28-1.13,            | NA                 |                                     | 3              |
| KCSG-LU08-01 [22]                                |      | Pemetrexed                  | sedaenen.8             |                     |                         | 20                  |                   |            | 2.7                 | P = 0.099)                        |                    |                                     |                |
| Garassino M.C.                                   | 2013 | Erlotinib                   | Sanger's<br>sequencing | OS                  | Head-to-head<br>trial   | 110                 | 3                 | 3          | 2.4                 | HR=0.72<br>(0.55-0.94,            | 5.4                | HR=078<br>(0.51-1.05,               | 3              |
| TAILOR [18]                                      |      | Docetaxel                   | and RFLP               |                     |                         | 109                 | 15                | 15.5       | 2.9                 | P=0.01) 8.2                       | 8.2                | P=0.10)                             |                |
| Yang J.J.                                        | 2013 | Gefitinib                   | Direct<br>sequencing   | PFS                 | Head-to-head<br>trial   | 81                  | 11                | 14.7       | 1.6                 | HR=0.51<br>(0.36-0.73,            | NA                 |                                     | 3              |
| CTONG0806 [16]                                   |      | Pemetrexed                  |                        |                     |                         | 76                  | 10                | 13.3       | 4.8                 | P < 0.001)                        |                    |                                     |                |
| Okano Y.                                         | 2013 | Erlotinib                   | NA                     | PFS                 | Head-to-head<br>trial   | 109                 | 6                 | 5.6        | 1.3                 | HR=1.44<br>(1.08-1.92,            | 9.0                | HR=0.98<br>(0.69-1.39,              | 3              |
| DELTA [17]                                       |      | Docetaxel                   |                        |                     |                         | 89                  | 17                | 20         | 2.9                 | P = 0.013)                        | 9.2                | P = 0.914)                          |                |

PFS (EGFR-TKIs vs. chemotherapy)

- HR 1,37; 95 % KI 1,20 1,56; p < 0,00001 in the second-/third-line treatment of EGFR wild-type NSCLC, PFS significantly inferior in EGFR-TKI group compared with chemotherapy group
- gefitinib and erlotinib significantly inferior to chemotherapy
- erlotinib vs. chemotherapy: HR 1,37; 95 % KI 1,16 1,63, p = 0,0003
- gefitinib vs. chemotherapy: HR 1,35; 95 % KI 1,10 1,67, p = 0,004
- head-to-head trials: results favored chemotherapy more obviously (HR 1,53; 95 % KI 1,29 1,81; p < 0.00001</li>
- subgroup trials, which had only subgroup analyses for EGFR wild-type patients: PFS not significantly different (HR 1,16; 95 % KI 0,94 1,43; p = 0,17)

PFS bei EGFR wild type:

|                                                                                |                                         |         | Hazard Ratio                                | Hazard Ratio                        |
|--------------------------------------------------------------------------------|-----------------------------------------|---------|---------------------------------------------|-------------------------------------|
| Study or Subgroup                                                              | log[Upgard Datio]                       | Weight  | IV. Fixed, 95% CI Year                      | IV. Fixed, 95% Cl                   |
| <u>Study or Subgroup</u><br>1.2.1 Patients with EGFR-W                         |                                         |         |                                             | IV. FIXed, 9576 CI                  |
| Kim. INTEREST 2008                                                             | 0.2151 0.142                            |         |                                             |                                     |
|                                                                                |                                         |         | 1.24 [0.94, 1.64] 2008                      |                                     |
| Sun. KCSG-LU08-01 2012                                                         | -0.5798 0.3559                          |         | 0.56 [0.28, 1.12] 2012                      |                                     |
| Ciuleanu. TITAN 2012                                                           | 0.2231 0.179                            |         | 1.25 [0.88, 1.78] 2012                      |                                     |
| Garassino. TAILOR 2013                                                         | 0.3293 0.1365                           |         | 1.39 [1.06, 1.82] 2013                      |                                     |
| Okano. DELTA 2013                                                              | 0.3646 0.1468                           |         | 1.44 [1.08, 1.92] 2013                      |                                     |
| Yang. CTONG0806 2013<br>Subtotal (95% Cl)                                      | 0.6729 0.180                            |         | 1.96 [1.38, 2.79] 2013<br>1.37 [1.20, 1.56] | <b>*</b>                            |
| Heterogeneity: Chi <sup>2</sup> = 11.13, c                                     | If = 5 (P = 0.05); I <sup>2</sup> = 55% |         |                                             |                                     |
| Test for overall effect: Z = 4.6                                               | 1 (P < 0.00001)                         |         |                                             |                                     |
| 1.2.2 Erlotinib vs Chemothe                                                    |                                         |         |                                             |                                     |
| Ciuleanu. TITAN 2012                                                           | 0.2231 0.1793                           |         | 1.25 [0.88, 1.78] 2012                      |                                     |
| Okano. DELTA 2013                                                              | 0.3646 0.1468                           |         | 1.44 [1.08, 1.92] 2013                      |                                     |
| Garassino. TAILOR 2013                                                         | 0.3293 0.1365                           |         | 1.39 [1.06, 1.82] 2013                      |                                     |
| Subtotal (95% CI)                                                              |                                         | 100.0%  | 1.37 [1.16, 1.63]                           | -                                   |
| Heterogeneity: Chi <sup>2</sup> = 0.39, df<br>Test for overall effect: Z = 3.6 |                                         |         |                                             |                                     |
| 1.2.3 Gefitinib vs Chemothe                                                    | rapy                                    |         |                                             |                                     |
| Kim, INTEREST 2008                                                             | 0.2151 0.142                            | 2 56.2% | 1.24 [0.94, 1.64] 2008                      | +                                   |
| Sun. KCSG-LU08-01 2012                                                         | -0.5798 0.3559                          |         | 0.56 [0.28, 1.12] 2012                      |                                     |
| Yang, CTONG0806 2013                                                           | 0.6729 0.180                            |         | 1.96 [1.38, 2.79] 2013                      |                                     |
| Subtotal (95% CI)                                                              | 0.0120 0.1000                           | 100.0%  |                                             | ◆                                   |
| Heterogeneity: Chi <sup>2</sup> = 10.74, c                                     | f = 2/P = 0.005 $P = 81%$               |         |                                             |                                     |
| Test for overall effect: Z = 2.8                                               |                                         |         |                                             |                                     |
| 1.2.4 Head to head trials                                                      |                                         |         |                                             |                                     |
| Yang, CTONG0806 2013                                                           | 0.6729 0.180                            | 5 23.5% | 1.96 [1.38, 2.79] 2013                      |                                     |
| Okano. DELTA 2013                                                              | 0.3646 0.1468                           |         | 1.44 [1.08, 1.92] 2013                      |                                     |
| Garassino. TAILOR 2013                                                         | 0.3293 0.1365                           |         |                                             |                                     |
| Subtotal (95% CI)                                                              | 0.3293 0.1363                           | 100.0%  | 1.39 [1.06, 1.82] 2013<br>1.53 [1.29, 1.81] | ▲                                   |
|                                                                                | - 2 /D - 0 281 12 - 248/                | 100.078 | 1.55 [1.25, 1.61]                           | •                                   |
| Heterogeneity: Chi <sup>2</sup> = 2.55, df<br>Test for overall effect: Z = 4.8 |                                         |         |                                             |                                     |
| 1.2.5 Subgroup trials                                                          |                                         |         |                                             |                                     |
| Kim. INTEREST 2008                                                             | 0.2151 0.142                            | 2 56.1% | 1.24 [0.94, 1.64] 2008                      | +                                   |
| Sun. KCSG-LU08-01 2012                                                         | -0.5798 0.3559                          | 8.9%    | 0.56 [0.28, 1.12] 2012                      |                                     |
| Ciuleanu. TITAN 2012                                                           | 0.2231 0.1797                           |         | 1.25 [0.88, 1.78] 2012                      |                                     |
| Subtotal (95% CI)                                                              |                                         |         | 1.16 [0.94, 1.43]                           | ◆                                   |
| Heterogeneity: Chi2 = 4.58, df                                                 | = 2 (P = 0.10): I <sup>2</sup> = 56%    |         |                                             |                                     |
| Test for overall effect: Z = 1.3                                               |                                         |         |                                             |                                     |
|                                                                                |                                         |         |                                             |                                     |
|                                                                                |                                         |         |                                             | 0.2 0.5 1 2 5                       |
|                                                                                |                                         |         |                                             | Favors EGFR-TKI Favors Chemotherapy |
| OS and ORR                                                                     |                                         |         |                                             |                                     |
|                                                                                |                                         |         |                                             |                                     |
| <ul> <li>equal rest</li> </ul>                                                 | ults                                    |         |                                             |                                     |
| OS bei EGFR wil                                                                | d tvpe:                                 |         |                                             |                                     |
|                                                                                |                                         |         |                                             |                                     |

| <b></b>                 | 2                                                                                                                                           | Hazard Ratio Hazard Ratio                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                         |                                                                                                                                             | IV. Fixed. 95% CI Year IV. Fixed. 95% CI            |
|                         | 2.1.1 Patients with EGFR-WT treated with EGFR-TKI compare v<br>Kim. INTEREST 2008 0.0198 0.1361 37.6%                                       | vith chemotherapy (OS)<br>1.02 [0.78, 1.33] 2008    |
|                         | Ciuleanu. TITAN 2012 -0.1625 0.1853 20.3%                                                                                                   | 0.85 [0.59, 1.22] 2012                              |
|                         | Garassino. TAILOR 2013         0.2469         0.1848         20.4%           Okano. DELTA 2013         -0.0202         0.1787         21.8% | 1.28 [0.89, 1.84] 2013<br>0.98 [0.69, 1.39] 2013    |
|                         | Subtotal (95% Cl) 100.0%<br>Heterogeneity: Chi <sup>2</sup> = 2.53, df = 3 (P = 0.47); l <sup>2</sup> = 0%                                  | 1.02 [0.87, 1.20]                                   |
|                         | Test for overall effect: $Z = 0.24$ (P = 0.81)                                                                                              |                                                     |
|                         | 2.1.2 Erlotinib vs Chemotherapy                                                                                                             |                                                     |
|                         | Ciuleanu. TITAN 2012 -0.1625 0.1853 32.5%<br>Okano. DELTA 2013 -0.0202 0.1787 34.9%                                                         | 0.85 [0.59, 1.22] 2012                              |
|                         | Garassino. TAILOR 2013 0.2469 0.1848 32.6%                                                                                                  | 1.28 [0.89, 1.84] 2013                              |
|                         | Subtotal (95% Cl) 100.0%<br>Heterogeneity: Chi <sup>2</sup> = 2.53, df = 2 (P = 0.28); l <sup>2</sup> = 21%                                 | 1.02 [0.83, 1.26]                                   |
|                         | Test for overall effect: Z = 0.20 (P = 0.84)                                                                                                |                                                     |
|                         | 2.1.3 Gefitinib vs Chemotherapy<br>Kim. INTEREST 2008 0.0198 0.1361 100.0%                                                                  | 1.02 [0.78, 1.33] 2008                              |
|                         | Subtotal (95% CI) 100.0%                                                                                                                    | 1.02 [0.78, 1.33]                                   |
|                         | Heterogeneity: Not applicable<br>Test for overall effect: Z = 0.15 (P = 0.88)                                                               |                                                     |
|                         | 2.1.4 Head to head trials                                                                                                                   |                                                     |
|                         | Okano. DELTA 2013 -0.0202 0.1787 51.7%                                                                                                      |                                                     |
|                         | Garassino. TAILOR 2013 0.2469 0.1848 48.3%<br>Subtotal (95% CI) 100.0%                                                                      | 1.28 [0.89, 1.84] 2013<br>1.12 [0.87, 1.43]         |
|                         | Heterogeneity: Chi <sup>2</sup> = 1.08, df = 1 (P = $0.30$ ); i <sup>2</sup> = 7%<br>Test for overall effect: Z = $0.85$ (P = $0.40$ )      |                                                     |
|                         |                                                                                                                                             |                                                     |
|                         | 2.1.5 Subgroup trials<br>Kim. INTEREST 2008 0.0198 0.1361 65.0%                                                                             | 1.02 [0.78, 1.33] 2008                              |
|                         | Ciuleanu. TITAN 2012 -0.1625 0.1853 35.0%<br>Subtotal (95% CI) 100.0%                                                                       | 0.85 [0.59, 1.22] 2012                              |
|                         | Heterogeneity: Chi <sup>2</sup> = 0.63, df = 1 (P = 0.43); l <sup>2</sup> = 0%                                                              |                                                     |
|                         | Test for overall effect: Z = 0.40 (P = 0.69)                                                                                                |                                                     |
|                         |                                                                                                                                             |                                                     |
|                         |                                                                                                                                             | Favors EGFR-TKI Favors Chemotherapy                 |
|                         |                                                                                                                                             |                                                     |
|                         |                                                                                                                                             |                                                     |
|                         | 4. Anmerkungen/Fazit der Autor                                                                                                              | en                                                  |
|                         | -                                                                                                                                           |                                                     |
|                         | Chemotherapy improves PFS signif                                                                                                            | icantly but not OS, compared with EGFR-TKIs         |
|                         | as a second-line treatment in advar                                                                                                         | nced NSCLC with wild-type EGFR. Whether             |
|                         | EGFR-TKIs should be used in EGF                                                                                                             | R wild-type patients should be considered           |
|                         | carefully.                                                                                                                                  |                                                     |
|                         | Hinweise durch FB Med:                                                                                                                      |                                                     |
|                         | <ul> <li>study quality not further disc</li> </ul>                                                                                          | a sead                                              |
|                         |                                                                                                                                             |                                                     |
|                         | eine Phase II Studie enthalte                                                                                                               |                                                     |
|                         | <ul> <li>no evidence of publication b</li> </ul>                                                                                            | ias                                                 |
|                         | <ul> <li>authors declared no potentia</li> </ul>                                                                                            | al conflicts of interest                            |
|                         | •                                                                                                                                           | nnologies R&D Programof Guangzhou                   |
|                         |                                                                                                                                             | boratory Program of Guangdong                       |
|                         |                                                                                                                                             | , , , , , , , , , , , , , , , , , , , ,             |
|                         | (2012A061400006) (Y.L. Wi                                                                                                                   | <i>(</i> )                                          |
| Ganguli A et al.,       | 1. Fragestellung                                                                                                                            |                                                     |
| 2013 [15].              |                                                                                                                                             | tempetianily propose (the second of the Providence) |
|                         | · · ·                                                                                                                                       | tematically assess the available literature         |
| The impact of           | reporting QOL results in clinical trial                                                                                                     | studies of guideline-supported 2L                   |
| second-line agents      | chemotherapy with docetaxel, erloti                                                                                                         | nib, gefitinib, and pemetrexed for the treatmen     |
| on patients' health-    | for advanced NSCLC.                                                                                                                         |                                                     |
| related quality of life |                                                                                                                                             |                                                     |
| in the treatment for    | 2. Methodik                                                                                                                                 |                                                     |
| non-small cell lung     | Population: advanced NSCLC                                                                                                                  |                                                     |
| non onlan oon lang      | -                                                                                                                                           |                                                     |

| cancer: a systematic | Intervention: P                                                                                                             | atients we                                                              | re treated                                                    | with docetaxel, pemetrexed, erlotinib                                                                                                                                                                                    | , or        |  |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| review               | gefitinib; Second-line (2L)                                                                                                 |                                                                         |                                                               |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Komparator: N                                                                                                               | icht spezif                                                             | iziert                                                        |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Endpunkte: qua                                                                                                              | ality of life                                                           | (QOL)                                                         |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Suchzeitraum:                                                                                                               | 2000 bis 2                                                              | 2010                                                          |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Anzahl eingeso                                                                                                              | Anzahl eingeschlossene Studien/Patienten (Gesamt): 28/Range: 31 – 1 692 |                                                               |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | <b>Qualitätsbewei</b><br>Cancer Clinical                                                                                    | -                                                                       | Studien:                                                      | Checklist for Evaluating QOL Outcom                                                                                                                                                                                      | ies in      |  |  |  |  |  |
|                      | Heterogenitäts                                                                                                              | untersucl                                                               | hungen:                                                       | ualitativ berücksichtigt und berichtet                                                                                                                                                                                   |             |  |  |  |  |  |
|                      | <ul> <li>Function<br/>studies;</li> <li>Quality of<br/>studies;L</li> <li>Median a</li> <li>Table 2 Summary of Q</li> </ul> | Assessme<br>European<br>of Life Que<br>ung Canc<br>age of part          | ent of Car<br>Organiza<br>stionnaire<br>er Sympt<br>icipants: | trials; gefitinib: 11 trials; pemetrexed<br>cer Therapy-Lung (FACT-L): used in<br>on for Research and Treatment of Ca<br>C30 (EORTC-QLQ30/LC13): used ir<br>m Scale (LCSS): used in 4 studies<br>8 – 68 years; PS 0 – 1; | 12<br>ancer |  |  |  |  |  |
|                      | Domain/areas                                                                                                                | Docetaxel                                                               | Gefitinib                                                     | Erlotinib                                                                                                                                                                                                                |             |  |  |  |  |  |
|                      |                                                                                                                             |                                                                         |                                                               |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Overall QOL<br>Domain specific                                                                                              | Т                                                                       | Х                                                             | X                                                                                                                                                                                                                        |             |  |  |  |  |  |
|                      | Social functioning                                                                                                          |                                                                         | х                                                             |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Physical functioning                                                                                                        |                                                                         | X                                                             | Х                                                                                                                                                                                                                        |             |  |  |  |  |  |
|                      | Emotional functioning                                                                                                       |                                                                         | Х                                                             | Х, Т                                                                                                                                                                                                                     |             |  |  |  |  |  |
|                      | Role functioning                                                                                                            | Х                                                                       | Х                                                             |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Symptoms                                                                                                                    |                                                                         |                                                               |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Pain                                                                                                                        | Χ, Τ                                                                    | Х                                                             | Х, Т                                                                                                                                                                                                                     |             |  |  |  |  |  |
|                      | Appetite                                                                                                                    | X, T                                                                    | X                                                             | X. T                                                                                                                                                                                                                     |             |  |  |  |  |  |
|                      | Cough                                                                                                                       | X, T<br>X                                                               | X<br>X                                                        | Х, Т<br>Х, Т                                                                                                                                                                                                             |             |  |  |  |  |  |
|                      | Dyspnea<br>Fatigue                                                                                                          | X                                                                       | X                                                             | X, 1<br>X                                                                                                                                                                                                                |             |  |  |  |  |  |
|                      | Vomiting                                                                                                                    | Х, Т                                                                    | ~                                                             | A                                                                                                                                                                                                                        |             |  |  |  |  |  |
|                      | Sore mouth                                                                                                                  | , -                                                                     |                                                               | Х                                                                                                                                                                                                                        |             |  |  |  |  |  |
|                      | Constipation                                                                                                                |                                                                         |                                                               | Х                                                                                                                                                                                                                        |             |  |  |  |  |  |
|                      | Analgesic use                                                                                                               | Χ, Τ                                                                    |                                                               | Т                                                                                                                                                                                                                        |             |  |  |  |  |  |
|                      | Hair loss                                                                                                                   | Т                                                                       |                                                               | Т                                                                                                                                                                                                                        |             |  |  |  |  |  |
|                      | Hemoptysis                                                                                                                  | X                                                                       |                                                               |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | Diarrhea<br>Trial outcome index                                                                                             | Т                                                                       | Т                                                             |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      |                                                                                                                             |                                                                         |                                                               |                                                                                                                                                                                                                          |             |  |  |  |  |  |
|                      | No significant results were <i>QOL</i> , quality of life; <i>T</i> , si significant results in QOI Studienqualität s        | gnificant effects<br>_ score                                            | on time to dete                                               | oration; X,                                                                                                                                                                                                              |             |  |  |  |  |  |
|                      | 4. Anmerkung                                                                                                                |                                                                         | -                                                             | en                                                                                                                                                                                                                       |             |  |  |  |  |  |
|                      | -                                                                                                                           |                                                                         |                                                               | QOL with 2L chemotherapy for advan                                                                                                                                                                                       | iced        |  |  |  |  |  |
|                      | NSCLC were inf                                                                                                              | requent. S                                                              | Single-arm                                                    | studies and those with less toxic reg                                                                                                                                                                                    | imens       |  |  |  |  |  |

|                                                       | Methodological heterogeneity impedes cross-study QOL comparisons.                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                       | Anmerkungen FB Med:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                       | <ul> <li>auch Phase II und Beobachtungsstudien eingeschlossen</li> <li>P.W., X.G., J.A.C., and M.F.B. are employees of Pharmerit International,<br/>which received funding support related to the development of this<br/>manuscript from Abbott Laboratories. A.G. and S.R. are employees of<br/>Abbott Laboratories.</li> </ul>                                                                                                                                                       |  |  |  |  |  |
| Jiang J et al., 2011                                  | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| <b>[29].</b><br>Gefitinib versus<br>Docetaxel in      | A meta-analysis of randomized controlled trials was performed to compare the efficacy, quality of life (QOL), symptom improvement and toxicities of gefitinib with docetaxel in previously treated advanced non-small-cell lung cancer.                                                                                                                                                                                                                                                 |  |  |  |  |  |
| previously treated advanced non-small-                | 2. Methodik:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| cell lung cancer: a<br>meta-analysis of<br>randomized | <b>Population</b> : Patienten mit einem NSCLC (Stadium IIIB oder IV), die mindestens<br>ein vorheriges Chemotherapie-Regime erhalten haben, positiver Marker für<br>EGFR-Mutation kein Einschlusskriterium                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| controlled trials                                     | Vergleich: Gefitinib vs. Docetaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                       | Endpunkte: OS, PFS, ORR, Lebensqualität und Symptomverbesserung, Nebenwirkungen                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                       | Suchzeitraum: bis Mai 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                       | Anzahl eingeschlossene Studien/Patienten (Gesamt): 4/2 257                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                       | Qualitätsbewertung der Primärstudien: Jadad score                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                       | Heterogenitätsuntersuchung: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                       | 3. Ergebnisse:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                       | Jadad: für drei Studien nur 2 von 5 Punkten, eine Studie erreicht 5 Punkte                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                       | <ul> <li><u>OS, PFS:</u> keine statistisch signifikanten Unterschiede; keine statistische<br/>Heterogenität</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                       | <ul> <li><u>ORR</u>: statistisch signifikanter Vorteil unter Gefitinib gegenüber Docetaxel<br/>(RR: 1.58; 95%KI: 1.02-2.45, p = 0.04), bei signifikanter Heterogenität</li> </ul>                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                       | <ul> <li>Lebensqualität und Symptomverbesserung: statistisch signifikanter Vorteil<br/>unter Gefinitib hinsichtlich dem FACT-L und dem TOI Fragebogen (RR:<br/>1.55; 95%KI: 1.27-1.88; p = 0.00 / RR: 1.86; 95%KI: 1.43-2.42; p = 0.00),<br/>kein Unterschied hinsichtlich einer Verbesserung der Symptomatik</li> </ul>                                                                                                                                                                |  |  |  |  |  |
|                                                       | <ul> <li><u>Nebenwirkungen:</u> Stat. signifikant mehr Risiko hinsichtlich Grad 3/4<br/>Neutropenien und Fatigue unter Docetaxel, verglichen mit Gefinitib (OR:<br/>0.02; 95%KI: 0.01-0.03; p=0.00 / OR: 0.47; 95%KI: 0.32-0.70; p=0.00).<br/>Gegensätzlich zeigte sich ein stat. signifikanter Nachteil unter Gefitinib<br/>gegenüber Docetaxel hinsichtlich Grad 3/4 Hautausschlägen (OR: 2.87;<br/>95%KI: 1.24-6.63; p=0.01). Grad 3/4 Erbrechen, Übelkeit und Durchfälle</li> </ul> |  |  |  |  |  |

|                                                                                                                                                                                            | waren vergleichbar zwischen den Gruppen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                            | 4. Fazit der Autoren:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                            | Although similar OS and PFS, gefitinib showed an advantage over docetaxel in terms of objective response rate, QoL and tolerability. Therefore, gefitinib is an important and valid treatment option for previously treated advanced non-small-cell lung cancer patients.                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                            | Hinweise FB Med:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                            | <ul> <li>Notwendigkeit der EGFR-Mutation nicht diskutiert</li> <li>eine Phase II Studie eingeschlossen</li> <li>Acknowledgements: analysis supported by a grant from the scientific research foundation of Huashan Hospital Fudan University</li> <li>all authors indicated no potential conflicts of interest</li> <li>publication bias was not found</li> </ul>                                                                                                                                                                                                                                                                                  |
| Greenhalgh J et al.,                                                                                                                                                                       | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2015 [25].<br>Erlotinib and gefitinib<br>for treating non-small<br>cell lung cancer that<br>has progressed<br>follow ing prior<br>chemotherapy<br>(review of NICE<br>technology appraisals | To appraise the clinical effediveness and co&-effediveness of erlotinib<br>[Tarceva, Roche (UK) Ltd] and gefitinib (IRESSA®, AstraZeneca) compared<br>with each other, docetaxel or best srupportive care (BSC) for the treatment of<br>NOCLC after disease progression following prior chemotherapy. The<br>effectiveness of treatment with gefitinib was considered only for patients with<br>epidermal growth factor mutation-positive (EGFR M +) disease.<br>The remit of this appraisal is to review and update (if necessary) the dinical<br>effectiveness and cost-effectiveness evidence base described in NICE TA 162<br>and NICE TA 175. |
| 162 and 175): a                                                                                                                                                                            | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| systematic review<br>and economic<br>evaluation                                                                                                                                            | <b>Population:</b> Adults with locally advanced or metastatic NSCLC that has progressed following prior chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                            | Interventionen und Komparatoren: Gefitinib oder Erlotinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                            | Erlotinib and gefitinib to be oompared with each other and with:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                            | <ul><li> docetaxel</li><li> best supportive care</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                            | Endpunkte: PFS, OS, Response Rate, AE, HRQoL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                            | Suchzeitraum: bis 04 /2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                            | Anzahl eingeschlossene Studien/Patienten (Gesamt): 12 / k.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                            | davon: 7 Gefitinib vs. Chemotherapie oder BSC, 4 Erlotinib vs. Chemotherapie oder BSC, 1 Gefitinib vs. Erlotinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                            | <b>Qualitätsbewertung der Studien:</b> Centre for Reviews and Dissemination at York University's suggested criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                            | Heterogenitätsuntersuchungen:<br>Funding: The National Institute for Health Feseach Health TedInology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 3. | Ergebnisda                                                   | arstellung                                                                                                        |                                        |                            |                                                                                                              |                                       |
|----|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|
|    | TABLE 8 Summary                                              | of included trials                                                                                                |                                        |                            |                                                                                                              |                                       |
|    |                                                              |                                                                                                                   |                                        |                            | Patient population                                                                                           | Retrospective                         |
|    | Trial                                                        | Design                                                                                                            | Intervention                           | Comparator                 | (EGFR M+, EGFR M-<br>or EGFR unknown)                                                                        | EGFR subgrou<br>data available        |
|    | Gefitinib vs. erlol                                          | فالاجادي مكامه الإملية                                                                                            |                                        |                            |                                                                                                              |                                       |
|    | Kim et al. <sup>32</sup>                                     | Open-label,<br>non-comparative<br>randomised<br>Phase II trial                                                    | Gefitinib                              | Etlotinib                  | EGRRM∔ and two<br>out of three factors<br>associated with EGRR<br>mutations                                  | Yes                                   |
|    | Gefitinib vs. doce                                           | etaxel                                                                                                            |                                        |                            |                                                                                                              |                                       |
|    | Bhatnagar et al. <sup>33</sup>                               | RCT                                                                                                               | Gefitinib                              | Docetaxel                  | EGFR unknown                                                                                                 | No                                    |
|    | INTEREST <sup>54</sup>                                       | Open-label<br>Phase III RCT                                                                                       | Gefitinib                              | Docetaxel                  | EGFR unknown                                                                                                 | Yes                                   |
|    | ISTANA <sup>35</sup>                                         | Open-label<br>Phase III RCT                                                                                       | Gefitinib                              | Docetaxel                  | EGFR unknown                                                                                                 | No                                    |
|    | Lietal. <sup>36</sup>                                        | RCT                                                                                                               | Gefitinib                              | Docetaxel                  | EGFR unknown                                                                                                 | No                                    |
|    | SGN <sup>37</sup>                                            | Open-label<br>Phase II RCT                                                                                        | Gefitinib                              | Docetaxel                  | EGFR unknown                                                                                                 | No                                    |
|    | V-15-32 <sup>38</sup>                                        | Open-label<br>Phase III RCT                                                                                       | Gefitinib                              | Docetaxel                  | EGFR unknown                                                                                                 | Yes                                   |
|    | Gefitinib vs. place                                          | ebo                                                                                                               |                                        |                            |                                                                                                              |                                       |
|    | ISEL <sup>39</sup>                                           | Placebo-controlled<br>Phase III RCT                                                                               | Gefitinib + BSC                        | Flacebo + BSC              | EGFR unknown                                                                                                 | Yes                                   |
|    | Erlotinib vs. doce                                           | taxel                                                                                                             |                                        |                            |                                                                                                              |                                       |
|    | DELTA <sup>40</sup>                                          | Open-label<br>Phase III RCT                                                                                       | Erlotinib                              | Docetaxel                  | EGFRM+ and EGFRM-                                                                                            | Yes                                   |
|    | TAILOR <sup>41</sup>                                         | Open-label<br>Phase III RCT                                                                                       | Erlotinib                              | Docetaxel                  | EGFR M only                                                                                                  | Yes                                   |
|    | Erlotinib vs. doce                                           | taxel/pemetrexed                                                                                                  |                                        |                            |                                                                                                              |                                       |
|    | TITAN <sup>42</sup>                                          | Open-label<br>Phase III RCT                                                                                       | Erlotinib                              | Docetaxel or<br>pemetrexed | EGFR unknown                                                                                                 | Yes                                   |
|    | Erlotinib vs. place                                          | жo                                                                                                                |                                        |                            |                                                                                                              |                                       |
|    | BR21 <sup>31</sup>                                           | Placebo-controlled<br>Phase III RCT                                                                               | Erlotinib                              | Placebo                    | EGFRunknown                                                                                                  | Yes                                   |
|    | BR 21 <sup>31</sup><br>DELTA, Docetaxel<br>Taxotere; ISTANA, | Placebo-controlled<br>Phase III RCT<br>and Erlotinib Lung Car<br>IRESSA as Second-line<br>nd-line Indication of C | oer Trial; INTERES<br>Therapy in Advan | T, IRESSA NSCLC            | EGFR unknown<br>Trial Evaluating REsponse an<br>AA; ISE, IRESSA Survival Eva<br>Italian Lung Optimization tF | d Survival versus<br>aluation in Lung |

| Trial<br>Gefitinib vs.                  | Type of trial<br>eriotinib                               | Intervention              |                                                 | Number patients                                                       |                                                                           | Median<br>follow-up                       | Trial support                                  | Treatment crossover                                                                                                                                                                                                                 |
|-----------------------------------------|----------------------------------------------------------|---------------------------|-------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kim et al.<br>2012 <sup>32</sup>        | Open-label,<br>non-comparative<br>randomised<br>Phase II | Gefitinib<br>250 mg daily | Erlotinib 150 mg<br>daily                       | N = 96;<br>gefitinib, n = 48;<br>erlotinib n = 48                     | South Korea                                                               | 16.3 months                               | IN-SUMG<br>Foundation for<br>Medical Research  | At the discretion of each physician                                                                                                                                                                                                 |
| Gefitinib vs.                           | docetaxel                                                |                           |                                                 |                                                                       |                                                                           |                                           |                                                |                                                                                                                                                                                                                                     |
| *Bhatnagar<br>et al. 2012 <sup>33</sup> | RCT                                                      | Gefitinib<br>250 mg daily | Docetaxel 75 mg/m <sup>2</sup><br>every 3 weeks | N = 30                                                                | India                                                                     | 2 years                                   | NS                                             | NS                                                                                                                                                                                                                                  |
| INTEREST<br>2008 <sup>™</sup>           | Open-label<br>Phase III<br>non-inferiority<br>RCT        | Gefitinib<br>250 mg daily | Docetaxel 75 mg/m <sup>2</sup><br>every 3 weeks | N = 1466;<br>gefitinib, n = 733;<br>docetaxel, n = 733                | Europe, Asia and the Americas                                             | 7.6 months                                | AstraZeneca                                    | Gefitinib arm: n = 28 (4%)<br>EGRTNI; n = 225 (31%)<br>docetaxel; n = 112 (15%) other<br>chemotherapy                                                                                                                               |
|                                         |                                                          |                           |                                                 |                                                                       |                                                                           |                                           |                                                | Docetaxel arm: n = 4 (1%)<br>docetaxel; n = 268 (37%)<br>EGFR-TKI; n = 74 (10%) other<br>chemotherapy                                                                                                                               |
| ISTANA<br>2010 <sup>35</sup>            | Open-label<br>Phase III RCT                              | Gefitinib<br>250 mg daily | Docetaxel 75 mg/m <sup>2</sup><br>every 3 weeks | N = 161;<br>gefitinib, n = 82;<br>docetaxel, n = 79                   | Korea                                                                     | 13 months                                 | AstraZeneca                                    | Gefitinib am: 24.7% received no<br>further systemic chemotherapy<br>apart from further ESFR TMs<br>(2.5% gefitinib/erlotinib), 22.2%<br>received no treatment, 29.6%<br>received docetaxis and 44.4%<br>received other chemotherapy |
|                                         |                                                          |                           |                                                 |                                                                       |                                                                           |                                           |                                                | Docetaxel arm; 67.1% received<br>an EGFR-TKI and 6.6% received<br>other chemotherapy                                                                                                                                                |
| Lietal.<br>2010 <sup>36</sup>           | RCT                                                      | Gefitinib<br>250 mg daily | Docetaxel 75 mg/m <sup>2</sup><br>every 3 weeks | N = 98;<br>gefitinib, n = 50;<br>doœtaxel, n = 48                     | People's Republic<br>of China                                             | NS                                        | NS                                             | NS                                                                                                                                                                                                                                  |
|                                         |                                                          |                           |                                                 |                                                                       |                                                                           |                                           |                                                |                                                                                                                                                                                                                                     |
| Trial                                   | Type of trial                                            | Intervention              | Comparator                                      | Number patients                                                       | Location                                                                  | Median<br>follow-up                       | Trial support                                  | Treatment crossover                                                                                                                                                                                                                 |
| SIGN                                    | Type of trial<br>Open-label                              | Gefitinib                 | Docetaxel 75 mg/m <sup>2</sup>                  | N = 141;                                                              | Europe, South                                                             | 9.2 months                                | AstraZeneca                                    | NS                                                                                                                                                                                                                                  |
| 200637                                  | Phase II RCT                                             | 250 mg daily              | every 3 weeks                                   | gefitinib, n = 68;<br>docetaxel, n = 73                               | America and the<br>Middle East                                            | (gefitinib),<br>9.4 months<br>(docetaxel) |                                                |                                                                                                                                                                                                                                     |
| V-15-32<br>2008 <sup>38</sup>           | Open-label<br>Phase III non-<br>inferiority RCT          | Gefitinib<br>250 mg daily | Docetaxel 60 mg/m <sup>2</sup><br>every 3 weeks | N = 490;<br>gefitinib, n = 245;<br>docetaxel,<br>n = 244 <sup>b</sup> | Japan                                                                     | 21 months                                 | AstraZeneca                                    | Crossover was greater than<br>initially expected, and<br>differences in the number and<br>types of patients who received<br>these post-study treatments<br>complicated interpretation of<br>survival results                        |
| Gefitinib vs.                           | •                                                        | O-file it                 | Realize DOC                                     | N 4000                                                                | Europa Ania                                                               | 7.0 months                                | A                                              | Beaches areas 20% areas and                                                                                                                                                                                                         |
| 1988.<br>2005 <sup>39</sup>             | Flacebo-<br>controlled<br>double-blind<br>Fhase III RCT  | Gefitinib<br>250 mg dally | Placebo + BSC                                   | N = 1692;<br>gefitinib, n = 1129;<br>placebo, n = 563                 | Europe, Asia,<br>Central and<br>South America,<br>Australia and<br>Canada | 7.2 months                                | AstraZeneca                                    | Placebo arm: 3% received<br>gefitinib. All subsequent<br>treatments for NSCLC were<br>well balanced between the<br>treatment groups. The protocol<br>allowed for up to 15%<br>crossover to gefitinib                                |
| Erlotinib vs.                           | docetaxel                                                |                           |                                                 |                                                                       |                                                                           |                                           |                                                |                                                                                                                                                                                                                                     |
| *DELTA<br>2013 <sup>40</sup>            | Open-label<br>Phase III RCT                              | Erlotinib<br>150 mg daily | Docetaxel 60 mg/m <sup>2</sup><br>every 3 weeks | N = 301;<br>erlotinib, n = 150;<br>docetaxel, n = 151                 | Japan                                                                     | NS                                        | Japanese<br>National Hospital<br>Organization  | NS                                                                                                                                                                                                                                  |
| TAILOR<br>2013 <sup>41</sup>            | Open-label<br>Phase III RCT                              | Erlotinib<br>150 mg daily | Docetaxel 75 mg/m <sup>2</sup>                  | N = 222;<br>erlotinib, n = 112;                                       | Italy                                                                     | 33 months                                 | Italian Agency<br>for Drug                     | No crossover allowed                                                                                                                                                                                                                |
|                                         |                                                          |                           |                                                 | docetaxel, n = 110                                                    |                                                                           |                                           | Administration                                 | Erlotinib arm: seven participants<br>crossed over                                                                                                                                                                                   |
|                                         |                                                          | -                         |                                                 |                                                                       |                                                                           |                                           |                                                | Docetaxel arm: four participants<br>crossed over. Third-line treatment<br>with pernetrexed/GEM/VIN                                                                                                                                  |
|                                         |                                                          |                           |                                                 |                                                                       |                                                                           |                                           |                                                |                                                                                                                                                                                                                                     |
| Trial                                   | Type of trial                                            | Intervention              | Comparator                                      | Number patients                                                       | Location                                                                  | Median<br>follow-up                       | Trial support                                  | Treatment crossover                                                                                                                                                                                                                 |
| TITAN<br>2012 <sup>42</sup>             | docetaxel/pernetre<br>Open-label<br>Phase III RCT        | Erlotinib<br>150 mg daily | Docetaxel or<br>pernetrexed dosing              | N = 424;<br>erlotinib, n = 203;                                       | International                                                             | Erlotinib:<br>27.9 months,                | Hoffmann F–<br>La Roche, Basel,                | Erlotinib arm: 25% antimetabolites,<br>23% docetaxel or PAX                                                                                                                                                                         |
| 2012                                    | - nate in PL-1                                           | too mg dany               | at discretion of<br>the investigator            | chemotherapy,<br>n = 221                                              |                                                                           | docetaxel/<br>pemetrexed:                 | Switzerland                                    | 23% dodetaxiel or PAX<br>Chemotherapy arm: 12%<br>antimetabolites, 23% TKIs,                                                                                                                                                        |
|                                         |                                                          |                           |                                                 |                                                                       |                                                                           | 24.8 months                               |                                                | antimetabolites, 23% TKIs,<br>5% switch to docetaxel, 7%<br>switch to pernetrexed                                                                                                                                                   |
| Erlotinib vs. (<br>BR21                 | Placebo-                                                 | Erlotinib                 | Flacebo                                         | N= 731;                                                               | International                                                             | NS                                        | Supported in                                   | Erlotinib arm: 8 (1.6%)                                                                                                                                                                                                             |
| 200531                                  | controlled<br>Phase III RCT                              | 150 mg daily              |                                                 | eriotinib, n = 488;<br>placebo, n = 243                               | AT 1997                                                                   |                                           | part by a grant<br>from OSI<br>Pharmaceuticals | Pacebo arm: 18 (7.4%)<br>received other ESR inhibitors<br>after study medication<br>discontinued                                                                                                                                    |
|                                         |                                                          |                           |                                                 |                                                                       |                                                                           |                                           |                                                |                                                                                                                                                                                                                                     |

|   | Summary of clinical results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Epidermal growth factor mutation-positive population                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | No trials were identified that were conducted in a population of solely EGR M+ patients. Limited EGR mutation status data were retrospectively derived from relatively small subgroup analyses of RCTs that included patients of unknown EGR mutation status at the time of randomisation.                                                                                                                                                                                                                         |
|   | <ul> <li>Four studies reported OS outcomes,<sup>31,34,39,42</sup> none of which was statistically significantly different for any of the comparisons described.</li> <li>Five studies reported PFS,<sup>31,32,34,39,42</sup> but only one trial<sup>36</sup> found a statistically significant improvement for</li> </ul>                                                                                                                                                                                          |
|   | any comparison considered, and the results favoured gefitinib over docetaxel.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | Epidermal growth factor mutation-negative population                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | <ul> <li>Key data were derived from results of TAILOR<sup>1</sup> and DELTA<sup>40</sup> trials.</li> <li>EGR mutation status data were retrospectively derived from subgroup analyses in BR21,<sup>31,43</sup> Kim et al.,<sup>32</sup></li> <li>TITAN,<sup>42</sup> INTEREST,<sup>34,45</sup> and ISEL.<sup>39,44</sup></li> </ul>                                                                                                                                                                               |
|   | OS outcome: no statistically significant differences were noted for OS for either erlotinib or gefitinib                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | compared with any treatment.<br>PFS outcome: TAILOR <sup>41</sup> and DELTA <sup>40</sup> reported a statistically significant benefit of docetaxel compared                                                                                                                                                                                                                                                                                                                                                       |
|   | <ul> <li>with erlotinib. No statistically significant FFS benefit was reported from subgroup data.</li> <li>RR patients in the docetaxel arm of TAILOR<sup>41</sup> had statistically significantly higher RRs than patients in the erlotinib arm.</li> </ul>                                                                                                                                                                                                                                                      |
| Í | Epidermal growth factor mutation unknown: overall population                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Data were available from 11 trials <sup>31-41</sup> carried out in populations in which EGFR mutation status was not a factor in the recruitment process (or in which overall trial results were presented).                                                                                                                                                                                                                                                                                                       |
|   | OS outcome: the only statistically significant OS benefit for any treatment was reported in BR21 <sup>31</sup> (erlotinib vs. placebo). However, this finding was based on an adjusted rather than an unadjusted analysis of the data.                                                                                                                                                                                                                                                                             |
|   | PFS outcome:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Gefitinib versus docetaxel – only one of the four trials (ISTANA <sup>35</sup> ) reported a statistically significant<br>benefit of gefitinib.                                                                                                                                                                                                                                                                                                                                                                     |
|   | <ul> <li>Gefitinib versus BSC – gefitinib was reported to have a statistically significant benefit.<sup>39</sup></li> <li>Erlotinib versus placebo (BR21<sup>31</sup>) – a statistically significant PFS benefit of erlotinib was reported (in an adjusted analysis).</li> </ul>                                                                                                                                                                                                                                   |
|   | RR of the trials reporting RRs, <sup>31,32,34–39,41</sup> two noted significant differences in favour of gefitinib when compared with docetaxel <sup>38</sup> and BSC. <sup>39</sup>                                                                                                                                                                                                                                                                                                                               |
|   | Meta-analysis and network meta-analysis<br>For dinical and methodological reasons, no meta-analysis or network meta-analysis was conducted by<br>the AG.                                                                                                                                                                                                                                                                                                                                                           |
|   | Quality of life<br>Where reported, the QoL data were derived from the EGFR unknown patients (overall population, i.e. the<br>data are not specific to the EGFR mutation status of patients). All of the 12 trials included in this review<br>measured QoL However, the QoL outcomes from TAILOR <sup>41</sup> and DELTA <sup>40</sup> are not yet available.                                                                                                                                                       |
|   | Adverse events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Adverse events were reported for the overall population, that is the data are not specific to the EGFR mutation status of patients, with the exception of TAILOR <sup>41</sup> Details of the AEs reported in Bhatnagar et al., <sup>33</sup> Li et al. <sup>36</sup> and DELTA <sup>40</sup> were limited. The AG considers that the AEs reported, despite inconsistencies across trials, appear to be consistent with the information available for erlotinib, gefitinib and docetaxel in the SPCs <sup>24</sup> |
|   | 4. Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ļ | Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | Implications for service provision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | The largest group of patients to whom the results of this appraisal apply is the                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | EGFR M- patient population. The results of the AG's cos-effectiveness                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                                                                                                               | <ul> <li>analy9s comparing erlotinib with docetaxel in patients whose disease has progres:ed favour the use of docetaxel. Switching from an oral therapy (erlotinib) to an intravenous therapy (docetaxel) would have substantial implications for service provision for both patients and staff in the UK NHS Suggested research priorities:</li> <li>It is suggested that any future trials in this area should distinguish between patients who have EGFR M + and EGFR M- disease. To date, the evidence base supporting the use of post-progression treatments following prior chemotherapy for patients with activating EGFR mutations is weak and is not sufficiatly robust to inform decision-making.</li> <li>5. Hinweise der FBMed Keine quantitative Zusammenfassung der Ergebnisse</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| He X, 2015 [25].<br>Efficacy and safety of<br>docetaxel for<br>advanced non-small-<br>cell lung cancer: a<br>meta-analysis of | <ol> <li>Fragestellung         Several clinical trials have performed risk-benefit analyses comparing             docetaxel and pemetrexed or docetaxel and vinca alkaloid, but the efficacy             and safety remain uncertain. The aim was to conduct a meta-analysis to             compare the efficacy and safety of docetaxel and pemetrexed or docetaxel             and vinca alkaloid for non-small-cell lung cancer.     </li> </ol>                                                                                                                                                                                                                                                                                                                                                      |
| Phase Illrandomized                                                                                                           | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| controlled trials                                                                                                             | Population: advanced NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                               | Intervention: docetaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                               | Komparator: pemetrexed or vinca alkaloid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                               | <i>Endpunkte:</i> overall response rate (ORR), median survival time, progression-<br>free survival (PFS), disease control rate, and toxicities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                               | Suchzeitraum: bis 01/ 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                               | Anzahl eingeschlossene Studien/Patienten (Gesamt): 7 / 2080 (RCT, phase III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                               | Qualitätsbewertung der Studien: Jadad scoring system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                               | <i>Heterogenitätsuntersuchungen:</i> chi-square test and expressed by the I <sup>2</sup> index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                               | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                               | The Jadad score was used to assess the quality of the included trials. Overall, two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Table I Characteristics of the seven eligible Phase III randomized trials in this meta-analysis

| Study                                 | Study<br>region | Intervention                        | Number | Median age<br>(years) | Male (%) | Stage         | Outcome   | Jadad<br>score |
|---------------------------------------|-----------------|-------------------------------------|--------|-----------------------|----------|---------------|-----------|----------------|
| Rodrigues-Pereira et al <sup>20</sup> | Argentina       | Doc (75 mg/m²) + Carb               | 105    | 58.9                  | 47.6     | Stage IIIB/IV | SWT, OS,  | 3              |
|                                       |                 | Pem (500 mg/m <sup>2</sup> ) + Carb | 106    | 60. I                 | 60.4     |               | PFS       |                |
| Karampeazis et al <sup>23</sup>       | Greece          | Doc (38 mg/m <sup>2</sup> )         | 66     | 75.5                  | 92.4     | Stage IIIB/IV | OS, ORR,  | 4              |
|                                       |                 | Vin (25 mg/m <sup>2</sup> )         | 64     | 77                    | 93.8     | -             | TTP, Toxl |                |
| Vergnenegre et al <sup>21</sup>       | France          | Doc (75 mg/m <sup>2</sup> )         | 75     | 64                    | 85.3     | Stage IIIB/IV | OS, PFS,  | 3              |
|                                       |                 | Pem (500 mg/m <sup>2</sup> )        | 75     | 62                    | 82.7     |               | ORR, Toxl |                |
| Krzakowski et al <sup>25</sup>        | France          | Doc (75 mg/m <sup>2</sup> )         | 275    | 60                    | 75.3     | Stage III/IV  | PFS, ORR, | 4              |
|                                       |                 | Vfl (320 mg/m <sup>2</sup> )        | 262    | 61.9                  | 75       |               | OS        |                |
| Kudoh et al <sup>24</sup>             | Japan           | Doc (60 mg/m <sup>2</sup> )         | 88     | 76                    | 77.5     | Stage IIIB/IV | OS, PFS,  | 3              |
|                                       |                 | Vin (25 mg/m <sup>2</sup> )         | 91     | 76                    | 74.7     |               | ORR, Toxl |                |
| Hanna et al <sup>22</sup>             | United          | Doc (75 mg/m <sup>2</sup> )         | 288    | 57                    | 75.3     | Stage III/IV  | OS, PFS,  | 3              |
|                                       | States          | Pem (500 mg/m <sup>2</sup> )        | 283    | 59                    | 68.6     |               | ORR, Toxl |                |
| Kubota et al <sup>26</sup>            | Japan           | Doc (60 mg/m <sup>2</sup> ) + Cis   | 151    | 63                    | 64.2     | Stage IV      | OS, ORR,  | 3              |
|                                       |                 | Vds $(3 \text{ mg/m}^2)$ + Cis      | 151    | 64                    | 68.2     |               | Toxl      |                |

Abbreviations: Doc, docetaxel: Carb, carboptatin; Pem, pemetraxed; Vin, vinorelbine; Vil, vinflunine; Vds, vindesine; Cls, cisplatin; SWT, survival without grade 3 or 4 toxicity; OS, overall survival; PFS, progression-free survival; ORR, overall response rate; TTP, time to tumor progression; ToxI, toxicity indexes.

# os

| Study or subgroup                                                                                                                                            | log (hazard ratio)      | SE       | Weight    | Hazard ratio<br>IV, fixed, 95% CI                           | Year         |      | Hazard<br>IV, fixed   | ratio<br>, 95% Cl        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|-----------|-------------------------------------------------------------|--------------|------|-----------------------|--------------------------|-----|
| Docetaxel versus pemet                                                                                                                                       | rexed as first-line tre | atment   | in OS     |                                                             |              |      |                       |                          |     |
| Rodrigues-Pereira et al <sup>20</sup><br>Subtotal (95% CI)<br>Heterogeneity: not applica<br>Test for overall effect: Z=0                                     |                         | 0.1877   |           | 1.10 (0.76, 1.59)<br>1.10 (0.76, 1.59)                      | 2011         |      | 4                     | •                        |     |
| Docetaxel versus pemet                                                                                                                                       | rexed as second-line    | e treatm | ent in OS |                                                             |              |      |                       |                          |     |
| Vergnenegre et al <sup>21</sup><br>Hanna et al <sup>22</sup><br>Subtotal (95% CI)<br>Heterogeneity: 2 <sup>2</sup> =0.54, di<br>Test for overall effect: Z=0 |                         |          | 75.9%     | 1.17 (0.83, 1.65)<br>1.01 (0.83, 1.22)<br>1.05 (0.88, 1.24) | 2011<br>2004 |      |                       |                          |     |
| Docetaxel versus vinca a                                                                                                                                     | alkaloid as first-line  | treatme  | nt in OS  |                                                             |              |      |                       |                          |     |
| Kudoh et al <sup>24</sup><br>Subtotal (95% CI)<br>Heterogeneity: not applica<br>Test for overall effect: Z=1                                                 |                         | 0.1682   |           | 0.78 (0.56, 1.08)<br>0.78 (0.56, 1.08)                      | 2006         |      | Ŧ                     | -                        |     |
| Docetaxel versus vinca a                                                                                                                                     | alkaloid as second-li   | ne treat | ment in C | os                                                          |              |      |                       |                          |     |
| Krzakowski et al <sup>25</sup><br>Subtotal (95% CI)<br>Heterogeneity: not applica<br>Test for overall effect: Z=0                                            |                         | 0.0967   |           | 0.97 (0.80, 1.18)<br>0.97 (0.80, 1.18)                      | 2010         |      |                       |                          |     |
|                                                                                                                                                              |                         |          |           |                                                             | -            | 0.05 | 0.2                   | 5                        | 20  |
|                                                                                                                                                              |                         |          |           |                                                             |              |      | 0.2<br>vors docetaxel | 5<br>Fav<br>other anti-N | ors |

#### PFS

| Study or subgroup                                                                                                       | log (hazard ratio)   | SE        | Weight           | Hazard ratio<br>IV, fixed, 95% Cl      | Year |        |           | rd ratio<br>ed, 95% Cl |              |
|-------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------------|----------------------------------------|------|--------|-----------|------------------------|--------------|
| Docetaxel versus peme                                                                                                   | trexed as first-line | treatm    | ent in PFS       |                                        |      |        |           |                        |              |
| Rodrigues-Pereira et al <sup>20</sup><br>Subtotal (95% CI)<br>Heterogeneity: not applic<br>Test for overall effect: Z=I | able                 | 0.1537    | 100.0%<br>100.0% | 1.10 (0.81, 1.49)<br>1.10 (0.81, 1.49) | 2011 |        |           | +                      |              |
| Docetaxel versus peme                                                                                                   | · · · · ·            | line trea | atment in P      | FS                                     |      |        |           |                        |              |
|                                                                                                                         | 0.0305               |           | 100.0%<br>100.0% | 1.03 (0.86, 1.23)<br>1.03 (0.86, 1.23) | 2004 |        |           | <b>‡</b>               |              |
| Test for overall effect: Z=                                                                                             | 0.33 (P=0.74)        |           |                  |                                        |      |        |           |                        |              |
| Docetaxel versus vinca                                                                                                  | alkaloid as first-li | ne treat  | ment in PF       | S                                      |      |        |           |                        |              |
| Kudoh et al <sup>24</sup><br>Subtotal (95% CI)                                                                          | -0.5009              | 0.1519    | 100.0%<br>100.0% | 0.61 (0.45, 0.82)<br>0.61 (0.45, 0.82) | 2006 |        | +         |                        |              |
| Heterogeneity: not applic                                                                                               | able                 |           |                  |                                        |      |        |           |                        |              |
| Test for overall effect: Z=                                                                                             | 3.30 (P=0.0010)      |           |                  |                                        |      |        |           |                        |              |
| Docetaxel versus vinca                                                                                                  | alkaloid as secon    | d-line tr | reatment in      | PFS                                    |      |        |           |                        |              |
| Krzakowski et al <sup>25</sup><br>Subtotal (95% CI)<br>Heterogeneity: not applic<br>Test for overall effect: Z=I        |                      | 0.0906    | 100.0%<br>100.0% | 1.00 (0.83, 1.19)<br>1.00 (0.83, 1.19) | 2010 |        |           | ≢                      |              |
|                                                                                                                         |                      |           |                  |                                        | -    | 02     | 0.5       | 1 2                    | 5            |
|                                                                                                                         |                      |           |                  |                                        |      |        |           |                        |              |
|                                                                                                                         |                      |           |                  |                                        |      | Favors | locetaxel | Favors other           | anti-NSCLC c |

ORR
|                     | -                                                                             |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|---------------------|-------------------------------------------------------------------------------|---------------------------|---------------------|------------------|-----------------|----------------------------------------|-----------------|-------------------|-----------------------------------------|--------------|---------|
|                     | Study or subgroup                                                             | Docetaxel<br>Events Total | Anti-NS<br>Events   | CLC dru<br>Total |                 | Odds ratio<br>M-H, fixed, 95% (        | Year            | Oddsr<br>M-H,fi   | atio<br>xed, 95% Cl                     |              |         |
|                     | Docetaxel versus per                                                          | metrexed as sec           | ond-line tr         | reatment         | t in ORR        |                                        |                 |                   |                                         |              |         |
|                     | Vergnenegre et al <sup>21</sup>                                               | 8 75                      | 9                   |                  | 25.1%           | 0.88 (0.32, 2.41)                      | 2011            | -                 | <u> </u>                                |              |         |
|                     | Hanna et al <sup>22</sup><br>Subtotal (95% CI)                                | 25 288<br>363             | 26                  |                  | 74.9%<br>100.0% | 0.94 (0.53, 1.67)<br>0.92 (0.56, 1.52) | 2004            |                   | -                                       |              |         |
|                     | Total events                                                                  | 33                        | 35                  |                  |                 |                                        |                 |                   | 1                                       |              |         |
|                     | Heterogeneity: χ <sup>2</sup> =0.0 <sup>4</sup><br>Test for overall effect: λ |                           | 1-=0%               |                  |                 |                                        |                 |                   |                                         |              |         |
|                     |                                                                               |                           | nat line to -       |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | Docetaxel versus vin                                                          |                           | 9                   |                  |                 | 0.04/0.00.0.04                         | 0044            |                   |                                         |              |         |
|                     | Karampeazis et al <sup>23</sup><br>Kudoh et al <sup>24</sup>                  | 8 66<br>20 88             | 9                   |                  | 22.9%<br>19.5%  | 0.84 (0.30, 2.34)<br>2.68 (1.15, 6.27) | 2011<br>2006    | _                 |                                         |              |         |
|                     | Kubota et al <sup>26</sup>                                                    | 56 151                    | 32                  | 151              | 57.5%           | 2.19 (1.31, 3.66)                      | 2004            |                   |                                         |              |         |
|                     | Subtotal (95% CI)<br>Total events                                             | 305<br>84                 | 50                  | 306              | 100.0%          | 1.98 (1.33, 2.95)                      |                 |                   | •                                       |              |         |
|                     | Heterogeneity: x <sup>2</sup> =3.33                                           | 3, df=2 (P=0.19);         | I <sup>2</sup> =40% |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | Test for overall effect:                                                      | Z=3.36 (P=0.000           | 8)                  |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | Docetaxel versus vin                                                          | ca alkaloid as s          | econd-line          | treatme          | ent in OR       | RR                                     |                 |                   |                                         |              |         |
|                     | Krzakowski et al25                                                            | 15 275                    | 12                  | 262              | 100.0%          | 1.20 (0.55, 2.62)                      | 2010            |                   |                                         |              |         |
|                     | Subtotal (95% CI)<br>Total events                                             | 275<br>15                 | 12                  | 262              | 100.0%          | 1.20 (0.55, 2.62)                      |                 |                   |                                         |              |         |
|                     | Heterogeneity: not app                                                        | licable                   |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | Test for overall effect:                                                      | Z=0.46 (P=0.64)           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     |                                                                               |                           |                     |                  |                 |                                        | +               |                   |                                         |              |         |
|                     |                                                                               |                           |                     |                  |                 |                                        | 0.01            | 0.1               | 1 10                                    | 100          |         |
|                     |                                                                               |                           |                     |                  |                 |                                        | Favors ot       | ther anti-NSCLC d | rugs Favors do                          | cetaxel      |         |
|                     |                                                                               |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     |                                                                               |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     |                                                                               |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | AE                                                                            |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     |                                                                               |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | Table 3 Comparis                                                              | son of grade 3            | 4 toxicit           | y betwe          | een doc         | etaxel and pemet                       | rexed as se     | cond-line treatm  | ient                                    |              |         |
|                     | Grade 3/4 toxicity                                                            | -                         | Doce                | ,<br>            |                 | emetrexed                              | Heteroge        |                   | OR (95% CI)                             | P-value      |         |
|                     | Grade 3/4 toxicity                                                            | symptom                   | Doce                | taxei            |                 | emetrexed                              |                 |                   |                                         | F-value      |         |
|                     |                                                                               |                           |                     |                  |                 |                                        | <b>P-</b> value | 1-                |                                         |              |         |
|                     | Hematologic events                                                            |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | Neutropenia                                                                   |                           | 137/3               |                  |                 | 0/340                                  | 0.24            |                   | 9.57 (5.08, 18.03)                      | <0.00001     |         |
|                     | Anemia                                                                        |                           | 13/35               |                  |                 | 5/340                                  | 0.15            |                   | 0.60 (0.12, 2.94)                       | 0.53         |         |
|                     | Thrombocytopeni                                                               |                           | 2/351               |                  |                 | 0/340                                  | 1.00            |                   | 0.19 (0.04, 0.87)                       | 0.03         |         |
|                     | Febrile neutropeni                                                            |                           | 35/276              | 6                | 5/.             | 265                                    | -               | -                 | 7.55 (2.91, 19.59)                      | <0.0001      |         |
|                     | Non-hematologic eve                                                           | ents                      | 7/07/               |                  | 17              | 245                                    |                 |                   | ( 97 (0 94 54 22)                       | 0.07         |         |
|                     | Diarrhea<br>Nausea                                                            |                           | 7/276<br>7/351      |                  |                 | 265<br>340                             | _<br>0.74       | - 0%              | 6.87 (0.84, 56.22)<br>0.75 (0.28, 2.04) | 0.07<br>0.57 |         |
|                     | Vomiting                                                                      |                           | 5/351               |                  |                 | 340                                    | 0.79            |                   | 0.81 (0.24, 2.68)                       | 0.73         |         |
|                     | Abbreviations: Cl, co                                                         | nfidonco intorval: (      |                     | tio              | 0/              | 510                                    | 0.77            | 070               | 0.01 (0.21, 2.00)                       | 0.75         |         |
|                     | Abbreviations: CI, Co                                                         | midence interval, c       | JR, Odds ra         | uo.              |                 |                                        |                 |                   |                                         |              |         |
|                     | 4. Fazit c                                                                    |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | Docetaxel                                                                     | leads to                  | a be                | etter            | resu            | ult than vir                           | nca all         | kaloid in e       | effectivene                             | ess and s    | safetv  |
|                     |                                                                               |                           |                     |                  |                 |                                        |                 |                   |                                         |              | ,       |
|                     | on patients                                                                   | s with ac                 | lvanc               | ced r            | non-            | small-cell                             | lung c          | cancer as         | s first-line t                          | nerapy.      |         |
|                     | Docetaxel                                                                     | عادم معاد                 | 1808                |                  | ar to           | vicity as s                            | acond           | l-ling that       |                                         | arad with    | n vinca |
|                     |                                                                               |                           |                     |                  |                 | •                                      |                 |                   |                                         |              |         |
|                     | alkaloid. H                                                                   | owever.                   | the d               | diffe            | renc            | es in effic                            | acy ar          | nd safety         | between o                               | docetaxe     | el and  |
|                     |                                                                               |                           |                     |                  |                 |                                        | •               | •                 |                                         |              |         |
|                     | pemetrexe                                                                     | d are no                  | ot odv              | lous             | s. ⊦ι           | urther clin                            | cal sti         | udy with i        | nore detai                              | is, such     | as sex, |
|                     | age, histol                                                                   | nav and                   |                     | n c              | shou            | ld he cons                             | aidoro          | d for illus       | trating the                             | difforon     | 202     |
|                     | -                                                                             |                           |                     |                  | nou             |                                        | Jucico          |                   |                                         | uncren       | 000     |
|                     | between th                                                                    | nese two                  | o druc              | gs.              |                 |                                        |                 |                   |                                         |              |         |
|                     |                                                                               |                           |                     | -                |                 |                                        |                 |                   |                                         |              |         |
| Xu JL et al, 2015   | 1. Frages                                                                     | stellung                  |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | II II agos                                                                    | Jonang                    |                     |                  |                 |                                        |                 |                   |                                         |              |         |
| [63].               | Whathar a                                                                     | oomhin                    | otion               | of               | hom             | aatharany                              | anda            | rlatinih ia       | bonoficial                              | for odv      | opood   |
|                     | Whether a                                                                     | COMDIN                    | alion               |                  | men             | notherapy                              | anue            |                   | benencial                               |              | anceu   |
| Chemotherapy plus   | non-small                                                                     | cell lund                 | a can               | cer (            | (NS)            | CLC) rem                               | ains co         | ontrovers         | ial. This st                            | udv aim      | ed to   |
|                     |                                                                               | -                         |                     |                  | •               | ,                                      |                 |                   |                                         | •            |         |
| Erlotinib versus    | summarize                                                                     | e the cui                 | rrentl              | y av             | 'ailat          | ble eviden                             | ce an           | d compai          | e the effic                             | acy and      | safety  |
| Chamatharany Alana  | of abomoth                                                                    |                           |                     | rlati            |                 | varaua ah                              | omoth           | aranyala          | no for troc                             | ting od      | 'an aad |
| Chemotherapy Alone  | of chemoth                                                                    | lerapy p                  | nus e               | nou              | unio v          | versus ch                              | emoun           | erapy aic         | one for trea                            | aung auv     | anceu   |
| for Treating        | NSCLC.                                                                        |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
| •                   | 110020.                                                                       |                           |                     |                  |                 |                                        |                 |                   |                                         |              |         |
| Advanced Non-Small  | O Matha                                                                       | ما:ا <u>،</u>             |                     |                  |                 |                                        |                 |                   |                                         |              |         |
|                     | 2. Metho                                                                      | dik                       |                     |                  |                 |                                        |                 |                   |                                         |              |         |
| Cell Lung Cancer: A | _                                                                             | _                         |                     |                  |                 |                                        |                 |                   |                                         |              |         |
| Meta-Analysis       | Popula                                                                        | ation: pa                 | atient              | ts wi            | ith N           | ISCLC, ke                              | ine Er          | haltungs          | therapie                                |              |         |
|                     |                                                                               | 1.                        |                     | -                |                 | ,                                      |                 |                   |                                         |              |         |
|                     | Interve                                                                       | ention:                   | erlotir             | nib p            | olus            | standard                               | chemo           | otherapy          |                                         |              |         |
|                     | Котра                                                                         | arator:                   | stand               | lard             | chei            | motherapy                              | y alone         | е                 |                                         |              |         |

## Endpunkte: OS, PFS

Suchzeitraum: bis 10 / 2014

Anzahl eingeschlossene Studien/Patienten (Gesamt): 9 / 3599 (RCT)

*Qualitätsbewertung der Studien:* Cochrane Handbook for Systematic Reviews of Interventions, which appraised sequence generation, allocation concealment, performance bias, detection bias, attrition bias, reporting bias, and other biases.

Heterogenitätsuntersuchungen: I<sup>2</sup> statistic

"*Publication bias":* subjective funnel plots and objective Begg's and Egger's tests

## 3. Ergebnisdarstellung

Table 1. Summary of Characteristics of the Included Studies. Abbreviations: E: erlotinib, Carb: carboplatin, Cisp: cisplatin, Pac: paclitaxel, Gem: Gemci

| tabine, Pem: Pemetrexed, NA: Not available |                     |                       |        |                |                  |                                                        |                |                 |                    |
|--------------------------------------------|---------------------|-----------------------|--------|----------------|------------------|--------------------------------------------------------|----------------|-----------------|--------------------|
| Study                                      | Number of<br>points | Dominant<br>ethnicity | Female | Age<br>(range) | Drug<br>delivery | Treatment comparison                                   | Non-<br>smoker | EGFR-<br>mutant | EGFR-<br>wild-type |
| Herbst, 2005                               | 1079                | Caucasian/<br>934     | 424    | 24–84          | Continuous       | E+Carb+Pac vs. Carb+Pac<br>+Placebo                    | 116            | 29              | 198                |
| Gatzemeier,<br>2007                        | 1159                | Caucasian/<br>1064    | 267    | 26-84          | Continuous       | E+Gem+Cisp vs. Gem<br>+Cisp+Placebo                    | NA             | NA              | NA                 |
| Mok, 2009                                  | 154                 | Asian/145             | 46     | 27–79          | Intercalated     | E+Gem+Cisp or Carb vs.<br>Gem+Cisp or Carb<br>+Placebo | 52             | NA              | NA                 |
| Thomas, 2013                               | 146                 | NA                    | 73     | 69–90          | Continuous       | E+Gem vs. E vs. Gem                                    | 240            | 24              | 19                 |
| Lee, 2013                                  | 240                 | Asian/240             | 157    | NA             | Intercalated     | E+Pem vs. E vs. Pem                                    | 219            | 97              | 136                |
| Wu, 2013                                   | 451                 | Asian/451             | 179    | 31–96          | Intercalated     | E+Gem+Cisp or Carb vs.<br>Gem+Cisp or Carb<br>+Placebo | 219            | 97              | 136                |
| Dittrich, 2014                             | 165                 | Caucasian/<br>157     | 64     | 31–84          | Continuous       | E+Pem vs. E vs Pem                                     | 24             | NA              | NA                 |
| Auliac, 2014                               | 151                 | NA                    | 115    | NA             | Intercalated     | E+docetaxel vs. E vs.<br>docetaxel                     | 11             | NA              | 98                 |
| Michael, 2014                              | 54                  | Caucasian/49          | 22     | 38-86          | Intercalated     | E+Gem vs. Gem                                          | 8              | NA              | NA                 |

doi:10.1371/journal.pone.0131278.t001

Although all nine eligible trials reported that the participants were randomized into different treatment arms, three of them did not provide details about random sequence generation. Only one trial showed concealment procedures. Five trials were open-label, they did not mask either participants or personnel. Five trials had independent persons who performed the outcome assessment, and one trial did not show details about the blinding of outcome assessment. Six eligible trials conducted efficacy analysis on an intention-to-treat basis ; one trial missed two cases in both arms [10]; and one trial missed three patients who were still in treatment [9]. We believe that the outcomes were unlikely to have been affected in these instances. Six trials did not selectively report data, while the protocols of three trials were not available . Therefore, we could not judge whether these three trials selectively reported data. No significant publication bias was detected for any of the measured outcomes by funnel plots.

|                                                                                                                                                                                                                                                                                                                  | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazard Ratio                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Study or Subgroup log[Hazar                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Auliac 2014                                                                                                                                                                                                                                                                                                      | -0.0408 0.1612 11.5% 0.96 [0.70, 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12]                                                          |
| Dittrich 2014                                                                                                                                                                                                                                                                                                    | -0.462 0.1831 10.6% 0.63 [0.44, 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
| Gatzemeier 2007                                                                                                                                                                                                                                                                                                  | -0.0243 0.0646 15.4% 0.98 [0.86, 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                                                                                                                                  | -0.0576 0.062 15.5% 0.94 [0.84, 1.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
| Lee 2013                                                                                                                                                                                                                                                                                                         | -0.5516 0.1985 10.0% 0.58 [0.39, 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5]                                                           |
| Michael 2014                                                                                                                                                                                                                                                                                                     | 0.2624 0.3696 5.1% 1.30 [0.63, 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                                                                                                                                  | -0.7465 0.1848 10.5% 0.47 [0.33, 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
| Thomas 2013                                                                                                                                                                                                                                                                                                      | -0.1462 0.2791 7.2% 0.86 [0.50, 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9]                                                           |
| WU 2013                                                                                                                                                                                                                                                                                                          | -0.5621 0.0984 14.2% 0.57 [0.47, 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9] 🗕 🛨                                                       |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                            |
| T-4-1 (05% OI)                                                                                                                                                                                                                                                                                                   | 400.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a. 🔺                                                         |
| Total (95% CI)                                                                                                                                                                                                                                                                                                   | 100.0% 0.76 [0.62, 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2]         •                                                 |
| Heterogeneity: Tau <sup>2</sup> = 0.06; Chi <sup>2</sup> =                                                                                                                                                                                                                                                       | 42.23, df = 8 (P < 0.00001); l <sup>2</sup> = 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 0.1 1 10 100                                            |
| Test for overall effect: Z = 2.76 (P =                                                                                                                                                                                                                                                                           | = 0.006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Favours [experimental] Favours [control]                     |
| Fig 2. Forest Plot of Meta-analysis for Subgruppenan                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                                                                                                                                  | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |
| Study or Subgroup log<br>1.1.1 Asian-dominant                                                                                                                                                                                                                                                                    | [Hazard Ratio] SE Weight IV. Random, 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5% CI IV. Random, 95% CI                                     |
| Lee 2013                                                                                                                                                                                                                                                                                                         | -0.5516 0.1985 16.1% 0.58 [0.39, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85]                                                        |
| Mok 2009                                                                                                                                                                                                                                                                                                         | -0.7465 0.1848 18.5% 0.47 [0.33, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| WU 2013                                                                                                                                                                                                                                                                                                          | -0.5621 0.0984 65.4% 0.57 [0.47, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                | 100.0% 0.55 [0.47, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u.o4j 🔻                                                      |
| Heterogeneity: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                                                                                          | Chi <sup>2</sup> = 0.83, df = 2 (P = 0.66); l <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Test for overall effect: Z = 7.                                                                                                                                                                                                                                                                                  | 47 (P < 0.00001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 1.1.2 Caucasian-dominant                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.000                                                        |
| Auliac 2014                                                                                                                                                                                                                                                                                                      | -0.0408 0.1612 9.2% 0.96 [0.70,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Dittrich 2014                                                                                                                                                                                                                                                                                                    | -0.462 0.1831 7.2% 0.63 [0.44, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90]                                                        |
| Gatzemeier 2007                                                                                                                                                                                                                                                                                                  | -0.0243 0.0646 38.3% 0.98 [0.86, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.11] 🕴 📍                                                    |
| Herbst 2005                                                                                                                                                                                                                                                                                                      | -0.0576 0.062 40.2% 0.94 [0.84,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Michael 2014                                                                                                                                                                                                                                                                                                     | 0.2624 0.3696 1.9% 1.30 [0.63, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Thomas 2013                                                                                                                                                                                                                                                                                                      | -0.1462 0.2791 3.3% 0.86 [0.50, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                | 100.0% 0.93 [0.84, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.03]                                                        |
| Heterogeneity: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                                                                                          | Chi <sup>2</sup> = 6.00, df = 5 (P = 0.31); l <sup>2</sup> = 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Test for overall effect: Z = 1.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 1.1.3 Intercalated therapy                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                                                                                                                                  | 0.0400 0.4040 00.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.000                                                        |
| Auliac 2014                                                                                                                                                                                                                                                                                                      | -0.0408 0.1612 22.3% 0.96 [0.70,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Lee 2013                                                                                                                                                                                                                                                                                                         | -0.5516 0.1985 19.7% 0.58 [0.39, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85]                                                        |
| Michael 2014                                                                                                                                                                                                                                                                                                     | 0.2624 0.3696 10.7% 1.30 [0.63, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.68]                                                        |
| Mok 2009                                                                                                                                                                                                                                                                                                         | -0.7465 0.1848 20.7% 0.47 [0.33, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| WU 2013                                                                                                                                                                                                                                                                                                          | -0.5621 0.0984 26.6% 0.57 [0.47, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                | 100.0% 0.67 [0.50, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.91] 🔷                                                      |
| Heterogeneity: $Tau^2 \equiv 0.08$                                                                                                                                                                                                                                                                               | Chi2 = 14.28, df = 4 (P = 0.006); I2 = 72%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |
| Test for overall effect: $Z = 2$ .                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| rest for overall effect: Z = Z.                                                                                                                                                                                                                                                                                  | ve (r 4.008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |
| 1110                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 1.1.4 Continuous therapy                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Dittrich 2014                                                                                                                                                                                                                                                                                                    | -0.462 0.1831 11.4% 0.63 [0.44, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.90]                                                        |
| Gatzemeier 2007                                                                                                                                                                                                                                                                                                  | -0.0243 0.0646 41.0% 0.98 [0.86,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Herbst 2005                                                                                                                                                                                                                                                                                                      | -0.0576 0.062 42.2% 0.94 [0.84,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Thomas 2013                                                                                                                                                                                                                                                                                                      | -0.1462 0.2791 5.4% 0.86 [0.50, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                | 100.0% 0.91 [0.80, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.04]                                                        |
|                                                                                                                                                                                                                                                                                                                  | Chi <sup>2</sup> = 5.19, df = 3 (P = 0.16); l <sup>2</sup> = 42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Test for overall effect: Z = 1.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| rest for overall effect Z = 1.                                                                                                                                                                                                                                                                                   | (0.10) (0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 1.1.5 EGFR-wild                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                            |
| Herbst 2005                                                                                                                                                                                                                                                                                                      | -0.2216 0.1476 58.1% 0.80 [0.60, '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.07]                                                        |
| WU 2013                                                                                                                                                                                                                                                                                                          | -0.0305 0.1738 41.9% 0.97 [0.69,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                | 100.0% 0.87 [0.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·····,                                                       |
|                                                                                                                                                                                                                                                                                                                  | Chi <sup>2</sup> = 0.70, df = 1 (P = 0.40); l <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Test for overall effect: Z = 1.                                                                                                                                                                                                                                                                                  | 26 (P = 0.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 1.1.6 EGFR-mut                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Herbst 2005                                                                                                                                                                                                                                                                                                      | -0.7136 0.4571 32.6% 0.49 [0.20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.201                                                        |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| WU 2013                                                                                                                                                                                                                                                                                                          | -1.3863 0.2277 67.4% 0.25 [0.16, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                | 100.0% 0.31 [0.17, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.58]                                                        |
| Heterogeneity: Tau <sup>2</sup> = 0.10:                                                                                                                                                                                                                                                                          | Chi <sup>2</sup> = 1.74, df = 1 (P = 0.19); l <sup>2</sup> = 42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Test for overall effect: Z = 3.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| . Latina overall effect z = d.                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 4.4.7 Marca                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| 1.1.7 Never smoking                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80]                                                        |
| 1.1.7 Never smoking<br>Herbst 2005                                                                                                                                                                                                                                                                               | -0.6972 0.2419 17.8% 0.50 [0.31, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
| Herbst 2005                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| Herbst 2005<br>Lee 2013                                                                                                                                                                                                                                                                                          | -0.5516 0.1985 26.5% 0.58 [0.39,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Herbst 2005<br>Lee 2013<br>Mok 2009                                                                                                                                                                                                                                                                              | -0.5516 0.1985 26.5% 0.58 [0.39, 0<br>-0.9835 0.3297 9.6% 0.37 [0.20, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |
| Herbst 2005<br>Lee 2013                                                                                                                                                                                                                                                                                          | -0.5516 0.1985 26.5% 0.58 [0.39,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013                                                                                                                                                                                                                                                                   | -0.5516 0.1985 26.5% 0.58 [0.39,<br>-0.9835 0.3297 9.6% 0.37 [0.20,<br>-0.9088 0.1506 46.0% 0.40 [0.30, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.54]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                              | -0.5516 0.1985 26.5% 0.58 [0.39,<br>-0.9835 0.3297 9.6% 0.37 [0.20,<br>-0.9088 0.1506 46.0% 0.40 [0.30,<br>100.0% 0.46 [0.37, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.54]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                   | -0.5516 0.1985 26.5% 0.58 [0.39,<br>-0.9835 0.3297 9.6% 0.37 [0.20,<br>-0.9088 0.1506 46.0% 0.40 [0.30,<br>100.0% 0.46 [0.37, 0<br>Chi <sup>2</sup> = 2.55, df = 3 (P = 0.47); l <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                              | -0.5516 0.1985 26.5% 0.58 [0.39,<br>-0.9835 0.3297 9.6% 0.37 [0.20,<br>-0.9088 0.1506 46.0% 0.40 [0.30,<br>100.0% 0.46 [0.37, 0<br>Chi <sup>2</sup> = 2.55, df = 3 (P = 0.47); l <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                   | -0.5516 0.1985 26.5% 0.58 [0.39,<br>-0.9835 0.3297 9.6% 0.37 [0.20,<br>-0.9088 0.1506 46.0% 0.40 [0.30,<br>100.0% 0.46 [0.37, 0<br>Chi <sup>2</sup> = 2.55, df = 3 (P = 0.47); l <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.                                                                                                                                                                | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ -0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ 100.0\% & 0.40 & 0.30, \\ 100.0\% & 0.46 & 0.37, \\ Chi^2 = 2.55,  df = 3 \ (P = 0.47);  i^2 = 0\% \\ 67 \ (P < 0.00001) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.54]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>1.1.8 Smoking(current or p                                                                                                                                  | $\begin{array}{ccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ -0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & & 100.0\% & 0.46 & 0.37, \\ \mathrm{Chi}^{\mathrm{P}}=2.55, \mathrm{df}=3 \ (\mathrm{P}=0.47); \ \mathrm{I}^{\mathrm{P}}=0\% \\ \mathrm{67} \ (\mathrm{P}<0.00001) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.56]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.                                                                                                                                                                | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ -0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ 100.0\% & 0.40 & 0.30, \\ 100.0\% & 0.46 & 0.37, \\ Chi^2 = 2.55,  df = 3 \ (P = 0.47);  i^2 = 0\% \\ 67 \ (P < 0.00001) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.56]                                                        |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.1<br>1.1.8 Smoking(current or p<br>Mok 2009                                                                                                                     | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ -0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.66 & 0.37, & 0.66 & 0.37, & 0.67 & 0.00001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54]<br>0.56] •<br>0.85]                                    |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013                                                                                                           | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, (\\ -0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, (\\ -0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, (\\ -0.9088 & 0.1506 & 46.0\% & 0.46 & 0.37, (\\ -0.0001 & 0.0001 & 0.46 & 0.7, (\\ -0.5798 & 0.2114 & 40.4\% & 0.56 & 0.87, (\\ -0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54]<br>0.56]<br>0.85]<br>1.06]                             |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)                                                                                      | $\begin{array}{ccccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ -0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54]<br>0.56]<br>0.85]<br>1.06]                             |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)                                                                                      | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, (\\ -0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, (\\ -0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, (\\ -0.9088 & 0.1506 & 46.0\% & 0.46 & 0.37, (\\ -0.0001 & 0.0001 & 0.46 & 0.7, (\\ -0.5798 & 0.2114 & 40.4\% & 0.56 & 0.87, (\\ -0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54]<br>0.56]<br>0.85]<br>1.06]                             |
| Herbst 2005<br>Lee 2013<br>Mox 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.04;                                           | $\begin{array}{ccccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ 0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9038 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, & 0.00\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0$ | 0.54]<br>0.56]<br>0.85]<br>1.06]                             |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WJ 2013<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WJ 2013<br>Subtotal (95% Cl)                                                                                      | $\begin{array}{ccccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ 0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9038 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, & 0.00\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0$ | 0.54]<br>0.56]<br>0.85]<br>1.06]                             |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Helerogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.1<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.04;                                          | $\begin{array}{ccccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ 0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9038 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, & 0.00\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0$ | 0.54]<br>0.56]<br>0.85]<br>1.06]                             |
| Herbst 2005<br>Lee 2013<br>Mox 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.1<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.04;                                          | $\begin{array}{ccccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ 0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9038 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, & 0.00\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0$ | 0.54]<br>0.56]<br>0.85]<br>1.06]<br>                         |
| Herbsi 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.04;                                           | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ 0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9038 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, & 0.00\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.$ | 0.54]<br>0.56]<br>0.85]<br>1.06]<br>1.00]<br>0.05 0.2 1 5 20 |
| Herbst 2005<br>Lee 2013<br>Mox 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.1<br>1.1.8 Smoking(current or p<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.04;                                          | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ 0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9038 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, & 0.00\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.$ | 0.54]<br>0.56]<br>0.85]<br>1.06]<br>                         |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br><b>1.1.8 Smoking(current or p</b><br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.04;<br>Test for overall effect: Z = 1. | $\begin{array}{ccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, (-0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, (-0.9088 & 0.1506 & 46.0\% & 0.40 & 0.30, (-0.40 & 0.30, (-0.9088 & 0.1506 & 46.0\% & 0.46 & 0.37, (-0.9088 & 0.160 & 0.47);  ^2 = 0\% & 0.46 & 0.37, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.70 & 0.49, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, (-0.2107 & 0.1384 & 0.56 & 0.81 & 0.62, (-0.2107 & 0.1384 & 0.56 & 0.81 & 0.62, (-0.2107 & 0.1384 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.56 & 0.2114 & 0.5$                                                                           | 0.54]<br>0.56]<br>0.85]<br>1.06]<br>1.00]<br>0.05 0.2 1 5 20 |
| Herbst 2005<br>Lee 2013<br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneily: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br><b>1.1.8 Smoking(current or p</b><br>Mok 2009<br>WU 2013<br>Subtotal (95% CI)<br>Heterogeneily: Tau <sup>2</sup> = 0.04;<br>Test for overall effect: Z = 1. | $\begin{array}{cccccc} -0.5516 & 0.1985 & 26.5\% & 0.58 & 0.39, \\ 0.9835 & 0.3297 & 9.6\% & 0.37 & 0.20, \\ -0.9038 & 0.1506 & 46.0\% & 0.40 & 0.30, \\ & 100.0\% & 0.46 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.68 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.5798 & 0.2114 & 40.4\% & 0.56 & 0.37, & 0.2107 & 0.1384 & 59.6\% & 0.81 & 0.62, & 0.00\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.49, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.70 & 0.40, & 100.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.$ | 0.54]<br>0.56]<br>0.85]<br>1.06]<br>1.00]<br>0.05 0.2 1 5 20 |

OS

|                                                               |                        |                         |        | Hazard Ratio      | Hazard Ratio                                                 |
|---------------------------------------------------------------|------------------------|-------------------------|--------|-------------------|--------------------------------------------------------------|
| Study or Subgroup                                             | log[Hazard Ratio]      | SE                      | Weight | IV, Fixed, 95% Cl | IV, Fixed, 95% Cl                                            |
| Dittrich 2014                                                 | -0.393                 | 0.1912                  | 5.5%   | 0.68 [0.46, 0.98] |                                                              |
| Gatzemeier 2007                                               | 0.0545                 | 0.0791                  | 32.0%  | 1.06 [0.90, 1.23] | • • • • • • • • • • • • • • • • • • •                        |
| Herbst 2005                                                   | -0.0051                | 0.0767                  | 34.0%  | 0.99 [0.86, 1.16] | • •                                                          |
| Lee 2013                                                      | -0.293                 | 0.2124                  | 4.4%   | 0.75 [0.49, 1.13] |                                                              |
| Michael 2014                                                  | -0.2307                | 0.376                   | 1.4%   | 0.79 [0.38, 1.66] |                                                              |
| Mok 2009                                                      | 0.0843                 | 0.225                   | 4.0%   | 1.09 [0.70, 1.69] |                                                              |
| Thomas 2013                                                   | -0.2718                | 0.2919                  | 2.4%   | 0.76 [0.43, 1.35] |                                                              |
| WU 2013                                                       | -0.2307                | 0.1108                  | 16.3%  | 0.79 [0.64, 0.99] | -                                                            |
| Total (95% CI)                                                |                        |                         | 100.0% | 0.94 [0.86, 1.03] | •                                                            |
| Heterogeneity: Chi <sup>2</sup> = <sup>2</sup>                | 10.36, df = 7 (P = 0.1 | 7); l <sup>2</sup> = 32 | 2%     |                   |                                                              |
| Test for overall effect: Z = 1.40 (P = 0.16)                  |                        |                         |        |                   | Favours [experimental] Favours [control]                     |
| Heterogeneity: Chi <sup>2</sup> =<br>Test for overall effect: | Z = 1.40 (P = 0.16)    | 7); I² = 32             | 2%     |                   | 0.01 0.1 1 10 10<br>Favours [experimental] Favours [control] |

#### Subgruppenanalyse OS

|                                                                           |                                                    |        | Hazard Ratio      | Hazard Ratio                             |
|---------------------------------------------------------------------------|----------------------------------------------------|--------|-------------------|------------------------------------------|
| Study or Subgroup Io                                                      | a[Hazard Patia] SE                                 | Wolaht |                   |                                          |
| 1.2.1 Intercalated therapy                                                |                                                    | weight | IV. FIXED, 55% C  | IV. FIXED, 35% CI                        |
| Lee 2013                                                                  | -0.293 0.2124                                      | 17.0%  | 0.75 [0.49, 1.13] |                                          |
| Michael 2014                                                              | -0.2307 0.376                                      |        | 0.79 [0.38, 1.66] |                                          |
| Mok 2009                                                                  | 0.0843 0.225                                       |        | 1.09 [0.70, 1.69] |                                          |
| WU 2013                                                                   | -0.2307 0.1108                                     |        | 0.79 [0.64, 0.99] | _ <b>_</b>                               |
| Subtotal (95% CI)                                                         | -0.2307 0.1100                                     | 100.0% | 0.82 [0.69, 0.98] | <b></b>                                  |
| Heterogeneity: Chi <sup>2</sup> = 1.87,                                   | df = 2 (D = 0.60); I2 = 00                         |        | 0.02 [0.03, 0.30] | •                                        |
| Test for overall effect: Z = 2                                            |                                                    | /0     |                   |                                          |
| 1.2.2 Continuous therapy                                                  |                                                    |        |                   |                                          |
| Dittrich 2014                                                             | -0.393 0.1912                                      | 7.4%   | 0.68 [0.46, 0.98] |                                          |
| Gatzemeier 2007                                                           | 0.0545 0.0791                                      |        | 1.06 [0.90, 1.23] | +                                        |
| Herbst 2005                                                               | -0.0051 0.0767                                     |        | 0.99 [0.86, 1.16] | +                                        |
| Thomas 2013                                                               | -0.2718 0.2919                                     | 3.2%   | 0.76 [0.43, 1.35] |                                          |
| Subtotal (95% CI)                                                         |                                                    | 100.0% | 0.98 [0.89, 1.09] | •                                        |
| Heterogeneity: Chi <sup>2</sup> = 5.47                                    | df = 3 (P = 0.14); I <sup>2</sup> = 45             | 5%     |                   |                                          |
| Test for overall effect: Z = 0                                            | 0.32 (P = 0.75)                                    |        |                   |                                          |
| 1.2.3 EGFR-wild                                                           |                                                    |        |                   |                                          |
| Herbst 2005                                                               | -0.2432 0.1998                                     | 47.1%  | 0.78 [0.53, 1.16] |                                          |
| WU 2013                                                                   | -0.2653 0.1886                                     | 52.9%  | 0.77 [0.53, 1.11] |                                          |
| Subtotal (95% CI)                                                         |                                                    | 100.0% | 0.78 [0.59, 1.01] | -                                        |
| Heterogeneity: Chi <sup>2</sup> = 0.01,<br>Test for overall effect: Z = 1 |                                                    | %      |                   |                                          |
| 1.2.4 EGFR-mut                                                            |                                                    |        |                   |                                          |
| Herbst 2005                                                               | -0.1242 0.7578                                     | 12.8%  | 0.88 [0.20, 3.90] |                                          |
| WU 2013                                                                   | -0.7402 0.2904                                     | 87.2%  | 0.48 [0.27, 0.84] |                                          |
| Subtotal (95% CI)                                                         |                                                    | 100.0% | 0.52 [0.30, 0.88] |                                          |
| Heterogeneity: Chi <sup>2</sup> = 0.58                                    | df = 1 (P = 0.45); I <sup>2</sup> = 0 <sup>4</sup> | %      |                   |                                          |
| Test for overall effect: Z = 2                                            | 2.44 (P = 0.01)                                    |        |                   |                                          |
| 1.2.5 Never smoking                                                       |                                                    |        |                   |                                          |
| Herbst 2005                                                               | -0.7177 0.2833                                     | 36.0%  | 0.49 [0.28, 0.85] | <b>_</b> _                               |
| Lee 2013                                                                  | -0.293 0.2124                                      | 64.0%  | 0.75 [0.49, 1.13] |                                          |
| Subtotal (95% CI)                                                         |                                                    | 100.0% | 0.64 [0.46, 0.89] | -                                        |
| Heterogeneity: Chi <sup>2</sup> = 1.44,                                   | df = 1 (P = 0.23); I <sup>2</sup> = 30             | )%     |                   |                                          |
| Test for overall effect: Z = 2                                            | 2.62 (P = 0.009)                                   |        |                   |                                          |
|                                                                           |                                                    |        |                   | 0.1 0.2 0.5 1 2 5 10                     |
|                                                                           |                                                    |        |                   | Favours [experimental] Favours [control] |

#### Adverse events

Data for the grade 3 or 4 adverse events were available in five studies [9–11, 15, 16]. There were more incidences of grade 3 or 4 anemia (OR = 1.48 [95% CI 1.12, 1.97], P = 0.006), rash Fig 2. Forest Plot of Meta-analysis for PFS. Chemotherapy plus Erlotinib for Advanced Non Small Cell Lung Cancer (OR = 12.34 [95% CI 5.65, 26.95], P<0.00001), and diarrhea (OR = 4.25 [95% CI 2.16, 8.38], P<0.0001) in the erlotinib and chemotherapy combination treatment. However, there was no difference in incidences of grade 3 or 4 neutropenia (OR = 1.02 [95% CI 0.83, 1.24]], P = 0.86), leucopoenia (OR = 1.31 [95% CI 0.80, 2.14], P = 0.29), or thrombocytopenia (OR = 1.26 [95% CI 0.91, 1.74], P = 0.17). Forest plots are shown in S1 Fig. The complete results are presented in S1 Table.

| CTCAE Grade 3/-                                                                                        | 4 Trials                | E+Chem                  | Chem                                     | OR[95%CI]                                 | P value                    | Heterogeneit       |
|--------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------------------------|-------------------------------------------|----------------------------|--------------------|
| Toxicity                                                                                               |                         |                         |                                          |                                           |                            | P value            |
| Neutropenia                                                                                            | 5                       | 251/1164                | 247/1166                                 | 1.02 [0.83, 1.24]                         | 0.86                       | 0.59               |
| Anaemia                                                                                                | 4                       | 132/938                 | 94/944                                   | 1.48 [1.12, 1.97]                         | 0.006                      | 0.90               |
| Leucopaenia                                                                                            | 5                       | 105/1164                | 95/1166                                  | 1.31 [0.80, 2.14]                         | 0.29                       | 0.09               |
| Rash                                                                                                   | 3                       | 82/865                  | 7/870                                    | 12.34 [5.65, 26.95]                       | < 0.00001                  | 0.67               |
| Diarrhoea                                                                                              | 3                       | 65/865                  | 16/870                                   | 4.25 [2.16, 8.38]                         | < 0.0001                   | 0.29               |
| Thrombocytopenia                                                                                       | 4                       | 149/1091                | 125/1092                                 | 1.26 [0.91, 1.74]                         | 0.17                       | 0.28               |
| Erlo                                                                                                   | tinib, Chem<br>Iparison | Chemothera              | ру                                       | ology criteria for advers                 |                            |                    |
|                                                                                                        | E+C                     | с                       |                                          | Odds Ratio                                |                            | Odds Ratio         |
| Study or Subgroup<br>1.5.1 Neutropenia                                                                 | Events Tota             | I Events To             | tal Weight                               | M-H, Random, 95% CI                       | M-H.                       | Random, 95% C      |
| Auliac 2014                                                                                            | 22 73                   |                         | 74 7.6%                                  | 1.25 [0.61, 2.57]                         |                            |                    |
| Dittrich 2014                                                                                          | 11 70                   |                         | 83 4.2%                                  | 1.59 [0.60, 4.18]                         |                            |                    |
| Gatzemeier 2007<br>Herbst 2005                                                                         | 107 580<br>46 209       |                         | 79 46.8%<br>08 18.7%                     | 0.88 [0.66, 1.18]<br>0.97 [0.61, 1.53]    |                            | -                  |
| WU 2013                                                                                                | 65 220                  | 6 55 2                  | 22 22.6%                                 | 1.23 [0.81, 1.86]                         |                            | +-                 |
| Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z |                         | 247<br>2, df = 4 (P = 0 |                                          | 1.02 [0.83, 1.24]                         |                            | Ţ                  |
| 1.5.2 Leukopenia                                                                                       | c                       |                         | 74 40.000                                | 0.04 (0.74, 44, 45)                       |                            |                    |
| Auliac 2014<br>Dittrich 2014                                                                           | 8 73<br>18 70           |                         | 74 10.0%<br>83 17.7%                     | 2.91 [0.74, 11.45]<br>2.91 [1.18, 7.16]   |                            |                    |
| Gatzemeier 2007                                                                                        | 54 580                  | 0 59 5                  | 79 33.9%                                 | 0.90 [0.61, 1.33]                         |                            | -                  |
| Herbst 2005                                                                                            | 9 209                   |                         | 08 15.4%                                 | 1.29 [0.47, 3.54]                         |                            |                    |
| WU 2013<br>Subtotal (95% CI)                                                                           | 16 220<br>1164          |                         | 22 23.0%<br>66 100.0%                    | 0.86 [0.43, 1.74]<br>1.31 [0.80, 2.14]    |                            | •                  |
| Total events<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z                      | 105<br>.15; Chi² = 7.9  | 95<br>6, df = 4 (P = 0  |                                          | -                                         |                            |                    |
| 1.5.3 Anaemia                                                                                          |                         |                         |                                          |                                           |                            |                    |
| Auliac 2014<br>Dittrich 2014                                                                           | 5 7:<br>9 70            |                         | 74 3.7%<br>83 6.2%                       | 1.74 [0.40, 7.56]<br>2.10 [0.67, 6.56]    |                            |                    |
| Gatzemeier 2007                                                                                        | 102 580                 | 0 73 5                  | 79 76.1%                                 | 1.48 [1.07, 2.05]                         |                            |                    |
| Herbst 2005<br>Subtotal (95% CI)                                                                       | 16 209<br>938           |                         | 08 14.0%<br><b>44 100.0%</b>             | 1.24 [0.58, 2.65]<br>1.48 [1.12, 1.97]    |                            |                    |
| Total events<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z                      | 132<br>.00; Chi² = 0.6  | 94<br>1, df = 3 (P = 0  |                                          | 1.40 [1.12, 1.37]                         |                            | •                  |
| 1.5.4 Rash                                                                                             |                         |                         |                                          |                                           |                            |                    |
| Dittrich 2014                                                                                          | 7 7                     |                         | 83 13.6%                                 | 8.32 [1.00, 69.28]                        |                            |                    |
| Gatzemeier 2007<br>Herbst 2005                                                                         | 60 580<br>15 209        |                         | 79 58.8%<br>08 27.6%                     | 16.59 [5.99, 45.95]<br>7.96 [1.80, 35.28] |                            |                    |
| Subtotal (95% CI)                                                                                      | 865                     |                         | 70 100.0%                                | 12.34 [5.65, 26.95]                       |                            |                    |
| Total events<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z                      |                         |                         | 1.67); I² = 0%                           |                                           |                            |                    |
| 1.5.5 Diarrhoea<br>Dittrich 2014                                                                       | 4 70                    | 6 1                     | 83 8.8%                                  | 4.56 [0.50, 41.70]                        |                            |                    |
| Gatzemeier 2007                                                                                        | 35 58                   |                         | 83 8.8%<br>79 38.5%                      | 4.56 [0.50, 41.70]<br>7.37 [2.87, 18.96]  |                            |                    |
| Herbst 2005                                                                                            | 26 209                  | 9 10 2                  | 08 52.6%                                 | 2.81 [1.32, 5.99]                         |                            |                    |
| Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0                               |                         | 16<br>i0, df = 2 (P = 0 | 70 100.0%<br>1.29); l <sup>2</sup> = 20% | 4.25 [2.16, 8.38]                         |                            |                    |
| Test for overall effect: Z                                                                             |                         | .0001)                  |                                          |                                           |                            |                    |
| Dittrich 2014                                                                                          | 11 70                   |                         | 83 7.1%                                  | 3.34 [1.02, 10.99]                        |                            |                    |
| Gatzemeier 2007                                                                                        | 90 580                  | 0 80 5                  | 79 51.2%                                 | 1.15 [0.83, 1.59]                         |                            | <b>_</b>           |
| Herbst 2005<br>WU 2013                                                                                 | 16 209<br>32 220        |                         | 08 14.0%<br>22 27.7%                     | 1.64 [0.73, 3.71]<br>1.02 [0.60, 1.73]    |                            | +                  |
| Subtotal (95% CI)                                                                                      | 1091                    | 109                     | 92 100.0%                                | 1.26 [0.91, 1.74]                         |                            | •                  |
| Total events<br>Heterogeneity: Tau² = 0<br>Test for overall effect: Z                                  |                         |                         | 0.28); l² = 22%                          |                                           |                            |                    |
|                                                                                                        |                         |                         |                                          | 0.01<br>F                                 | I 0.1<br>Favours [experime | 1<br>ntal] Favours |
| S1 - Figure                                                                                            |                         |                         |                                          |                                           |                            |                    |
| Fazit der A                                                                                            | utoren                  |                         |                                          |                                           |                            |                    |
|                                                                                                        |                         |                         | rany ar                                  | nd erlotinib is                           | a viable                   | treatm             |
| L.Ompination                                                                                           |                         |                         |                                          |                                           |                            |                    |

|                                          | is an effective combinatorial strategy.<br>However, for patients with EGFR mutation-positive NSCLC, the current                                                                                                                                                                                              |  |  |  |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                          | standard care is EGFR TKI alone. OPTIMAL study showed that compared<br>with chemotherapy, erlotinib demonstrated a significant benefit inpatients with<br>advanced EGER mutation-positive NSCI C, and median PES was 13.1 months                                                                             |  |  |  |  |  |  |  |
|                                          | advanced EGFR mutation-positive NSCLC, and median PFS was 13.1 months<br>for erlotinib-treated patients versus 4.6 months for patients receiving                                                                                                                                                             |  |  |  |  |  |  |  |
|                                          | chemotherapy . In FASTACT-2, patients with EGFR mutation derived benefit<br>from the combination treatment, and median PFS was 16.8 months . We didn't<br>address whether a combination treatment was better than erlotinib alone for<br>patients with EGFR mutation-positive NSCLC. A head-to-head study is |  |  |  |  |  |  |  |
|                                          | needed to answer this question. In this systematic review, we analyzed the efficacy of different schedules of erlotinib in combination with chemotherapy, and led to a conclusion that the intercalated schedule showed an improvemen in PFS and OS, while the continuous schedule did not.                  |  |  |  |  |  |  |  |
| Zhong A et al., 2015                     | 1. Fragestellung                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| [67].                                    | Pemetrexed is currently recommended as the second-line treatment for patients                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| The efficacy and safety of pemetrexed-   | with advanced non-small-cell lung cancer (NSCLC). However, it is unclear whether pemetrexed-based doublet therapy improves treatment efficacy and                                                                                                                                                            |  |  |  |  |  |  |  |
| based doublet                            | safety. Thus, this meta-analysis was performed to resolve this controversial question.                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| therapy compared to pemetrexed alone for | 2. Methodik                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| the second-line                          | <b>Population:</b> patients diagnosed pathologically with NSCLC and treated previously                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| treatment of advanced non-small-         | Intervention: single-agent pemetrexed                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| cell lung cancer: an                     | Komparator: pemetrexed-based doublet                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| updated meta-<br>analysis                | <b>Endpunkte:</b> progression-free survival (PFS), overall survival (OS), objective response rate (ORR)                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                          | <b>Suchzeitraum:</b> bis 03/ 2015                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|                                          | Anzahl eingeschlossene Studien/Patienten (Gesamt):                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                                          | 10/ 2519 (randomized Phase II and III RCTs)                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                          | <b>Qualitätsbewertung der Studien:</b> Cochrane Collaboration's tool for assessing risk of bias; Jadad Score                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                                          | <i>Heterogenitätsuntersuchungen:</i> Interstudy heterogeneity was assessed using Cochran's test (P,0.1). The I2 statistic was also calculated, and an I2.50% indicated significant heterogeneity across studies                                                                                              |  |  |  |  |  |  |  |
|                                          | <i>"Publication bias":</i> subjective funnel plots and objective Begg's and Egger's tests                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                                          | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |

P=0.038). There was some heterogeneity among the included studies (*I*2=47.5%, P=0.039; Figure 3).





Figure 4 Forest plot of objective response rate in patients treated with pemetrexed-based doublet therapy and pemetrexed alone. Note: Weights are from random effects analysis. Abbreviations: OR, odds ratio; CI, confidence interval.

#### UE

Table 3 Outcome of grade 3 or 4 toxicities in a meta-analysis comparing pemetrexed-based doublet therapy with pemetrexed alone

| Toxicity                   | Trials | Pemetrexed-based | Pemetrexed    | Hetero | geneity | OR (95% CI)      | P-value |
|----------------------------|--------|------------------|---------------|--------|---------|------------------|---------|
|                            |        | doublet therapy  | alone therapy | P      | 12      |                  |         |
| Grade 3–4 anemia           | 7      | 43/719           | 52/737        | 0.076  | 47.5    | 0.85 (0.56-1.28) | 0.43    |
| Grade 3-4 neutropenia      | 8      | 122/528          | 61/547        | 0.56   | 0       | 2.01 (1.45-2.78) | 0.00    |
| Grade 3-4 thrombocytopenia | 6      | 57/479           | 16/476        | 0.44   | 0       | 3.77 (2.16-6.59) | 0.00    |
| Grade 3–4 fatigue          | 7      | 55/706           | 54/677        | 0.59   | 0       | 1.04 (0.70–1.55) | 0.59    |
| Grade 3–4 leukopenia       | 7      | 65/536           | 41/515        | 0.125  | 38.3    | 1.66 (0.90-3.05) | 0.10    |

Abbreviations: OR, odds ratio; CI, confidence interval

### Subgruppen

Table 2 Pooled and subgroup analysis of OS and PFS

| Subgroup               | Number of trials | OS, HR (95% CI)  | PFS, HR (95% CI) |
|------------------------|------------------|------------------|------------------|
| All                    | 10               | 0.92 (0.83-1.02) | 0.86 (0.75-0.99) |
| Phase                  |                  |                  |                  |
| Ш                      | 8                | 0.89 (0.74-1.07) | 0.89 (0.72-1.09) |
| III                    | 2                | 0.97 (0.83-1.14) | 0.83 (0.73-0.95) |
| Combined agent         |                  |                  |                  |
| Erlotinib <sup>a</sup> | 2                | 0.71 (0.54-0.94) | 0.61 (0.46-0.81) |
| Target drug            | 8                | 0.93 (0.82-1.05) | 0.85 (0.77-0.94) |
| Carboplatin            | 2                | 0.92 (0.74-1.13) | 0.84 (0.54-1.31) |
| Histology              |                  |                  |                  |
| Squamous               | 3                | 0.62 (0.31-1.21) | 0.94 (0.64-1.40) |
| Nonsquamous            | 6                | 0.98 (0.94-1.02) | 0.80 (0.71-0.91) |

Notes: "Patients all had a nonsquamous histology. The figures in bold indicate the pooled HR was significantly different between pemetrexed-based doublet therapy and treved alon Abbreviations: OS, overall survival; PFS, progression-free survival; HR, hazard ratio; Cl, confidence interval.

Kein Publikationsbias identifiziert

#### 4. Fazit

A total of 2,519 patients from ten randomized controlled trials were included. Compared to pemetrexed alone, PFS and ORR significantly improved in the pemetrexed-based doublet group (HR, 0.86; 95% CI [confidence interval], 0.75-0.99; P=0.038; and OR, 1.98; 95% CI, 1.25-3.12; P=0.003, respectively). However, no statistically significant differences in OS were observed between groups (HR, 0.92; 95% CI, 0.83–1.02; P=0.132). In addition, subgroup analyses indicated that improved OS was only observed in nonsquamous NSCLC patients who received the combination of pemetrexed and erlotinib. An increasing incidence of grade \$3 neutropenia and thrombocytopenia was observed in the pemetrexed-based doublet group.

|                                                                                                | Among patients with advanced NSCLC, pemetrexed-based doublet treatment tended to be associated with improved PFS, ORR, and increased toxicity, but not OS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Popat S et al., 2015                                                                           | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| <b>[48].</b><br>Nintedanib plus                                                                | NMA to evaluate the comparative efficacy of nintedanib plus docetaxel with docetaxel, pemetrexed, erlotinib and gefitinib for the second-line treatment of patients with advanced or metastatic NSCLC of adenocarcinoma histology.                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| docetaxel as second-                                                                           | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| line therapy in<br>patients with non-<br>small-cell lung<br>cancer: a network<br>meta-analysis | Population: relapsed or refractory NSCLC – histologically or cytologically confirmed, locally advanced and/or metastatic NSCLC of stage IIIB or IV (according to American Joint Committee on Cancers) or recurrent NSCLC (all histologies)                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                | Intervention: any second-line chemotherapy or targeted therapy used alone or in combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                | Komparator: chemotherapy, targeted therapy, placebo or best supportive care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                | Endpunkte: OS and PFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                | Suchzeitraum (Aktualität der Recherche): bis März 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                | Anzahl eingeschlossene Studien/Patienten (Gesamt): 9 Studien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                | <u>Hinweis</u> : The assumption of similarity of populations across these studies is<br>necessary in order to allow for a NMA; however, clinical heterogeneity was<br>evaluated to identify potential effect modifiers. This evaluation highlighted that<br>some identified trials had a high percentage of patients with known EGF receptor<br>(EGFR) mutation-positive NSCLC at baseline or used clinical criteria to include<br>patients with a higher likelihood of EGFR mutation-positive NSCLC.                                                                                                                                                    |  |  |  |  |  |
|                                                                                                | Base case NMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                | <ul> <li>For analysis of <u>OS</u>, nintedanib plus docetaxel showed a statistically significant advantage in prolonging OS compared with docetaxel alone or erlotinib alone. The estimated HR for OS favored nintedanib plus docetaxel compared with pemetrexed, but this comparison did not reach statistical significance.         <ul> <li>The estimated probability of nintedanib plus docetaxel being the best treatment with regard to overall survival was 70% (versus 16% for pemetrexed, 10% for docetaxel and 3% for erlotinib).</li> </ul> </li> <li>For analysis of <b>PFS</b>, nintedanib plus docetaxel showed a statistically</li> </ul> |  |  |  |  |  |

| <ul> <li>significant advantage in prolonging PFS compared with docetaxel alone or erlotinib. As for OS, HRs indicated that nintedanib plus docetaxel prolonged PFS compared with pemetrexed but the difference was not statistically significant.</li> <li>The estimated probability of nintedanib plus docetaxel being the best treatment with regard to PFS was 69.7% compared ith 18.5% for pemetrexed, 6.8% for erlotinib and 5.0% for docetaxel.</li> </ul>                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensititivätsanalysen base case NMA - including trials with a high likelihood of containing patients with EGFR mutation-positive NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Inclusion of these additional trials (n = 4) resulted in the addition of two further treatments to the network: gefitinib and erlotinib plus pemetrexed. In the random-effects model, no comparisons were statistically significant owing to wide credible intervals.</li> <li>For PFS, erlotinib plus pemetrexed had the greatest probability of being the best treatment (62.0%), with nintedanib plus docetaxel ranked second (25.0%), followed by gefitinib (12.2%). All other treatments were associated with extremely low probabilities of being the best treatment with regard to PFS (each &lt;1% chance).</li> </ul> |
| Scenario NMA- Scenario NMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <i>Hinweis</i> : Assumption, that rhe estimated HRs for OS and PFS from the scenario NMA, in which equal efficacy of docetaxel and pemetrexed was assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • In the random-effects model, no comparisons were statistically significant owing to the wide credible intervals. The estimated probability of nintedanib plus docetaxel being the best treatment with regard to OS was 79% compared with 14% for docetaxel/pemetrexed and 7% for erlotinib, while the estimated probability of nintedanib plus docetaxel being the best treatment with regard to PFS was 84% compared with 9% for docetaxel/ pemetrexed and 8% for                                                                                                                                                                    |
| <ul> <li>erlotinib.</li> <li>Results from the fixed-effects scenario analysis indicated that nintedanib plus docetaxel showed a statistically significant advantage in prolonging both OS and PFS compared with patients who received docetaxel/pemetrexed alone or erlotinib.</li> </ul>                                                                                                                                                                                                                                                                                                                                               |
| Sensititivätsanalysen scenario NMA - including trials with a high likelihood of containing patients with EGFR mutation-positive NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>As for other randomeffects model analyses, no comparisons were</li> <li>statistically significant owing to the wide credibility intervals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4. Fazit der Autoren: NMA provides a useful source of information on the comparative benefits of different treatments for healthcare decision makers when direct head to head trials have not been conducted. Results of this NMA support the conclusions of the LUME-Lung 1 trial, that nintedanib plus docetaxel offers clinical benefit compared with docetaxel alone for the second-line treatment of                                                                                                                                                                                                                               |

|                                                                                                                              | patients with advanced NSCLC of adenocarcinoma histology, and suggest that<br>this combination may also add clinical benefit compared with erlotinib when used<br>in this patient group.                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                              | <ul> <li>5. Hinweise der FBMed:</li> <li>Umgang mit Heterogenität/Homogenitätsanahme in Analyse: Differences in the percentage of patients with EGFR mutation-positive NSCLC were controlled by excluding studies with a high likelihood of containing these patients, or studies known to contain patients with EGFR mutation-positive NSCLC, from the base case analysis. → base case analysis is considered the most appropriate network for indirect treatment comparisons as the trials included in this network are likely to have the most comparable patient populations.</li> </ul> |
| Sheng J et al., 2015                                                                                                         | <ul> <li>Nur indirekte Evidenz →Allgemeine Limitationen von NMA beachten</li> <li>1. Fragestellung</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [54].                                                                                                                        | The purpose of this study was to assess the advantage of antiangiogenic therapy plus standard treatment versus standard treatment alone for this population of patients.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Combining<br>Antiangiogenic                                                                                                  | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Annaligiogenic<br>Agents with<br>Chemotherapy for<br>Patients with                                                           | Population: Adult (18 years) patients with histologically or cytologically confirmed stage IIIB/IV NSCLC (all histologies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Advanced Non-Small<br>Cell Lung Cancer<br>Who Failed First-Line<br>Chemotherapy: A<br>Systematic Review<br>and Meta-Analysis | Intervention: angiogenesis inhibitors plus a present standard single agent<br>chemotherapy (pemetrexed, doctaxel or erlotinib) as salvage cure for patients<br>progressing after first-line treatment (defined as agent blocking angiogenic<br>pathways mediated by vascular endothelial growth factor receptor (VEGFR).<br>Oral small-molecule TKIs or monoclonal antibodies were classified as two types<br>of angiogenesis inhibitors)                                                                                                                                                    |
|                                                                                                                              | Komparator: the corresponding cytotoxic agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                              | Endpunkte: at leat reported → PFS, OS, ORR and DCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                              | Suchzeitraum (Aktualität der Recherche): In October 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                              | Anzahl eingeschlossene Studien/Patienten (Gesamt): 13 phase II/III RCTs which involved a total of 8358 participants were included.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                              | Qualitätsbewertung der Studien: The data collection and assessment of methodological quality followed the QUORUM and the Cochrane Collaboration guidelines. I <sup>2</sup> for heterogenity                                                                                                                                                                                                                                                                                                                                                                                                  |

| 2. Exachaindexatellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Ergebnisdarstellung</li> <li><u>Qualität der Studien</u>: For most studies included in this meta-analyses, low risk of<br/>bias existed for all key domains, including sequence generation, allocation</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                       |
| concealment, blinding of participants or outcome assessment, incomplete<br>outcome data, selective outcome reporting and other sources of bias. No high risk<br>of bias was detected among the thirteen RCTs.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Overall, there was significant improvement in OS (HR 0.94, 95%CI: 0.89-0.99, p=0.03), PFS (HR 0.80, 95%CI: 0.76-0.84, p&lt;0.00001), ORR (RR 1.75, 95%CI: 1.55-1.98, p&lt;0.00001) and DCR (RR 1.23, 95%CI: 1.18-1.28, p&lt;0.00001) in the group with antiangiogenic therapy plus standard treatment versus the group with standard treatment alone.</li> <li>Subgroup analysis showed that OS benefit was presented only in patients treated with docetaxel plus antiangiogenic agents (HR 0.92, 95%CI: 0.86-0.99, p=0.02) and patients with nonsquamous NSCLC (HR for OS 0.92, 95%CI: 0.86-0.99, p=0.02).</li> </ul> |
| 4. Fazit der Autoren: In conclusion, our study revealed that adding antiangiogenic agents to standard treatments could provide clinical benefits to NSCLC patient who failed their first-line therapy. Furthermore, proper selection of the standard treatment regimens and patients population by tumor histology is substantial for future studies and clinical application of antiangiogenic therapy.                                                                                                                                                                                                                         |
| 5. Hinweise der FBMed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>clinical heterogeneity due to the involvement of various standard treatment regimens and antiangiogenic agents.</li> <li>for certain subgroup analysis, publication bias existed due to unclear reasons.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| We undertake a systematic review and meta-analysis to evaluate the potential of erlotinib plus platinum-based chemotherapy compared with platinumbased chemotherapy alone in advanced NSCLC.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Population: patients were diagnosed as advanced NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Intervention: erlotinib plus platinum-based chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Komparator: platinum-based chemotherapy alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Endpunkte: OS, ORR, PFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Suchzeitraum (Aktualität der Recherche): Systematische Literaturrecherche<br>von 2000 bis 2014<br><u>Hinweis</u> : Nur RCTs eingeschlossen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| <ul> <li>Anzahl eingeschlossene Studien/Patienten (Gesamt): 8 studies, involving 3,363 patients who 1,680 and 1,683 patients were divided into erlotinib plus platinum-based chemotherapy and platinum-based chemotherapy alone, respectively, were included in the meta-analysis</li> <li>Qualitätsbewertung der Studien: Cochrane handbook for systematic reviews of interventions. The GRADE system identified the following four grades for rating the quality of evidence. I<sup>2</sup> für Heterogentität</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Qualität der Studien: All 8 trials were open-label. The overall methodological quality of the included trials was generally good and fair.                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>For PFS measure, an HR of 0.73 (0.58–0.93) with statistical significance was estimated when erlotinib plus platinum-based chemotherapy compared with platinum-based chemotherapy alone.</li> <li>Objective response rate of 32.86 versus 24.85 % was obtained for both groups, respectively.</li> <li>HR of 0.93 (0.86–1.00) with P of 0.170 was calculated for OS.</li> </ul>                                                                                                                                     |
| Sensitivitätsanalysen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Sensitivity analysis Significant heterogeneity was observed among the included studies for PFS (I2 = 85.1 %).</li> <li>After excluding one study, the results suggested that compared with platinumbased chemotherapy, erlotinib plus chemotherapy was associated with an increased PFS (HR 0.652, 95 % CI 0.546–0.759, P&lt;0.0001). No evidence of high heterogeneity was observed among the remaining studies (I2 = 44.7 %).</li> </ul>                                                                         |
| 4. Fazit der Autoren: In summary, the current available evidence suggests that<br>erlotinib lacks the potential to improve OS. PFS and objective response rate could<br>be improved by using erlotinib plus chemotherapy in patients with advanced<br>NSCLC. Finally, smoking status and histological type are important evaluation<br>factors that should be considered for evaluating clinical therapy and prognosis.                                                                                                     |

# Systematische Reviews (beide Therapielinien)

| Sheng Z and Zhang | 1. Fragestellung                                                               |
|-------------------|--------------------------------------------------------------------------------|
| Y, 2015 [56].     | To determine the efficacy of first-generation epidermal growth factor receptor |
| The Efficacy of   | tyrosine kinase inhibitors (EGFR-TKIs) in advanced non-small cell lung cancer  |
| Epidermal Growth  | (NSCLC) patients with wild-type (WT) EGFR tumors, we performed an indirect     |
| Factor Receptor   | meta-analysis to assess the treatment effects of EGFR-TKIs in such patients.   |

| Tyrosine Kinase     |
|---------------------|
| Inhibitors in Non-  |
| Small Cell Lung     |
| Cancer Harboring    |
| Wild-type Epidermal |
| Growth Factor       |
| Receptor: A Meta-   |
| analysis of 25 RCTs |

### 2. Methodik

**Population:** advanced NSCLC, defined as inoperable locally advanced (stage IIIB) or metastatic or recurrent disease (stage IV), 1. Linie und 2./3. Linie sowie Erhaltungstherapie

Interventionen und Komparatoren: first-generation EGFR-TKIs (erlotinib or gefitinib) vs. standard chemotherapy or placebo

Endpunkte: PFS, OS

Suchzeitraum: bis 09/2014

## Anzahl eingeschlossene Studien/Patienten (Gesamt): 25 (4467); RCT

#### Qualitätsbewertung der Studien:

Two reviewers independently assessed the quality of selected studies using the following criteria: (1) generation of allocation concealment, (2) description of dropouts, (3) masking of randomization, intervention, outcome assessment, (4) intention-to-treat analyses. Each criterion was rated as yes, no or unclear.

## Heterogenitätsuntersuchungen: Chi-Quadrat, I<sup>2</sup>

| Study Name (y)                          | No. Wild EGFR   | Therapy Regimen               | EGFR Assessment Method                 |
|-----------------------------------------|-----------------|-------------------------------|----------------------------------------|
| EGFR-TKIs vs. chemotherapy              |                 |                               |                                        |
| First-line therapy                      |                 |                               |                                        |
| First-SIGNAL (2012) <sup>14</sup>       | 54              | Gefitinib vs. CisG            | Direct sequencing                      |
| IPASS (2009) <sup>15,16</sup>           | 176             | Gefitinib vs. CP              | ARMS                                   |
| GTOWG <sup>†</sup> (2010) <sup>17</sup> | 75              | Erlotinib vs. CV              | Direct sequencing                      |
| TORCH (2012) <sup>18</sup>              | 236             | Erlotinib vs. CisG            | Direct sequencing/Fragment analysis/MS |
| ML 20322 (2012) <sup>19</sup>           | 36              | Erlotinib vs. vinorelbine     | Direct sequencing                      |
| Second/third-line therapy               |                 |                               |                                        |
| V-15-32 (2008) <sup>20</sup>            | 26              | Gefitinib vs. D               | Direct sequencing                      |
| INTEREST (2008) <sup>21,22</sup>        | 253             | Gefitinib vs. D               | Direct sequencing                      |
| KCSG-LU08-01 (2012)23                   | 38              | Gefitinib vs. Pem             | Direct sequencing                      |
| CTONG-0806 (2013) <sup>24</sup>         | 157             | Gefitinib vs. Pem             | Direct sequencing                      |
| TAILOR (2013) <sup>25</sup>             | 219             | Erlotinib vs. D               | Direct sequencing + fragment analysis  |
| DELTA (2014) <sup>26</sup>              | 199             | Erlotinib vs. D               | PCR-based method                       |
| TITAN (2012) <sup>27</sup>              | 149             | Erlotinib vs. pemetrexed or D | Direct sequencing                      |
| NCT01565538 (2014) <sup>28</sup>        | 123             | Erlotinib vs. pemetrexed      | ARMS                                   |
| CT/06.05 (2013) <sup>29</sup>           | 112             | Erlotinib vs. pemetrexed      | Direct sequencing                      |
| EGFR-TKIs vs. placebo                   |                 | 1                             | 1 0                                    |
| First-line therapy                      |                 |                               |                                        |
| TOPICAL (2010) <sup>30,31</sup>         | 362             | Erlotinib vs. placebo         | SequenomOncoCarta Panel                |
| Second/third                            |                 |                               |                                        |
| ISEL (2005) <sup>32</sup>               | 189             | Gefitinib vs. Placebo         | Direct sequencing, ARMS                |
| BR21 (2005) <sup>33,34</sup>            | 170             | Erlotinb vs. Placebo          | Direct sequencing, ARMS                |
| Maintenance therapy                     | 110             |                               | Direct bequenenig, mans                |
| IFCT-GFPC 0502* (2012) <sup>35</sup>    | 106             | Erlotinib vs. Placebo         | NA                                     |
| INFORM $(2011)^{36}$                    | 49              | Gefitinib vs. Placebo         | NA                                     |
| SATURN $(2010)^{37}$                    | 388             | Erlotinib vs. Placebo         | Direct sequencing                      |
| EGFR-TKIs+chemotherapy vs. cher         |                 |                               | 2                                      |
| First-line therapy                      | nouleiapy alone |                               |                                        |
| INTACT 1 (2004) <sup>38,39</sup>        | 280             | Gefitinib+CisG vs. CisG       | Direct sequencing                      |
| INTACT 2 $(2004)^{40,39}$               | 200             | Gefitinib+CP vs. $CP$         | Direct sequencing                      |
| TALENT $(2007)^{41,42}$                 | NA              | Erlotinib+CisG vs. CisG       | NA                                     |
| TRIBUTE $(2005)^{43}$                   | 198             | Erlotinib + CP vs. CP         | Direct sequencing                      |
| Maintenance therapy                     |                 |                               | Briefer bequenening                    |
| ATLAS (2013) <sup>44</sup>              | 295             | Erlotinib+B vs. B             | NA                                     |

<sup>†</sup>Trials reported in abstract format. ARMS indicates amplification refractory mutation system; B, bevacizumab; CG, carboplatin-gemcitabine; CisD, cisplatin-docetaxel; CisG, cisplatin-gemcitabine; CisPern, cisplatin-pemetrexed; CP, carboplatin-pacificate; CV, carboplatin-generable; C, CGPR, presence of epidermal growth factor receptor mutation; G, generable; MS, mass spectrometry; NA, not available; PCR, polymerase chain reaction; PEM, pemetrexed; TKI, tyrosine kinase inhibitor.

#### PFS

|                                   |                                     |            | Hazard Ratio               | Hazard Ratio                          |
|-----------------------------------|-------------------------------------|------------|----------------------------|---------------------------------------|
| Study or Subgroup                 | log[Hazard Ratio]                   | SE         |                            | IV, Random, 95% CI                    |
| 1.1.1 EFGR TKIs vs C              |                                     |            |                            |                                       |
| CTONG-0806                        | 0.6729                              | 0.1805     | 1.96 [1.38, 2.79]          |                                       |
| DELTA                             | 0.3716                              | 0.1471     | 1.45 [1.09, 1.93]          | _ <del></del>                         |
| First-SIGNAL                      | 0.3506                              | 0.2813     | 1.42 [0.82, 2.46]          | +                                     |
| GTOWG                             | 0.7372                              | 0.25       | 2.09 [1.28, 3.41]          | — <b>.</b> —                          |
| INTEREST                          | 0.2151                              | 0.142      | 1.24 [0.94, 1.64]          |                                       |
| IPASS                             | 1.047                               | 0.1686     | 2.85 [2.05, 3.96]          |                                       |
| KCSG-LU08-01                      | -0.5798                             | 0.3559     | 0.56 [0.28, 1.12]          |                                       |
| ML20322                           | -0.6931                             | 0.3459     | 0.50 [0.25, 0.98]          |                                       |
| NCT00440414                       | -0.0834                             | 0.2023     | 0.92 [0.62, 1.37]          |                                       |
| TAILOR                            | 0.3425                              | 0.1489     | 1.41 [1.05, 1.89]          |                                       |
| TITAN                             | 0.2231                              | 0.1797     | 1.25 [0.88, 1.78]          | <u>+</u>                              |
| TORCH                             | 0.7275                              | 0.1376     | 2.07 [1.58, 2.71]          |                                       |
| V-15-32                           | -0.1625                             | 0.4693     | 0.85 [0.34, 2.13]          |                                       |
| Subtotal (95% CI)                 |                                     |            | 1.37 [1.10, 1.72]          |                                       |
| Heterogeneity: Tau <sup>2</sup> = |                                     | '= 12 (P · | < 0.00001); l² = 77%       |                                       |
| Test for overall effect:          | Z = 2.75 (P = 0.006)                |            |                            |                                       |
| 1.1.2 EFGR TKIs+ Ch               | emotherapy vs Che                   | mothera    | ру                         |                                       |
| ATLAS                             | -0.1625                             | 0.145      | 0.85 [0.64, 1.13]          |                                       |
| INTACT1-2                         | -0.3147                             | 0.1645     | 0.73 [0.53, 1.01]          |                                       |
| TALENT                            | -0.0513                             | 0.1692     | 0.95 [0.68, 1.32]          |                                       |
| TRIBUTE                           | -0.2231                             | 0.1476     | 0.80 [0.60, 1.07]          |                                       |
| Subtotal (95% CI)                 |                                     |            | 0.83 [0.71, 0.96]          | •                                     |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi <sup>2</sup> = 1.33, df = | = 3 (P = 0 | 0.72); I <sup>2</sup> = 0% |                                       |
| Test for overall effect:          | Z = 2.44 (P = 0.01)                 |            |                            |                                       |
| 1.1.3 EFGR TKIs vs P              | lacebo                              |            |                            |                                       |
| IFCT-GFPC 0502                    | -0.0834                             | 0.2162     | 0.92 [0.60, 1.41]          |                                       |
| INFORM                            |                                     | 0.2957     |                            |                                       |
| SATURN                            | -0.2485                             |            | 0.78 [0.63, 0.96]          |                                       |
| TOPICAL                           | -0.1625                             | 0.1071     | 0.85 [0.69, 1.05]          |                                       |
| Subtotal (95% CI)                 |                                     |            | 0.83 [0.72, 0.95]          | ▼                                     |
| Heterogeneity: Tau <sup>2</sup> = |                                     | = 3 (P = 0 | 0.89); I <sup>2</sup> = 0% |                                       |
| Test for overall effect:          | Z = 2.73 (P = 0.006)                |            |                            |                                       |
|                                   |                                     |            |                            |                                       |
|                                   |                                     |            |                            | 0.2 0.5 1 2 5                         |
|                                   |                                     |            |                            | Favours EGFR TKIs Favours control     |
|                                   |                                     |            |                            |                                       |
| Meta-analysis of the              | treatment effect                    | s (epide   | ermal growth factor        | r receptor tyrosine kinase inhibitors |
| [EGFR-TKIs] arms v                | rs. control) on pro                 | ogressio   | on-free survival in p      | patients with wild-type EGFR          |
| advanced non-smal                 | I cell lung cance                   | r. Rand    | om, random-effect          | s model.                              |
|                                   | 9.000                               |            | ,                          | -                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    | <b>Progression-free Survival</b>                                                                                                                                                                                  |                                          | Heterogeneity                                            | Within Subgrou                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. Trials                                                                                                                                                                                                       | No. Patients With<br>Wild EGFR                                                                                                                                                                                                                                                                     | HR (95% CI)                                                                                                                                                                                                       | Р                                        | $I^{2}$ (%)                                              | Р                                                                                           |
| Trials of more than 50 patients with WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    | ( ,                                                                                                                                                                                                               |                                          |                                                          |                                                                                             |
| Line of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loric (it i                                                                                                                                                                                                      | 0)                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                          |                                                          |                                                                                             |
| First-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                | 541                                                                                                                                                                                                                                                                                                | 2.15 (1.68, 2.76)                                                                                                                                                                                                 | < 0.001                                  | 40                                                       | 0.17                                                                                        |
| Second/third-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                | 1100                                                                                                                                                                                                                                                                                               | 1.35 (1.13, 1.61)                                                                                                                                                                                                 | < 0.001                                  | 43                                                       | 0.12                                                                                        |
| Subgroup heterogeneity (P=0.018)<br>Kinds of agents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                          |                                                          |                                                                                             |
| Erlotinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                | 1001                                                                                                                                                                                                                                                                                               | 1.47 (1.17, 1.86)                                                                                                                                                                                                 | 0.001                                    | 65                                                       | 0.01                                                                                        |
| Gefitinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                | 640                                                                                                                                                                                                                                                                                                | 1.79 (1.19, 2.68)                                                                                                                                                                                                 | 0.005                                    | 80                                                       | 0.002                                                                                       |
| Subgroup heterogeneity ( $P=0.396$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  | 010                                                                                                                                                                                                                                                                                                | (11), 200)                                                                                                                                                                                                        | 01000                                    |                                                          | 0.00                                                                                        |
| EGFR analysis method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                          |                                                          |                                                                                             |
| Direct sequencing only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                | 688                                                                                                                                                                                                                                                                                                | 1.51 (1.21, 1.89)                                                                                                                                                                                                 | < 0.001                                  | 41                                                       | 0.15                                                                                        |
| More sensitive platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                | 953                                                                                                                                                                                                                                                                                                | 1.63 (1.17, 2.29)                                                                                                                                                                                                 | 0.004                                    | 83                                                       | < 0.001                                                                                     |
| Subgroup heterogeneity $(P=0.772)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                          |                                                          |                                                                                             |
| All included trials (N=13)<br>Line of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                          |                                                          |                                                                                             |
| First-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                | 577                                                                                                                                                                                                                                                                                                | 1.65 (1.06, 2.58)                                                                                                                                                                                                 | 0.03                                     | 82                                                       | < 0.001                                                                                     |
| Second/third-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                | 1164                                                                                                                                                                                                                                                                                               | 1.25 (1.02, 1.53)                                                                                                                                                                                                 | 0.03                                     | 55                                                       | 0.03                                                                                        |
| Subgroup heterogeneity ( $P=0.236$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    | ( , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                           |                                          |                                                          |                                                                                             |
| Kinds of agents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                          |                                                          |                                                                                             |
| Erlotinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                | 1037                                                                                                                                                                                                                                                                                               | 1.33 (1.01, 1.76)                                                                                                                                                                                                 | 0.04                                     | 75                                                       | < 0.001                                                                                     |
| Gefitinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                | 704                                                                                                                                                                                                                                                                                                | 1.40 (0.92, 2.14)                                                                                                                                                                                                 | 0.12                                     | 81                                                       | < 0.001                                                                                     |
| Subgroup heterogeneity $(P=0.801)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   |                                          |                                                          |                                                                                             |
| EGFR analysis method<br>Direct sequencing only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                | 788                                                                                                                                                                                                                                                                                                | 1.19 (0.88, 1.62)                                                                                                                                                                                                 | 0.26                                     | 70                                                       | 0.002                                                                                       |
| More sensitive platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                | 953                                                                                                                                                                                                                                                                                                | 1.63 (1.17, 2.29)                                                                                                                                                                                                 | 0.20                                     | 83                                                       | < 0.002                                                                                     |
| Subgroup heterogeneity ( $P=0.249$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                | 1.05 (1.17, 2.25)                                                                                                                                                                                                 | 0.004                                    | 05                                                       | <0.001                                                                                      |
| 1.2.1 EFGR TKIs+ Chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  | SE IV, Rando<br>therapy for first-l                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   | IV                                       | . Random, 95%                                            | CI                                                                                          |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vs Chemo                                                                                                                                                                                                         | therapy for first-l                                                                                                                                                                                                                                                                                | ine therapy                                                                                                                                                                                                       | IV                                       | . Random, 95%                                            |                                                                                             |
| INTACT1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vs Chemo<br>-0.3147 0.                                                                                                                                                                                           | therapy for first-I<br>1645 0.73 [0                                                                                                                                                                                                                                                                | ine therapy<br>0.53, 1.01]                                                                                                                                                                                        | IV                                       | . Random. 95%                                            |                                                                                             |
| INTACT1-2<br>TALENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vs Chemo<br>-0.3147 0.<br>-0.0513 0.                                                                                                                                                                             | therapy for first-l<br>1645 0.73 [0<br>1692 0.95 [0                                                                                                                                                                                                                                                | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]                                                                                                                                                                         | IV                                       | - Random, 95%                                            |                                                                                             |
| INTACT1-2<br>TALENT<br>TRIBUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vs Chemo<br>-0.3147 0.                                                                                                                                                                                           | therapy for first-l<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0                                                                                                                                                                                                                                | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]                                                                                                                                                          | IV                                       | - Random, 95%                                            | <u>, CI</u>                                                                                 |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.                                                                                                                                                               | therapy for first-l<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0                                                                                                                                                                                                                     | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                           | IV                                       |                                                          | <u>, CI</u>                                                                                 |
| INTACT1-2<br>TALENT<br>TRIBUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2                                                                                                                                               | therapy for first-l<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0                                                                                                                                                                                                                     | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                           |                                          | ✓ Random, 95%                                            | i CI                                                                                        |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =                                                                                                                                                                                                                                                                                                                                                                                                | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>-0.03)                                                                                                                                     | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%                                                                                                                                                                                  | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                           |                                          |                                                          | i CI                                                                                        |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br>1.2.2 EFGR TKIs vs Chemotherage                                                                                                                                                                                                                                                                                                                                                             | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br>by for first-l                                                                                                                   | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%                                                                                                                                                                                  | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                           |                                          |                                                          | - CI                                                                                        |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br>1.2.2 EFGR TKIs vs Chemotherage<br>First-SIGNAL                                                                                                                                                                                                                                                                                                                                             | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br>oy for first-l<br>0.3506 0.                                                                                                      | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0                                                                                                                                                   | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                           | IV                                       | ▲ Random, 95%                                            |                                                                                             |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br>1.2.2 EFGR TKIs vs Chemotherage<br>First-SIGNAL<br>GTOWG                                                                                                                                                                                                                                                                                                                                    | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br>vy for first-l<br>0.3506 0.<br>0.7372                                                                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1                                                                                                                                   | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.68, 0.98]                                                                                                                            | IV                                       | ▲ Random, 95%                                            | -<br>                                                                                       |
| INTACT1-2<br>TALENT<br>TRIBUTE<br><b>Subtotal (95% CI)</b><br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br><b>1.2.2 EFGR TKIs vs Chemotherap</b><br>First-SIGNAL<br>GTOWG<br>IPASS                                                                                                                                                                                                                                                                                                              | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-</b><br>0.3506 0.<br>0.7372<br>1.047 0.                                                                          | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2                                                                                                                   | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]                                                                                              | IV                                       |                                                          |                                                                                             |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br>1.2.2 EFGR TKIs vs Chemotherage<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH                                                                                                                                                                                                                                                                                                                  | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br>vy for first-l<br>0.3506 0.<br>0.7372                                                                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1                                                                                                   | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]                                                                    |                                          | Andom, 95%                                               | -<br>-                                                                                      |
| INTACT1-2<br>TALENT<br>TRIBUTE<br><b>Subtotal (95% CI)</b><br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br><b>1.2.2 EFGR TKIs vs Chemotherap</b><br>First-SIGNAL<br>GTOWG<br>IPASS                                                                                                                                                                                                                                                                                                              | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-</b><br>0.3506 0.<br>0.7372<br>1.047 0.                                                                          | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1                                                                                                   | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]                                                                                              |                                          | Andom, 95%                                               | -<br>                                                                                       |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br>1.2.2 EFGR TKIs vs Chemotherage<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH                                                                                                                                                                                                                                                                                                                  | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-l</b><br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.                                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1]                                                                                       | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]                                                           |                                          | - Random, 95%                                            | -<br>                                                                                       |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br>1.2.2 EFGR TKIs vs Chemotherap<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                              | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-l</b><br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1]                                                                                       | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]                                                           |                                          |                                                          | -<br>                                                                                       |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 7<br>Test for overall effect: Z = 2.18 (P = 1)<br><b>1.2.2 EFGR TKIs vs Chemotherap</b><br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4                                                                                                                                                                                                                  | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-l</b><br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1]                                                                                       | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]                                                           | IV                                       |                                                          | -<br>-<br>-<br>-                                                                            |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 7<br>Test for overall effect: Z = 2.18 (P = 1)<br><b>1.2.2 EFGR TKIs vs Chemotherap</b><br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4                                                                                                                                                                                                                  | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-l</b><br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1]                                                                                       | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]                                                           | -                                        | Andom, 95%                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 7<br>Test for overall effect: Z = 2.18 (P = 1)<br><b>1.2.2 EFGR TKIs vs Chemotherap</b><br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4                                                                                                                                                                                                                  | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-l</b><br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1]                                                                                       | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%                                                                     | 0.2                                      | 0.5 1 2                                                  | 5                                                                                           |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 7<br>Test for overall effect: Z = 2.18 (P = 1)<br><b>1.2.2 EFGR TKIs vs Chemotherap</b><br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4                                                                                                                                                                                                                  | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-l</b><br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                            | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1]                                                                                       | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%                                                                     | 0.2                                      |                                                          | 5                                                                                           |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 7<br>Test for overall effect: Z = 2.18 (P = 1.2.2 EFGR TKIs vs Chemotherape<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4<br>Test for overall effect: Z = 6.03 (P < 1)                                                                                                                                                                                 | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br><b>by for first-I</b><br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>:0.00001)                               | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); $I^2 = 0\%$<br>ine therapy<br>2813 1.42 [0<br>0.25 2.05 [2<br>1376 2.07 [1<br>2.15 [1<br>(P = 0.17); $I^2 = 40$                                                                                      | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>6<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%                                                                     | 0.2<br>avours E                          | 0.5 1 2<br>GFR TKIs Favo                                 | 5<br>burs control                                                                           |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br><b>1.2.2 EFGR TKIs vs Chemotherag</b><br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 5<br>Test for overall effect: Z = 6.03 (P <<br>Meta-analysis of the treatment                                                                                                                                           | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br>by for first-1<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>:0.00001)                                      | therapy for first-1<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1<br>(P = 0.17); I <sup>2</sup> = 40<br>s (epidermal g                                   | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%<br>F<br>rowth factor re-                                                 | 0.2<br>avours Efe                        | 0.5 1 2<br>GFR TKIs Favor                                | 5<br>burs control<br>ase inhibito                                                           |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 7<br>Test for overall effect: Z = 2.18 (P = 1.2.2 EFGR TKIs vs Chemotherape<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4<br>Test for overall effect: Z = 6.03 (P < 1)                                                                                                                                                                                 | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br>by for first-1<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>:0.00001)                                      | therapy for first-1<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1<br>(P = 0.17); I <sup>2</sup> = 40<br>s (epidermal g                                   | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%<br>F<br>rowth factor re-                                                 | 0.2<br>avours Efe                        | 0.5 1 2<br>GFR TKIs Favor                                | 5<br>burs control<br>ase inhibito                                                           |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P =<br><b>1.2.2 EFGR TKIs vs Chemotherag</b><br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 5<br>Test for overall effect: Z = 6.03 (P <<br>Meta-analysis of the treatment                                                                                                                                           | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>:0.03)<br>by for first-I<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>:0.00001)<br>c. the effects<br>-TKIs co        | therapy for first-I<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); $I^2 = 0\%$<br>ine therapy<br>2813 1.42 [0<br>0.25 2.05 [1<br>1376 2.07 [1<br>2.15 [1<br>(P = 0.17); $I^2 = 40$<br>is (epidermal g<br>mbined with c                                                  | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>0.05, 3.96]<br>1.58, 2.76]<br>%<br>F<br>rowth factor re<br>hemotherapy                                   | 0.2<br>avours Ed<br>ecceptor<br>vs. stal | 0.5 1 2<br>GFR TKIS Faw<br>tyrosine kin<br>ndard platinu | 5<br>burs control<br>ase inhibito<br>um doublet                                             |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1<br>Test for overall effect: Z = 2.18 (P = 1)<br><b>1.2.2 EFGR TKIs vs Chemotherage</b><br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4<br>Test for overall effect: Z = 6.03 (P < 1)<br>Meta-analysis of the treatment<br>EGFR-TKIs] alone or EGFR<br>chemotherapy as first-line treatment                                                              | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>0.03)<br>oy for first-l<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>0.00001)<br>ont effects<br>-TKIs co<br>eatment) | therapy for first-1<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1<br>(P = 0.17); I <sup>2</sup> = 40<br>s (epidermal g<br>mbined with c<br>on progressio | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>F<br>rowth factor re<br>hemotherapy<br>on-free surviva | 0.2<br>avours Ed<br>ecceptor<br>vs. star | 0.5 1 2<br>GFR TKIS Faw<br>tyrosine kin<br>ndard platinu | 5<br>burs control<br>ase inhibito<br>um doublet                                             |
| INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1<br>Test for overall effect: Z = 2.18 (P = 1<br>1.2.2 EFGR TKIs vs Chemotherapy<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4<br>Test for overall effect: Z = 6.03 (P < 1)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 4<br>Test for overall effect: Z = 6.03 (P < 1)<br>Meta-analysis of the treatment<br>EGFR-TKIs] alone or EGFR | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>0.03)<br>oy for first-l<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>0.00001)<br>ont effects<br>-TKIs co<br>eatment) | therapy for first-1<br>1645 0.73 [0<br>1692 0.95 [0<br>1476 0.80 [0<br>0.82 [0<br>(P = 0.53); I <sup>2</sup> = 0%<br>ine therapy<br>2813 1.42 [0<br>0.25 2.09 [1<br>1686 2.85 [2<br>1376 2.07 [1<br>2.15 [1<br>(P = 0.17); I <sup>2</sup> = 40<br>s (epidermal g<br>mbined with c<br>on progressio | ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>F<br>rowth factor re<br>hemotherapy<br>on-free surviva | 0.2<br>avours Ed<br>ecceptor<br>vs. star | 0.5 1 2<br>GFR TKIS Faw<br>tyrosine kin<br>ndard platinu | 5<br>burs control<br>ase inhibito<br>um doublet                                             |

|                     |                                                                            |                                       | Hazard Ratio                              | Hazard Ratio                                 |
|---------------------|----------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------------------|
|                     | Study or Subgroup log                                                      | [Hazard Ratio] SE                     | IV, Random, 95% Cl                        | IV. Random, 95% Cl                           |
|                     | 1.3.1 TKIs VS, Chemothera                                                  | ру                                    |                                           |                                              |
|                     | CT/06.05                                                                   | 0.174 0.2222                          | 1.19 [0.77, 1.84]                         |                                              |
|                     | CTONG-0806                                                                 | 0.0198 0.1361                         | 1.02 [0.78, 1.33]                         |                                              |
|                     | DELTA                                                                      | -0.0202 0.1787                        | 0.98 [0.69, 1.39]                         |                                              |
|                     | First-SIGNAL                                                               | 0 0.3319                              | 1.00 [0.52, 1.92]                         |                                              |
|                     | INTEREST                                                                   | 0.0198 0.1361                         | 1.02 [0.78, 1.33]                         | <u> </u>                                     |
|                     | IPASS<br>ML20322                                                           | 0.1655 0.1615<br>-0.478 0.362         | 1.18 [0.86, 1.62]<br>0.62 [0.30, 1.26]    |                                              |
|                     | TAILOR                                                                     | 0.3147 0.162                          | 1.37 [1.00, 1.88]                         | <u> </u>                                     |
|                     | TITAN                                                                      | -0.1625 0.1853                        | 0.85 [0.59, 1.22]                         |                                              |
|                     | TORCH                                                                      | 0.2546 0.1446                         | 1.29 [0.97, 1.71]                         | <u> </u>                                     |
|                     | V-15-32                                                                    | -0.5108 0.8195                        | 0.60 [0.12, 2.99]                         |                                              |
|                     | Subtotal (95% CI)                                                          |                                       | 1.08 [0.97, 1.21]                         | •                                            |
|                     | Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 1. | . ,                                   | 0.50); l <sup>2</sup> = 0%                |                                              |
|                     | 1.3.2 TKI VS Placebo                                                       |                                       |                                           |                                              |
|                     | BR21                                                                       | -0.3011 0.1793                        | 0.74 [0.52, 1.05]                         |                                              |
|                     | IFCT-GFPC 0502                                                             | 0.1989 0.2277                         |                                           |                                              |
|                     | ISEL                                                                       | 0.1484 0.197                          | 1.16 [0.79, 1.71]                         |                                              |
|                     | SATURN                                                                     | -0.2614 0.1183                        | 0.77 [0.61, 0.97]                         |                                              |
|                     | TOPICAL<br>Subtotal (95% CI)                                               | 0.01 0.1086                           | 1.01 [0.82, 1.25]                         | ▲                                            |
|                     | Heterogeneity: Tau <sup>2</sup> = 0.02;                                    | $Chi^2 = 7.40 df = 4.40 - 4$          | 0.93 [0.77, 1.12]                         | T                                            |
|                     | Test for overall effect: $Z = 0.02$ ;                                      | · · · · · · · · · · · · · · · · · · · | . 1∠), I <sup>-</sup> = 4070              |                                              |
|                     | 1.3.3 TKIS + Chemotherapy                                                  |                                       | 0.0010.05 4.44                            |                                              |
|                     | ATLAS<br>INTACT1-2                                                         | -0.1508 0.1455<br>-0.0943 0.155       |                                           |                                              |
|                     | TALENT                                                                     | 0.1398 0.191                          | 1.15 [0.79, 1.67]                         |                                              |
|                     | TRIBUTE                                                                    | -0.2485 0.1998                        | 0.78 [0.53, 1.15]                         | +                                            |
|                     | Subtotal (95% CI)                                                          | 0.2100 0.1000                         | 0.91 [0.77, 1.07]                         | ◆                                            |
|                     | Heterogeneity: $Tau^2 = 0.00$ ;<br>Test for overall effect: $Z = 1$ .      |                                       | 0.52); I <sup>2</sup> = 0%                |                                              |
|                     | Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.01;                  |                                       |                                           | + + + + + + + + + + + + + + + + + + + +      |
|                     | Test for overall effect: Z = 0.<br>Test for subaroup difference            | , ,                                   | 0.2<br>= 0.14). I <sup>2</sup> = 48.7% Fa | 0.5 1 2 5<br>vours EGFR TKIs Favours control |
|                     | Meta-analysis of the treat                                                 | ment effects (epiderr                 | nal growth factor recep                   | tor tyrosine kinase inhibitors               |
|                     |                                                                            |                                       |                                           | -type EGFR advanced non-                     |
|                     | small cell lung cancer. Ra                                                 |                                       |                                           |                                              |
|                     | 4. Anmerkungen/F                                                           | azit der Autoren                      | I                                         |                                              |
|                     | •.                                                                         |                                       | •                                         | GFR, EGFR-TKIs were                          |
|                     | inferior to standard c                                                     | hemotherapy bot                       | h for first-line treatr                   | ment and for second-                         |
|                     | line/third-line treatme                                                    | nt, but still super                   | ior to placebo in pa                      | tients unfit for further                     |
|                     | chemotherapy. And,                                                         | •                                     | • •                                       |                                              |
|                     | additive benefit over                                                      |                                       |                                           | ••                                           |
| Qi WX et al., 2015  | 1. Fragestellung                                                           |                                       |                                           |                                              |
| [49].               | To determine the effi                                                      | cacy of first-gene                    | ration epidermal gr                       | owth factor receptor                         |
| Anti-epidermal-     |                                                                            |                                       |                                           | -small cell lung cancer                      |
| •                   | •                                                                          | •                                     |                                           | U U                                          |
| growth-factor-      |                                                                            |                                       |                                           | performed an indirect                        |
| receptor agents and | meta-analysis to asse                                                      | ess the treatment                     | effects of EGFR-T                         | KIs in such patients.                        |
|                     |                                                                            |                                       |                                           |                                              |

in the treatment of advanced non-smallcell lung cancer: a meta-analysis of 17 phase III randomized controlled trials **Population:** advanced NSCLC, defined as inoperable locally advanced (stage IIIB) or metastatic or recurrent disease (stage IV), 1. Linie und 2./3. Linie sowie Erhaltungstherapie

*Interventionen und Komparatoren:* first-generation EGFR-TKIs (erlotinib or gefitinib) vs. standard chemotherapy or placebo

Endpunkte: PFS, OS

Suchzeitraum: bis 09/2014

## Anzahl eingeschlossene Studien/Patienten (Gesamt): 25 (4467); RCT

### Qualitätsbewertung der Studien:

Two reviewers independently assessed the quality of selected studies using the following criteria: (1) generation of allocation concealment, (2) description of dropouts, (3) masking of randomization, intervention, outcome assessment, (4) intention-to-treat analyses. Each criterion was rated as yes, no or unclear.

## Heterogenitätsuntersuchungen: Chi-Quadrat, I<sup>2</sup>

| Study Name (y)                          | No. Wild EGFR    | Therapy Regimen               | EGFR Assessment Method                |
|-----------------------------------------|------------------|-------------------------------|---------------------------------------|
| EGFR-TKIs vs. chemotherapy              |                  |                               |                                       |
| First-line therapy                      |                  |                               |                                       |
| First-SIGNAL (2012)14                   | 54               | Gefitinib vs. CisG            | Direct sequencing                     |
| IPASS (2009) <sup>15,16</sup>           | 176              | Gefitinib vs. CP              | ARMS                                  |
| GTOWG <sup>†</sup> (2010) <sup>17</sup> | 75               | Erlotinib vs. CV              | Direct sequencing                     |
| TORCH (2012) <sup>18</sup>              | 236              | Erlotinib vs. CisG            | Direct sequencing/Fragment analysis/M |
| ML 20322 (2012) <sup>19</sup>           | 36               | Erlotinib vs. vinorelbine     | Direct sequencing                     |
| Second/third-line therapy               |                  |                               |                                       |
| V-15-32 (2008) <sup>20</sup>            | 26               | Gefitinib vs. D               | Direct sequencing                     |
| INTEREST (2008) <sup>21,22</sup>        | 253              | Gefitinib vs. D               | Direct sequencing                     |
| KCSG-LU08-01 (2012) <sup>23</sup>       | 38               | Gefitinib vs. Pem             | Direct sequencing                     |
| CTONG-0806 (2013) <sup>24</sup>         | 157              | Gefitinib vs. Pem             | Direct sequencing                     |
| TAILOR (2013) <sup>25</sup>             | 219              | Erlotinib vs. D               | Direct sequencing + fragment analysis |
| DELTA $(2014)^{26}$                     | 199              | Erlotinib vs. D               | PCR-based method                      |
| TITAN $(2012)^{27}$                     | 149              | Erlotinib vs. pemetrexed or D | Direct sequencing                     |
| NCT01565538 (2014) <sup>28</sup>        | 123              | Erlotinib vs. pemetrexed      | ARMS                                  |
| $CT/06.05 (2013)^{29}$                  | 112              | Erlotinib vs. pemetrexed      | Direct sequencing                     |
| EGFR-TKIs vs. placebo                   |                  | Enotano (S. penedened         | Direct bequeiening                    |
| First-line therapy                      |                  |                               |                                       |
| TOPICAL (2010) <sup>30,31</sup>         | 362              | Erlotinib vs. placebo         | SequenomOncoCarta Panel               |
| Second/third                            | 502              | Enotano va praceco            | bequenomoneo cura Taner               |
| ISEL (2005) <sup>32</sup>               | 189              | Gefitinib vs. Placebo         | Direct sequencing, ARMS               |
| BR21 (2005) <sup>33,34</sup>            | 170              | Erlotinb vs. Placebo          | Direct sequencing, ARMS               |
| Maintenance therapy                     | 170              | Enotino VS. Filecoo           | Direct sequencing, Analis             |
| IFCT-GFPC 0502* (2012) <sup>35</sup>    | 106              | Erlotinib vs. Placebo         | NA                                    |
| INFORM $(2011)^{36}$                    | 49               | Gefitinib vs. Placebo         | NA                                    |
| SATURN (2010) <sup>37</sup>             | 388              | Erlotinib vs. Placebo         | Direct sequencing                     |
| EGFR-TKIs+chemotherapy vs. che          |                  | Enotino vs. Theebo            | Direct sequencing                     |
| First-line therapy                      | inouterupy atone |                               |                                       |
| INTACT 1 (2004) <sup>38,39</sup>        | 280              | Gefitinib+CisG vs. CisG       | Direct sequencing                     |
| INTACT 2 $(2004)^{40,39}$               | 200              | Gefitinib + CP vs. $CP$       | Direct sequencing                     |
| TALENT $(2007)^{41,42}$                 | NA               | Erlotinib + CisG vs. CisG     | NA                                    |
| TRIBUTE $(2007)^{43}$                   | 198              | Erlotinib+CP vs. CP           | Direct sequencing                     |
| Maintenance therapy                     | 198              | Enotimo ( er vs. er           | Direct sequencing                     |
| ATLAS (2013) <sup>44</sup>              | 295              | Erlotinib+B vs. B             | NA                                    |
| ATLAS (2015)                            | 295              | Enotimo + B vs. B             | 1874                                  |

## PFS

| Study or Subgroup         log[Hazard Ratio]         SE         IV. Random. 95% Cl         IV. Random. 95% Cl           1.1.1 EFGR TKIs vs Chemotherapy         CTONG-0806         0.6729         0.1805         1.96 [1.38, 2.79]           DELTA         0.3716         0.1471         1.45 [1.09, 1.93]           First-SIGNAL         0.3506         0.2813         1.42 [0.82, 2.46]           GTOWG         0.7372         0.25         2.09 [1.28, 3.41]           INTEREST         0.2151         0.142         1.24 [0.94, 1.64]           IPASS         1.047         0.1866         2.85 [2.05, 3.86]           KCSG-LU08-01         -0.5798         0.3459         0.50 [0.28, 0.81]           ML20322         -0.6931         0.3459         0.50 [0.25, 0.88]           NCT00440414         -0.0342         0.1797         1.25 [0.88, 1.78]           TDRCH         0.7275         0.1376         2.07 [1.58, 2.71]           V-15-32         -0.1625         0.4693         0.85 [0.34, 1.13]           Subtotal (95% Cl)         1.37 [1.10, 1.72]           Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); I <sup>2</sup> = 77%           Test for overall effect: Z = 2.75 (P = 0.005)           1.1.2 EFGR TKis + Chemotherapy vs Chemotherapy           ATLAS                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTONG-0806 0.6729 0.1805 1.96 [1.38, 2.79]<br>DELTA 0.3716 0.1471 1.45 [1.09, 1.93]<br>First-SIGNAL 0.3506 0.2813 1.42 [0.82, 2.46]<br>GTOWG 0.7372 0.25 2.09 [1.28, 3.41]<br>INTEREST 0.2151 0.142 1.24 [0.94, 1.64]<br>IPASS 1.047 0.1686 2.85 [2.05, 3.96]<br>KCSG-LU08-01 -0.5798 0.3559 0.56 [0.28, 1.12]<br>ML20322 -0.6931 0.3459 0.50 [0.25, 0.98]<br>NCT00440414 -0.0834 0.2023 0.92 [0.62, 1.37]<br>TAILOR 0.3425 0.1489 1.41 [1.05, 1.89]<br>TITAN 0.2231 0.1797 1.25 [0.88, 1.78]<br>TORCH 0.7275 0.1376 2.07 [1.58, 2.71]<br>V-15-32 -0.1625 0.4693 0.85 [0.34, 2.13]<br>Subtotal (95% CI) 1.37 [1.10, 1.72]<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); I <sup>2</sup> = 77%<br>Test for overall effect: Z = 2.75 (P = 0.006)<br>1.1.2 EFGR TKis+ Chemotherapy vs Chemotherapy<br>ATLAS -0.1625 0.145 0.85 [0.64, 1.13]<br>INTACT1-2 -0.3147 0.1645 0.73 [0.53, 1.01]<br>TALENT -0.0513 0.1692 0.95 [0.68, 1.32]<br>TRIBUTE -0.2231 0.1476 0.80 [0.60, 1.07]<br>Subtotal (95% CI) -0.33 df = 3 (P = 0.72); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 2.44 (P = 0.01)<br>1.1.3 EFGR TKis vs Placebo<br>IFCT-GFPC 0502 -0.0834 0.2162 0.92 [0.60, 1.41]<br>INFORM -0.1508 0.2957 0.86 [0.48, 1.54]<br>SATURN -0.2485 0.1075 0.78 [0.63, 0.96]<br>TOPICAL -0.01525 0.170 0.85 [0.69, 1.05]                                   |
| DELTA 0.3716 0.1471 1.45 [1.09, 1.93]<br>First-SIGNAL 0.3506 0.2813 1.42 [0.82, 2.46]<br>GTOWG 0.7372 0.25 2.09 [1.28, 3.41]<br>INTEREST 0.2151 0.142 1.24 [0.94, 1.64]<br>IPASS 1.047 0.1686 2.85 [2.04, 5, 3.96]<br>KCSG-LU08-01 -0.5798 0.3559 0.56 [0.28, 1.12]<br>ML20322 -0.6931 0.3459 0.50 [0.25, 0.98]<br>NCT00440414 -0.0834 0.2023 0.92 [0.62, 1.37]<br>TALOR 0.3425 0.1489 1.41 [1.05, 1.89]<br>TITAN 0.2231 0.1797 1.25 [0.88, 1.78]<br>TORCH 0.7275 0.1376 2.07 [1.58, 2.71]<br>V-15-32 -0.1625 0.4693 0.85 [0.34, 2.13]<br>Subtotal (95% CI) 1.37 [1.10, 1.72]<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); I <sup>2</sup> = 77%<br>Test for overall effect: Z = 2.75 (P = 0.006)<br>1.12 EFGR TKis+ Chemotherapy vs Chemotherapy<br>ATLAS -0.1625 0.145 0.85 [0.64, 1.13]<br>INTACT1-2 -0.3147 0.1645 0.73 [0.53, 1.01]<br>TALENT -0.0513 0.1692 0.95 [0.68, 1.32]<br>TRIBUTE -0.2231 0.1476 0.80 [0.06, 1.07]<br>Subtotal (95% CI) 0.83 [0.71, 0.96]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 2.74 (P = 0.01)<br>1.13 EFGR TKis vs Placebo<br>IFCT-GFPC 0502 -0.0834 0.2162 0.92 [0.60, 1.41]<br>INFORM -0.1508 0.2957 0.86 [0.48, 1.54]<br>SATURN -0.2485 0.1075 0.78 [0.63, 0.96]<br>TOPICAL -0.1625 0.1071 0.85 [0.64, 1.05] |
| First-SIGNAL 0.3506 0.2813 1.42 [0.82, 2.46]<br>GTOWG 0.7372 0.25 2.09 [1.28, 3.41]<br>INTEREST 0.2151 0.142 1.24 [0.94, 1.64]<br>IPASS 1.047 0.1686 2.85 [2.05, 3.96]<br>KCSG-LU08-01 $-0.5798$ 0.3559 0.56 [0.28, 1.12]<br>ML20322 $-0.6931$ 0.3459 0.50 [0.25, 0.98]<br>NCT00440414 $-0.0834$ 0.2023 0.92 [0.62, 1.37]<br>TAILOR 0.3425 0.1489 1.41 [1.05, 1.88]<br>TITAN 0.2231 0.1797 1.25 [0.88, 1.78]<br>TORCH 0.7275 0.1376 2.07 [1.58, 2.71]<br>V-15-32 $-0.1625$ 0.4693 0.85 [0.34, 2.13]<br>Subtotal (95% Cl) 1.37 [1.10, 1.72]<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); I <sup>2</sup> = 77%<br>Test for overall effect: Z = 2.75 (P = 0.006)<br>1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy<br>ATLAS $-0.1625$ 0.145 0.85 [0.64, 1.13]<br>INTACT1-2 $-0.3147$ 0.1645 0.73 [0.53, 1.01]<br>TALENT $-0.0513$ 0.1692 0.95 [0.68, 1.32]<br>TRIBUTE $-0.2231$ 0.1476 0.80 [0.60, 1.07]<br>Subtotal (95% Cl) 0.83 [0.71, 0.96]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); I <sup>2</sup> = 0%<br>Test for overall effect: Z = 2.44 (P = 0.01)<br>1.1.3 EFGR TKIs vs Placebo<br>IFCT-GFPC 0502 $-0.0834$ 0.2162 0.92 [0.60, 1.41]<br>INFORM $-0.1508$ 0.2957 0.86 [0.48, 1.54]<br>SATURN $-0.2485$ 0.1071 0.85 [0.69, 1.05]                                                                |
| GTOWG $0.7372$ $0.25$ $2.09$ [1.28, 3.41]         INTEREST $0.2151$ $0.142$ $1.24$ [ $0.94$ , 1.64]         IPASS $1.047$ $0.1686$ $2.85$ [ $2.05$ , 3.96]         KCSG-LU08-01 $-0.5798$ $0.3559$ $0.56$ [ $0.28$ , 1.12]         ML20322 $-0.6931$ $0.3459$ $0.50$ [ $0.25$ , 0.98]         NCT00440414 $-0.0834$ $0.2023$ $0.92$ [ $0.62$ , 1.37]         TALOR $0.3425$ $0.1489$ $1.41$ [ $1.05$ , 1.89]         TITAN $0.2231$ $0.1797$ $1.25$ [ $0.88$ , 1.78]         TORCH $0.7275$ $0.1376$ $2.07$ [ $1.58$ , 2.71]         V-15-32 $-0.1625$ $0.4693$ $0.85$ [ $0.34$ , 2.13]         Subtotal (95% Cl) $1.37$ [ $1.10$ , $1.72$ ]         Heterogeneity: Tau <sup>2</sup> = $0.12$ ; Chi <sup>2</sup> = $52.06$ , df = $12$ (P < $0.00001$ ); l <sup>2</sup> = $77\%$ Test for overall effect: $Z = 2.75$ (P = $0.006$ ) <b>11.2 EFGR TKIs+ Chemotherapy vs Chemotherapy</b> ATLAS $-0.1625$ $0.145$ $0.85$ [ $0.64$ , $1.13$ ]         INTACT1-2 $-0.3147$ $0.1692$ $0.95$ [ $0.68$ , $1.32$ ]         TRIBUTE $-0.2231$ $0.1476$ $0.80$ [ $0.60, 1.07$ ]                                                                                                                                                                                                                                                                                                                             |
| INTEREST 0.2151 0.142 1.24 (0.94, 1.64)<br>IPASS 1.047 0.1686 2.85 [2.05, 3.96]<br>KCSG-LU08-01 -0.5798 0.3559 0.56 [0.28, 1.12]<br>ML20322 -0.6931 0.3459 0.50 [0.25, 0.98]<br>NCT00440414 -0.0834 0.2023 0.92 [0.62, 1.37]<br>TAILOR 0.3425 0.1489 1.41 [1.05, 1.89]<br>TITAN 0.2231 0.1797 1.25 [0.88, 1.78]<br>TORCH 0.7275 0.1376 2.07 [1.58, 2.71]<br>V-15-32 -0.1625 0.4693 0.85 [0.34, 2.13]<br>Subtotal (95% CI) 1.37 [1.10, 1.72]<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); I <sup>2</sup> = 77%<br>Test for overall effect: $Z = 2.75$ (P = 0.006)<br>1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy<br>ATLAS -0.1625 0.145 0.85 [0.64, 1.13]<br>INTACT1-2 -0.3147 0.1645 0.73 [0.53, 1.01]<br>TALENT -0.0513 0.1692 0.95 [0.68, 1.32]<br>TRIBUTE -0.2231 0.1476 0.80 [0.60, 1.07]<br>Subtotal (95% CI) 0.83 [0.71, 0.96]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); I <sup>2</sup> = 0%<br>Test for overall effect: $Z = 2.44$ (P = 0.01)<br>1.1.3 EFGR TKIs vs Placebo<br>IFCT-GFPC 0502 -0.0834 0.2162 0.92 [0.60, 1.41]<br>INFORM -0.1508 0.2957 0.86 [0.48, 1.54]<br>SATURN -0.2485 0.1075 0.78 [0.63, 0.96]<br>TOPICAL -0.1625 0.1071 0.85 [0.69, 1.05]                                                                                                                             |
| IPASS       1.047       0.1686       2.85       [2.05, 3.96]         KCSG-LU08-01       -0.5798       0.3559       0.56       [0.28, 1.12]         ML20322       -0.6931       0.3459       0.50       [0.25, 0.98]         NCT00440414       -0.0834       0.2023       0.92       [0.62, 1.37]         TAILOR       0.3425       0.1489       1.41       [1.05, 1.89]         TITAN       0.2231       0.1797       1.25       [0.88, 1.78]         TORCH       0.7275       0.1376       2.07       [1.58, 2.71]         V-15-32       -0.1625       0.4693       0.85       [0.34, 2.13]         Subtotal (95% CI)       1.37       [1.10, 1.72]         Heterogeneity: Tau² = 0.12; Chi² = 52.06, df = 12 (P < 0.00001); l² = 77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KCSG-LU08-01 $-0.5798$ $0.3559$ $0.56$ $[0.28, 1.12]$ ML20322 $-0.6931$ $0.3459$ $0.50$ $[0.25, 0.98]$ NCT00440414 $-0.0834$ $0.2023$ $0.92$ $[0.62, 1.37]$ TAILOR $0.3425$ $0.1489$ $1.41$ $[105, 1.89]$ TITAN $0.2231$ $0.1797$ $1.25$ $[0.88, 1.78]$ TORCH $0.7275$ $0.1376$ $2.07$ $[1.58, 2.71]$ V-15-32 $-0.1625$ $0.4693$ $0.85$ $[0.34, 2.13]$ Subtotal (95% CI)       1.37 [1.10, 1.72]         Heterogeneity: Tau <sup>2</sup> = $0.12$ ; Chi <sup>2</sup> = $52.06$ , df = $12$ (P < $0.00001$ ); l <sup>2</sup> = $77\%$ Test for overall effect: Z = $2.75$ (P = $0.006$ )         11.2 EFGR TKIs+ Chemotherapy vs Chemotherapy         ATLAS $-0.1625$ $0.145$ $0.85$ $0.64$ , $1.13$ INTACT1-2 $-0.3147$ $0.1645$ $0.73$ $0.53$ , $1.01$ TALENT $-0.02231$ $0.476$ $0.83$ $0.2057$ $0.83$ $0.271$ , $0.96$ Heterogeneity: Tau <sup>2</sup> = $0.00$ ; Chi <sup>2</sup> = $1.33$ , df = $3$ (P = $0.72$ ); l <sup>2</sup> = $0\%$ Test for overall effect: Z = $2.44$ (P = $0.01$ ) <b>1.1</b>                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NCT00440414 -0.0834 0.2023 0.92 [0.62, 1.37]<br>TAILOR 0.3425 0.1489 1.41 [1.05, 1.89]<br>TITAN 0.2231 0.1797 1.25 [0.88, 1.78]<br>TORCH 0.7275 0.1376 2.07 [1.58, 2.71]<br>V-15-32 -0.1625 0.4693 0.85 [0.34, 2.13]<br>Subtotal (95% Cl) 1.37 [1.10, 1.72]<br>Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); l <sup>2</sup> = 77%<br>Test for overall effect: $Z = 2.75$ (P = 0.006)<br>1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy<br>ATLAS -0.1625 0.145 0.85 [0.64, 1.13]<br>INTACT1-2 -0.3147 0.1645 0.73 [0.53, 1.01]<br>TALENT -0.0513 0.1692 0.95 [0.68, 1.32]<br>TRIBUTE -0.2231 0.1476 0.80 [0.60, 1.07]<br>Subtotal (95% Cl) 0.83 [0.71, 0.96]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%<br>Test for overall effect: $Z = 2.44$ (P = 0.01)<br>1.1.3 EFGR TKIs vs Placebo<br>IFCT-GFPC 0502 -0.0834 0.2162 0.92 [0.60, 1.41]<br>INFORM -0.1508 0.2957 0.86 [0.48, 1.54]<br>SATURN -0.2485 0.1075 0.78 [0.63, 0.96]<br>TOPICAL -0.1625 0.1071 0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                             |
| TAILOR       0.3425       0.1489       1.41       [1.05, 1.89]         TITAN       0.2231       0.1797       1.25       [0.88, 1.78]         TORCH       0.7275       0.1376       2.07       [1.58, 2.71]         V-15-32       -0.1625       0.4693       0.85       [0.34, 2.13]         Subtotal (95% Cl)       1.37       [1.10, 1.72]         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); l <sup>2</sup> = 77%         Test for overall effect: Z = 2.75 (P = 0.006)         1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy         ATLAS       -0.1625       0.145       0.85 [0.64, 1.13]         INTACT1-2       -0.3147       0.1645       0.73 [0.53, 1.01]         TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% Cl)       0.83 [0.71, 0.96]       •         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%       •         Test for overall effect: Z = 2.44 (P = 0.01)       •       •         1.13 EFGR TKis vs Placebo       •       •       •         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]       •         INFORM       -0.1508                                                                                                           |
| TITAN       0.2231       0.1797       1.25       [0.88, 1.78]         TORCH       0.7275       0.1376       2.07       [1.58, 2.71]         V-15-32       -0.1625       0.4693       0.85       [0.34, 2.13]         Subtotal (95% Cl)       1.37       [1.10, 1.72]         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); l <sup>2</sup> = 77%         Test for overall effect: Z = 2.75 (P = 0.006)         1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy         ATLAS       -0.1625       0.145       0.85 [0.64, 1.13]         INTACT1-2       -0.3147       0.1645       0.73 [0.53, 1.01]         TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% Cl)       0.83 [0.71, 0.96]       •         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%       •         Test for overall effect: Z = 2.44 (P = 0.01)       •       • <b>1.1.3 EFGR TKIs vs Placebo</b> •       •       •         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]       •         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]       •         SATURN       -0.2485                                                                                                              |
| TORCH $0.7275$ $0.1376$ $2.07$ $[1.58, 2.71]$ V-15-32 $-0.1625$ $0.4693$ $0.85$ $[0.34, 2.13]$ Subtotal (95% Cl) $1.37$ $[1.10, 1.72]$ Heterogeneity: Tau <sup>2</sup> = $0.12$ ; Chi <sup>2</sup> = $52.06$ , df = $12$ (P < $0.00001$ ); l <sup>2</sup> = $77\%$ Test for overall effect: Z = $2.75$ (P = $0.006$ )         1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy         ATLAS $-0.1625$ $0.145$ $0.85$ $[0.64, 1.13]$ INTACT1-2 $-0.3147$ $0.1645$ $0.73$ $[0.53, 1.01]$ TALENT $-0.0513$ $0.1692$ $0.95$ $[0.68, 1.32]$ TRIBUTE $-0.2231$ $0.1476$ $0.80$ $[0.60, 1.07]$ Subtotal (95% Cl) $0.83$ $[0.71, 0.96]$ Heterogeneity: Tau <sup>2</sup> = $0.00$ ; Chi <sup>2</sup> = $1.33$ , df = 3 (P = $0.72$ ); l <sup>2</sup> = $0\%$ Test for overall effect: Z = $2.44$ (P = $0.01$ )         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502 $-0.0834$ $0.2162$ $0.92$ $[0.60, 1.41]$ INFORM $-0.1508$ $0.2957$ $0.86$ $[0.48, 1.54]$ SATURN $-0.2485$ $0.1075$ $0.78$ $[0.63, 0.96]$                                                                                                                                                                                                                                                                                                                                                                                            |
| V-15-32       -0.1625       0.4693       0.85       [0.34, 2.13]         Subtotal (95% CI)       1.37       [1.10, 1.72]         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); l <sup>2</sup> = 77%         Test for overall effect: Z = 2.75 (P = 0.006)         1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy         ATLAS       -0.1625       0.145       0.85 [0.64, 1.13]         INTACT1-2       -0.3147       0.1645       0.73 [0.53, 1.01]         TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% CI)       0.83 [0.71, 0.96]       •         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%       •         Test for overall effect: Z = 2.44 (P = 0.01)       •       •         1.1.3 EFGR TKIs vs Placebo       IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]       •         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]       •         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]       •                                                                                                                                                             |
| Subtotal (95% Cl)       1.37 [1.10, 1.72]         Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); I <sup>2</sup> = 77%         Test for overall effect: Z = 2.75 (P = 0.006)         1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy         ATLAS       -0.1625       0.145       0.85 [0.64, 1.13]         INTACT1-2       -0.3147       0.1645       0.73 [0.53, 1.01]         TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% Cl)       0.83 [0.71, 0.96]       •         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); I <sup>2</sup> = 0%       •         Test for overall effect: Z = 2.44 (P = 0.01)       •       •         1.1.3 EFGR TKIs vs Placebo       •       •       •         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]       •         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]       •         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]       •         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]       •                                                                                                                                                                                                          |
| Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 52.06, df = 12 (P < 0.00001); I <sup>2</sup> = 77%         Test for overall effect: $Z = 2.75$ (P = 0.006) <b>1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy</b> ATLAS       -0.1625       0.145       0.85 [0.64, 1.13]         INTACT1-2       -0.3147       0.1645       0.73 [0.53, 1.01]         TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% CI)       0.83 [0.71, 0.96]       •         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); I <sup>2</sup> = 0%       •         Test for overall effect: $Z = 2.44$ (P = 0.01)       •       • <b>1.13 EFGR TKis vs Placebo</b> IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]       •         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]       •                                                                                                                                                                                                                                                                                                                   |
| Test for overall effect: $Z = 2.75 (P = 0.006)$ <b>1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy</b> ATLAS       -0.1625       0.145       0.85 [0.64, 1.13]         INTACT1-2       -0.3147       0.1645       0.73 [0.53, 1.01]         TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% CI)       0.83 [0.71, 0.96]         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); I <sup>2</sup> = 0%         Test for overall effect: $Z = 2.44 (P = 0.01)$ <b>1.1.3 EFGR TKIs vs Placebo</b> IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.1.2 EFGR TKIs+ Chemotherapy vs Chemotherapy         ATLAS $-0.1625$ $0.145$ $0.85$ $[0.64, 1.13]$ INTACT1-2 $-0.3147$ $0.1645$ $0.73$ $[0.53, 1.01]$ TALENT $-0.0513$ $0.1692$ $0.95$ $[0.68, 1.32]$ TRIBUTE $-0.2231$ $0.1476$ $0.80$ $[0.60, 1.07]$ Subtotal (95% CI) $0.83$ $[0.71, 0.96]$ Heterogeneity: Tau <sup>2</sup> = $0.00$ ; Chi <sup>2</sup> = $1.33$ , df = $3$ (P = $0.72$ ); l <sup>2</sup> = $0\%$ Test for overall effect: Z = $2.44$ (P = $0.01$ ) <b>1.1.3 EFGR TKIs vs Placebo</b> IFCT-GFPC 0502 $-0.0834$ $0.2162$ $0.92$ $[0.60, 1.41]$ INFORM $-0.1508$ $0.2957$ $0.86$ $[0.48, 1.54]$ SATURN $-0.2485$ $0.1075$ $0.78$ $[0.63, 0.96]$ TOPICAL $-0.1625$ $0.1071$ $0.85$ $[0.69, 1.05]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATLAS $-0.1625$ $0.145$ $0.85$ [ $0.64$ , $1.13$ ]         INTACT1-2 $-0.3147$ $0.1645$ $0.73$ [ $0.53$ , $1.01$ ]         TALENT $-0.0513$ $0.1692$ $0.95$ [ $0.68$ , $1.32$ ]         TRIBUTE $-0.2231$ $0.1476$ $0.80$ [ $0.60$ , $1.07$ ]         Subtotal (95% CI) $0.83$ [ $0.71$ , $0.96$ ]         Heterogeneity: Tau <sup>2</sup> = $0.00$ ; Chi <sup>2</sup> = $1.33$ , df = $3$ (P = $0.72$ ); l <sup>2</sup> = $0\%$ Test for overall effect: Z = $2.44$ (P = $0.01$ ) <b>1.1.3 EFGR TKIs vs Placebo</b> IFCT-GFPC 0502 $-0.0834$ $0.2162$ $0.92$ [ $0.60$ , $1.41$ ]         INFORM $-0.1508$ $0.2957$ $0.86$ [ $0.48$ , $1.54$ ]         SATURN $-0.2485$ $0.1075$ $0.78$ [ $0.63, 0.96$ ]         TOPICAL $-0.1625$ $0.1071$ $0.85$ [ $0.69, 1.05$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INTACT1-2       -0.3147       0.1645       0.73 [0.53, 1.01]         TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% Cl)       0.83 [0.71, 0.96]         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%         Test for overall effect: Z = 2.44 (P = 0.01)         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TALENT       -0.0513       0.1692       0.95 [0.68, 1.32]         TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% CI)       0.83 [0.71, 0.96]         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%         Test for overall effect: Z = 2.44 (P = 0.01)         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TRIBUTE       -0.2231       0.1476       0.80 [0.60, 1.07]         Subtotal (95% CI)       0.83 [0.71, 0.96]         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%         Test for overall effect: Z = 2.44 (P = 0.01)         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Subtotal (95% CI)       0.83 [0.71, 0.96]         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%         Test for overall effect: Z = 2.44 (P = 0.01)         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.33, df = 3 (P = 0.72); l <sup>2</sup> = 0%         Test for overall effect: Z = 2.44 (P = 0.01)         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test for overall effect: Z = 2.44 (P = 0.01)         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test for overall effect: Z = 2.44 (P = 0.01)         1.1.3 EFGR TKIs vs Placebo         IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IFCT-GFPC 0502       -0.0834       0.2162       0.92 [0.60, 1.41]         INFORM       -0.1508       0.2957       0.86 [0.48, 1.54]         SATURN       -0.2485       0.1075       0.78 [0.63, 0.96]         TOPICAL       -0.1625       0.1071       0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| INFORM         -0.1508         0.2957         0.86 [0.48, 1.54]           SATURN         -0.2485         0.1075         0.78 [0.63, 0.96]           TOPICAL         -0.1625         0.1071         0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SATURN         -0.2485         0.1075         0.78 [0.63, 0.96]           TOPICAL         -0.1625         0.1071         0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SATURN         -0.2485         0.1075         0.78 [0.63, 0.96]           TOPICAL         -0.1625         0.1071         0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TOPICAL -0.1625 0.1071 0.85 [0.69, 1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Subtotal (95% CI) 0.83 [0.72, 0.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.62, df = 3 (P = 0.89); l <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test for overall effect: Z = 2.73 (P = 0.006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.2 0.5 1 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Favours EGFR TKIs Favours cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.62, df = 3 (P = 0.89); l <sup>2</sup> = 0%<br>Test for overall effect: Z = 2.73 (P = 0.006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     | NT 15 (1 ( NY/14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Progression-free</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Survival                                | Heterogeneity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Within Subgrou                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. Trials                                                                                                                                                                                                          | No. Patients With<br>Wild EGFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HR (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р                                       | <b>I</b> <sup>2</sup> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Р                                                   |
| Trials of more than 50 patients with WT                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Line of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - (                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| First-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                   | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.15 (1.68, 2.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.001                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.17                                                |
| Second/third-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                   | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.35 (1.13, 1.61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.001                                 | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12                                                |
| Subgroup heterogeneity $(P=0.018)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Kinds of agents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                   | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 47 (1 17 1 86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                |
| Erlotinib<br>Gefitinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>4                                                                                                                                                                                                              | 1001<br>640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.47 (1.17, 1.86)<br>1.79 (1.19, 2.68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001<br>0.005                          | 65<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002                                               |
| Subgroup heterogeneity ( $P=0.396$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     | 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.79 (1.19, 2.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002                                               |
| EGFR analysis method                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Direct sequencing only                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                   | 688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.51 (1.21, 1.89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.001                                 | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                |
| More sensitive platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                   | 953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.63 (1.17, 2.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.004                                   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                             |
| Subgroup heterogeneity ( $P=0.772$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| All included trials $(N=13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Line of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| First-line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                   | 577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.65 (1.06, 2.58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                    | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                             |
| Second/third-line<br>Subgroup heterogeneity (P=0.236)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                   | 1164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.25 (1.02, 1.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                    | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                |
| Kinds of agents $(F = 0.250)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Erlotinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                   | 1037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.33 (1.01, 1.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                    | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                             |
| Gefitinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                   | 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.33(1.01, 1.70)<br>1.40(0.92, 2.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                    | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                             |
| Subgroup heterogeneity $(P=0.801)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.22, 2.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.001                                              |
| EGFR analysis method                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| Direct sequencing only                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                   | 788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.19 (0.88, 1.62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.26                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002                                               |
| More sensitive platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                   | 953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.63 (1.17, 2.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.004                                   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                             |
| Subgroup heterogeneity $(P=0.249)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     | Hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     | SE IV, Rando                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV                                      | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y vs Chemo                                                                                                                                                                                                          | SE IV. Rando<br>otherapy for first-l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m, 95% Cl<br>ine therapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap<br>INTACT1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.3147 0.                                                                                                                                                                                                          | SE IV. Rando<br>otherapy for first-I<br>.1645 0.73 [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m, 95% Cl<br>ine therapy<br>0.53, 1.01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap<br>INTACT1-2<br>TALENT                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.3147 0.<br>-0.0513 0.                                                                                                                                                                                            | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           .1692         0.95 [0]         0.95 [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m. 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap<br>INTACT1-2<br>TALENT<br>TRIBUTE                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.3147 0.                                                                                                                                                                                                          | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m. 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                               | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.                                                                                                                                                                  | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           .1645         0.73 [0]         1692         0.95 [0]           .1476         0.80 [0]         0.82 [0]         0.82 [0]                                                                                                                                                                                                                                                                                                                                                                                                | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>.68, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2                                                                                                                                                  | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           .1645         0.73 [0]         1692         0.95 [0]           .1476         0.80 [0]         0.82 [0]         0.82 [0]                                                                                                                                                                                                                                                                                                                                                                                                | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>.68, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | īv                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P                                                                                                                                                                                                                                                                                                        | vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)                                                                                                                                       | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           0         (P = 0.53); I <sup>2</sup> = 0%         12         0%                                                                                                                                                                                                                                                                                                                               | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>.68, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera                                                                                                                                                                                                                                                                       | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-                                                                                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           0         (P = 0.53);  2 = 0%         110 therapy                                                                                                                                                                                                                                                                                                                                             | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL                                                                                                                                                                                                                                                       | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.                                                                                                       | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           0         (P = 0.53);  2 = 0%         110 therapy                                                                                                                                                                                                                                                                                                                                             | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>.68, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera                                                                                                                                                                                                                                                                       | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-                                                                                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           0         (P = 0.53); I <sup>2</sup> = 0%         0         0           line therapy         .2813         1.42 [0]         0                                                                                                                                                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL                                                                                                                                                                                                                                                       | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.                                                                                                       | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           1010         0.82 [0]         0         0           1011         0.53); I² = 0%         I         I           1011         0.25         2.09 [1]         I                                                                                                                                                                                                                                    | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS                                                                                                                                                                                                                                     | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.                                                                                 | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           .1692         0.95 [0]         0.82 [0]           .1476         0.80 [0]         0.82 [0]           .1476         0.80 [0]         0.82 [0]           .1476         0.80 [1]         0.82 [0]           .1476         0.80 [1]         0.82 [0]           .1476         0.80 [1]         0.82 [0]           .1085         1.42 [0]         0.25 [2.09 [1]           .1686         2.85 [2]         0.85 [2]                                                                                                            | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH                                                                                                                                                                                                                             | v vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372                                                                                             | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           .1692         0.95 [0]         0.82 [0]           .1476         0.80 [0]         0.82 [0]           .1476         0.80 [0]         0.82 [0]           .1476         0.80 [0]         0.82 [0]           .1476         0.80 [0]         0.82 [0]           .1085         1.42 [0]         0.25           .1686         2.85 [2]         1.376                                                                                                                                                                           | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)                                                                                                                                                                                                       | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.                                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           100 [0]         (P = 0.53); I <sup>2</sup> = 0%         0.82 [0]           101 [0]         0.25         2.09 [1]           1686         2.85 [2]         1376         2.07 [1]           1376         2.07 [1]         2.15 [1]                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br><b>.68, 2.76]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap;<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =                                                                                                                                         | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           100 [0]         (P = 0.53); I <sup>2</sup> = 0%         0.82 [0]           101 [0]         0.25         2.09 [1]           1686         2.85 [2]         1376         2.07 [1]           1376         2.07 [1]         2.15 [1]                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br><b>.68, 2.76]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)                                                                                                                                                                                                       | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           100 [0]         (P = 0.53); I <sup>2</sup> = 0%         0.82 [0]           101 [0]         0.25         2.09 [1]           1686         2.85 [2]         1376         2.07 [1]           1376         2.07 [1]         2.15 [1]                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br><b>.68, 2.76]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap;<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =                                                                                                                                         | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           100 [0]         (P = 0.53); I <sup>2</sup> = 0%         0.82 [0]           101 [0]         0.25         2.09 [1]           1686         2.85 [2]         1376         2.07 [1]           1376         2.07 [1]         2.15 [1]                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br><b>.68, 2.76]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap;<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =                                                                                                                                         | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           100 [0]         (P = 0.53); I <sup>2</sup> = 0%         0.82 [0]           101 [0]         0.25         2.09 [1]           1686         2.85 [2]         1376         2.07 [1]           1376         2.07 [1]         2.15 [1]                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br><b>.68, 2.76]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1.2.1 EFGR TKIs+ Chemotherap;<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =                                                                                                                                         | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           100 [0]         (P = 0.53); I <sup>2</sup> = 0%         0.82 [0]           101 [0]         0.25         2.09 [1]           1686         2.85 [2]         1376         2.07 [1]           1376         2.07 [1]         2.15 [1]                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2                                     | 2. Random, 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>−</sup><br>2 5                                 |
| 1.2.1 EFGR TKIs+ Chemotherap;<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =                                                                                                                                         | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3                                                    | SE         IV. Rando           otherapy for first-I         1645         0.73 [0]           1692         0.95 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           100 [0]         (P = 0.53); I <sup>2</sup> = 0%         0.82 [0]           101 [0]         0.25         2.09 [1]           1686         2.85 [2]         1376         2.07 [1]           1376         2.07 [1]         2.15 [1]                                                                                                                                 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2                                     | • Random, 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>−</sup><br>2 5                                 |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =<br>Test for overall effect: Z = 6.03 (P                                                                                                 | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)                                      | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           (P = 0.53); I² = 0%         1476         0.80 [0]           line therapy         2813         1.42 [0]         0.25         2.09 [1]           0.25         2.09 [1]         1.686         2.85 [2]         1376         2.07 [1]           1.376         2.07 [1]         2.15 [1]         1         (P = 0.17); I² = 40                                                                     | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2<br>avours E0                        | 0.5 1 2<br>GFR TKIs Fav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 5<br>vours control                                |
| 1.2.1 EFGR TKIs+ Chemotherap;<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =                                                                                                                                         | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)                                      | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           (P = 0.53); I² = 0%         1476         0.80 [0]           line therapy         2813         1.42 [0]         0.25         2.09 [1]           0.25         2.09 [1]         1.686         2.85 [2]         1376         2.07 [1]           1.376         2.07 [1]         2.15 [1]         1         (P = 0.17); I² = 40                                                                     | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br><b>.68, 0.98]</b><br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.76]<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2<br>avours E0                        | 0.5 1 2<br>GFR TKIs Fav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 5<br>vours control                                |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =<br>Test for overall effect: Z = 6.03 (P                                                                                                 | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)<br>ent effects                       | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]           0.82 [0]         0.82 [0]         0.82 [0]           1686         2.85 [2]         1.42 [0]           1686         2.85 [2]         1.376         2.07 [1]           1.686         2.85 [2]         1.376         2.07 [1]           2.15 [1]         (P = 0.17); I <sup>2</sup> = 40         1.42 [0]                                                                                                  | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>Final constant of the second seco | 0.2<br>avours E0                        | 2. Random, 95'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | % Cl                                                |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =<br>Test for overall effect: Z = 6.03 (P<br>Meta-analysis of the treatmone<br>[EGFR-TKIs] alone or EGFF                                  | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372 1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)                                         | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]         0           (P = 0.53); I <sup>2</sup> = 0%         1476         0.80 [0]           (Ine therapy         2813         1.42 [0]         0.25         2.09 [1]           1686         2.85 [2]         1.376         2.07 [1]         2.15 [1]           1(P = 0.17); I <sup>2</sup> = 40         12 = 40         14 = 40         14 = 40           s         (epidermal g)         14 = 40         14 = 40 | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>0.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>Final constraints of the sector reserves t | 0.2<br>avours E<br>ecceptor<br>vs. stai | 2. Random, 95<br>4. Ran | 2 5<br>vours control<br>nase inhibito<br>um doublet |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =<br>Test for overall effect: Z = 6.03 (P<br>Meta-analysis of the treatment<br>[EGFR-TKIs] alone or EGFF<br>chemotherapy as first-line to | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)<br>ent effect:<br>R-TKIs coreatment) | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           1687         1.42 [0]         0.25         2.09 [1]           1686         2.85 [2]         1.376         2.07 [1]           1776         2.07 [1]         2.15 [1]         (P = 0.17); I <sup>2</sup> = 40           s (epidermal g         ombined with c         on progressio                                                                      | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2<br>avours E0<br>eceptor<br>vs. star | 2. Random, 95<br>4. Ran | 2 5<br>vours control<br>nase inhibito<br>um doublet |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =<br>Test for overall effect: Z = 6.03 (P<br>Meta-analysis of the treatmone<br>[EGFR-TKIs] alone or EGFF                                  | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)<br>ent effect:<br>R-TKIs coreatment) | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           1687         1.42 [0]         0.25         2.09 [1]           1686         2.85 [2]         1.376         2.07 [1]           1776         2.07 [1]         2.15 [1]         (P = 0.17); I <sup>2</sup> = 40           s (epidermal g         ombined with c         on progressio                                                                      | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2<br>avours E0<br>eceptor<br>vs. star | 2. Random, 95<br>4. Ran | 2 5<br>vours control<br>nase inhibito<br>um doublet |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =<br>Test for overall effect: Z = 6.03 (P<br>Meta-analysis of the treatment<br>[EGFR-TKIs] alone or EGFF<br>chemotherapy as first-line to | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)<br>ent effect:<br>R-TKIs coreatment) | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           1687         1.42 [0]         0.25         2.09 [1]           1686         2.85 [2]         1.376         2.07 [1]           1776         2.07 [1]         2.15 [1]         (P = 0.17); I <sup>2</sup> = 40           s (epidermal g         ombined with c         on progressio                                                                      | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2<br>avours E0<br>eceptor<br>vs. star | 2. Random, 95<br>4. Ran | 2 5<br>vours control<br>nase inhibito<br>um doublet |
| 1.2.1 EFGR TKIs+ Chemotherapy<br>INTACT1-2<br>TALENT<br>TRIBUTE<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> =<br>Test for overall effect: Z = 2.18 (P<br>1.2.2 EFGR TKIs vs Chemothera<br>First-SIGNAL<br>GTOWG<br>IPASS<br>TORCH<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> =<br>Test for overall effect: Z = 6.03 (P<br>Meta-analysis of the treatment<br>[EGFR-TKIs] alone or EGFF<br>chemotherapy as first-line to | y vs Chemo<br>-0.3147 0.<br>-0.0513 0.<br>-0.2231 0.<br>1.28, df = 2<br>= 0.03)<br>py for first-<br>0.3506 0.<br>0.7372<br>1.047 0.<br>0.7275 0.<br>5.01, df = 3<br>< 0.00001)<br>ent effect:<br>R-TKIs coreatment) | SE         IV. Rando           otherapy for first-1         1645         0.73 [0]           1692         0.95 [0]         1476         0.80 [0]           1476         0.80 [0]         0.82 [0]           1476         0.80 [0]         0.82 [0]           1687         1.42 [0]         0.25         2.09 [1]           1686         2.85 [2]         1.376         2.07 [1]           1776         2.07 [1]         2.15 [1]         (P = 0.17); I <sup>2</sup> = 40           s (epidermal g         ombined with c         on progressio                                                                      | m, 95% Cl<br>ine therapy<br>0.53, 1.01]<br>0.68, 1.32]<br>0.60, 1.07]<br>0.68, 0.98]<br>0.82, 2.46]<br>1.28, 3.41]<br>2.05, 3.96]<br>1.58, 2.71]<br>0.68, 2.76]<br>%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2<br>avours E0<br>eceptor<br>vs. star | 2. Random, 95<br>4. Ran | 2 5<br>vours control<br>nase inhibito<br>um doublet |

|                                                            |                                                                                                                                                           |                            |                  | Hazard Ratio                           | Hazard Ratio                                           |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|----------------------------------------|--------------------------------------------------------|
|                                                            | Study or Subgroup log[Haza                                                                                                                                | ard Ratio]                 | SE               |                                        |                                                        |
|                                                            | 1.3.1 TKIs VS, Chemotherapy                                                                                                                               |                            |                  |                                        |                                                        |
|                                                            | CT/06.05<br>CTONG-0806                                                                                                                                    | 0.174 0                    |                  | 1.19 [0.77, 1.84]<br>1.02 [0.78, 1.33] |                                                        |
|                                                            | DELTA                                                                                                                                                     | -0.0202 0                  |                  | 0.98 [0.69, 1.39]                      |                                                        |
|                                                            | First-SIGNAL                                                                                                                                              |                            | 0.3319           | 1.00 [0.52, 1.92]                      |                                                        |
|                                                            | INTEREST                                                                                                                                                  | 0.0198 0                   |                  | 1.02 [0.78, 1.33]                      |                                                        |
|                                                            | IPASS                                                                                                                                                     | 0.1655 0                   | 0.1615           | 1.18 [0.86, 1.62]                      |                                                        |
|                                                            | ML20322                                                                                                                                                   | -0.478                     |                  | 0.62 [0.30, 1.26]                      |                                                        |
|                                                            | TAILOR<br>TITAN                                                                                                                                           | 0.3147<br>-0.1625 (        |                  | 1.37 [1.00, 1.88]<br>0.85 [0.59, 1.22] |                                                        |
|                                                            | TORCH                                                                                                                                                     | 0.2546 0                   |                  | 1.29 [0.97, 1.71]                      |                                                        |
|                                                            | V-15-32                                                                                                                                                   | -0.5108 0                  |                  | 0.60 [0.12, 2.99]                      |                                                        |
|                                                            | Subtotal (95% CI)                                                                                                                                         |                            |                  | 1.08 [0.97, 1.21]                      | •                                                      |
|                                                            | Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup><br>Test for overall effect: Z = 1.45 (P                                                          |                            | 10 (P = 0        | .50); I <sup>2</sup> = 0%              |                                                        |
|                                                            | 1.3.2 TKI VS Placebo                                                                                                                                      |                            |                  |                                        |                                                        |
|                                                            | BR21                                                                                                                                                      | -0.3011 0                  |                  | 0.74 [0.52, 1.05]                      |                                                        |
|                                                            | IFCT-GFPC 0502                                                                                                                                            | 0.1989 0                   |                  | 1.22 [0.78, 1.91]                      |                                                        |
|                                                            | ISEL                                                                                                                                                      | 0.1484                     |                  | 1.16 [0.79, 1.71]                      |                                                        |
|                                                            | SATURN<br>TOPICAL                                                                                                                                         | -0.2614 0<br>0.01 0        |                  | 0.77 [0.61, 0.97]<br>1.01 [0.82, 1.25] |                                                        |
|                                                            | Subtotal (95% CI)                                                                                                                                         | 0.01 (                     | 0.1000           | 0.93 [0.77, 1.12]                      |                                                        |
|                                                            | Heterogeneity: Tau <sup>2</sup> = 0.02; Chi <sup>2</sup><br>Test for overall effect: Z = 0.75 (P                                                          |                            | 4 (P = 0.1       | • • •                                  |                                                        |
|                                                            | 1.3.3 TKIS + Chemotherapy                                                                                                                                 |                            |                  |                                        |                                                        |
|                                                            | ATLAS                                                                                                                                                     | -0.1508 0                  |                  | 0.86 [0.65, 1.14]                      |                                                        |
|                                                            | INTACT1-2<br>TALENT                                                                                                                                       | -0.0943<br>0.1398          |                  | 0.91 [0.67, 1.23]<br>1.15 [0.79, 1.67] |                                                        |
|                                                            | TRIBUTE                                                                                                                                                   | -0.2485 0                  |                  | 0.78 [0.53, 1.15]                      |                                                        |
|                                                            | Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> :<br>Test for overall effect: Z = 1.13 (P                                   |                            | 3 (P = 0.5       | 0.91 [0.77, 1.07]                      |                                                        |
|                                                            | Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> :<br>Test for overall effect: Z = 0.16 (P<br>Test for subaroup differences; Ch | P = 0.87)                  |                  |                                        | 0.2 0.5 1 2 5<br>Favours EGFR TKIs Favours control     |
|                                                            |                                                                                                                                                           |                            |                  |                                        | ceptor tyrosine kinase inhibitors                      |
|                                                            |                                                                                                                                                           | ,                          | •                | 0                                      | wild-type EGFR advanced non-                           |
|                                                            | small cell lung cancer. Rando                                                                                                                             |                            |                  | -                                      |                                                        |
|                                                            | 4. Anmerkungen/Fazit                                                                                                                                      |                            |                  |                                        |                                                        |
|                                                            | _                                                                                                                                                         |                            |                  | harboring WT                           | EGFR, EGFR-TKIs were                                   |
|                                                            | inferior to standard chem<br>line/third-line treatment,<br>chemotherapy. And, add                                                                         | but still s<br>lition of E | superic<br>EGFR- | or to placebo in<br>TKIs to chemo      | n patients unfit for further<br>otherapy could provide |
|                                                            | additive benefit over che                                                                                                                                 |                            | py alo           | ne in such pat                         | ients.                                                 |
|                                                            | Anmerkungen der FB M                                                                                                                                      |                            | <b>(</b> );      | fint f                                 |                                                        |
|                                                            | <ul> <li>The authors decl</li> </ul>                                                                                                                      | are no c                   | onflicts         | s of interest.                         |                                                        |
|                                                            |                                                                                                                                                           |                            |                  |                                        |                                                        |
|                                                            | 1. Fragestellung                                                                                                                                          |                            |                  |                                        |                                                        |
| Burotto M, et al.,<br>2015 [9].<br>Gefitinib and Erlotinib | The objective of this stud                                                                                                                                | •                          | o comp           | pare the efficac                       | and toxicity of erlotinib,                             |
|                                                            |                                                                                                                                                           | •                          | o comp           | pare the efficac                       | and toxicity of erlotinib,                             |

| Small Cell Lung                         | Population: advanced or metastatic stage IIIB or IV NSCLC according to the sixth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cancer: A Meta-                         | American Joint Committee on Cancer classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Analysis of Toxicity<br>and Efficacy of | Intervention: erlotinib or gefitinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Randomized Clinical                     | Komparatoren: control arm did not receive erlotinib, gefitinib, or any other TKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trials                                  | Endpunkte: primär: PFS or OS; sekundär: nicht spezifiziert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | Suchzeitraum: 01/2003 – 12/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | Anzahl eingeschlossene Studien/Patienten (Gesamt): Erlotinib: 12/4 227, Gefitinib: 16/7 043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | Qualitätsbewertung der Studien: Jadad-Score (phase II and phase III randomized studies; the treatment arm receiving the EGFR TKI had <40 patients)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | Heterogenitätsuntersuchungen: chi-square test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | <ul> <li>trials had median/mean Jadad scores of 3/3.5 and 3/3 for gefitinib and erlotinib, respectively</li> <li>12 erlotinib reports included 7 phase III and 5 randomized phase II trials</li> <li>16 gefitinib studies were 11 phase III and 5 randomized phase II trials</li> <li>for efficacy analyses comparing median OS and PFS distributions in the experimental arms of the erlotinib and gefitinib studies, we also analyzed trials according to the characteristics of the patients enrolled and the line of treatment, using the following groups:         <ul> <li>monotherapy in second line,</li> <li>monotherapy in first line (including the four trials in patient with mutated EGFR),</li> <li>maintenance or consolidation in first line,</li> <li>and monotherapy in the elderly population.</li> </ul> </li> <li>Toxitizität         <ul> <li>There is no direct comparison between erlotinib and gefitinib.</li> <li>Clinical toxicities including pruritus rash aporexia diarthea nausea</li> </ul> </li> </ul> |
|                                         | <ul> <li>Clinical toxicities, including pruritus, rash, anorexia, diarrhea, nausea,<br/>fatigue, mucositis, paronychia, and anemia, were similar between erlotinib<br/>and gefitinib, although somestatistical differences were observed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Study                                                                                                                                                                                                                                                                                                                                                                                                          | ORR                     | OR                                                                                                                                  | 95% CI                                                                                                                                                                                                             |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| EGFR MT Afatinib 40-50 mg<br>Wu 2014<br>Miller 2012<br>Sequist 2013<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2 = 0$ , $p = .3743$                                                                                                                                                                                                                                   | <br>⊕<br>♦              | 6.69<br>9.81<br>4.31<br><b>5.53</b><br><b>5.53</b>                                                                                  | [4.07–11.00]<br>[1.88–51.21]<br>[2.60–7.14]<br><b>[3.91–7.83]</b><br><b>[3.91–7.83]</b>                                                                                                                            |     |
| EGFR MT Erlotinib 150 mg<br>Optimal 2010<br>Eurtac 2012<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2 = 0$ , $p = .8543$                                                                                                                                                                                                                                               | +<br>+<br>*<br>*        | 8.41<br>7.64<br><b>8.00</b><br><b>8.00</b>                                                                                          | [4.01–17.63]<br>[3.72–15.68]<br><b>[4.78–13.40]</b><br><b>[4.78–13.40]</b>                                                                                                                                         |     |
| EGFR MT Gefitinib 250 mg<br>Maemondo 2010<br>Mitsudomi 2010<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $I^2 = 49.3\%$ , $\tau^2 = 0.0895$ , $p = .1$                                                                                                                                                                                                                                      | 6                       | 6.20<br>3.40<br><b>4.69</b><br><b>4.64</b>                                                                                          | [3.50–11.00]<br>[1.84–6.28]<br><b>[3.08–7.13]</b><br><b>[2.57–8.37]</b>                                                                                                                                            |     |
| Erlotinib 150 mg<br>Kelly 2012<br>Pasi 2012<br>Shepherd 2005<br>Stinchcombe 2011 –<br>Titan 2012<br>Natale 2011<br>Capuzzo 2010 SATURN<br>Chen 2012<br>Fixed effect model<br>Random effects model<br>Heterogeneity: $I^2 = 73.7\%$ , $\tau^2 = 0.03629$ , $p = .$                                                                                                                                              | 0004                    | 3.13<br>0.73<br>9.46<br>0.12<br>1.26<br>1.00<br>2.37<br>2.84<br><b>1.33</b><br><b>1.65</b>                                          | $\begin{matrix} [0.73-13.45] \\ [0.40-1.32] \\ [2.62-34.16] \\ [0.01-2.29] \\ [0.61-2.62] \\ [0.71-1.40] \\ [1.44-3.90] \\ [0.97-8.28] \\ \hline \textbf{[1.06-1.67]} \\ \hline \textbf{[0.96-2.82]} \end{matrix}$ |     |
| Gefitinib 250 mg         Takeda 2010         Kim 2008         IPASS 2009         Lee 2010 ISTANA         Sun 2012         Gaafar 2011         Goss 2009         Thatcher 2005 ISEL         Crino 2008         Cufer 2006         Morere 2003         Morere 2003b         Zhan 2012         Fixed effect model         Random effects model         Heterogeneity: $l^2 = 77.6\%$ , $\tau^2 = 0.03564$ , $p <$ | .0001                   | 1.27<br>1.21<br>1.59<br>4.47<br>4.81<br>7.92<br>4.61<br>6.47<br>0.64<br>0.97<br>0.32<br>0.13<br>31.90<br><b>1.68</b><br><b>2.29</b> |                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0.1 1 10 100          |                                                                                                                                     |                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                | n control More likely t |                                                                                                                                     |                                                                                                                                                                                                                    |     |
| Forest plot depicting the efficacy of afati<br>measured by ORR. An OR of > 1indicate                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                     |                                                                                                                                                                                                                    |     |
| performed better. An OR of <1 indicates                                                                                                                                                                                                                                                                                                                                                                        |                         | •                                                                                                                                   | . ,                                                                                                                                                                                                                |     |
| groups at the top designated EGFRMT a                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                                                                                                     |                                                                                                                                                                                                                    | -   |
| mutations in EGFR. The two groups at the in all patients without prior determination                                                                                                                                                                                                                                                                                                                           | -                       | rlotinib and                                                                                                                        | l gefitinib studies conduct                                                                                                                                                                                        | ted |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                     |                                                                                                                                                                                                                    |     |
| PFS                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                                                                                                     |                                                                                                                                                                                                                    |     |







**Figure S8:** Efficacy analysis in all studies and in various subgroups comparing the efficacy of erlotinib and gefitinib. Results are presented for both reported median progression-free survival (PFS) and overall survival (OS) distributions. Boxplots depict the distributions, including the following attributes: the median (solid bar), interquartile range (IQR, box), the range as 1.5 times the IQR (dashed line, excluding any outliers), and the individual study data overlaid as scatterplots.

## 4. Anmerkungen/Fazit der Autoren

Gefitinib has similar activity and toxicity compared with erlotinib and offers a valuable alternative to patients with NSCLC. Afatinib has similar efficacy compared with erlotinib and gefitinib in first-line treatment of tumors harboring EGFR mutations but may be associated with more toxicity, although further studies are needed. Gefitinib deserves consideration for U.S. marketing as a primary treatment for EGFR-mutant NSCLC.

# Limitationen:

- no head-to-head comparisons
- heterogeneity within subgroups for certain outcomes (i.e., variation between studies exists beyond that forwhich treatment group accounts)
- some might argue the 150-mg erlotinib dose is the maximum tolerated dose but that the 250-mg gefitinib dose is not, and this may "penalize" erlotinib; however, these are the approved doses and the doses for which data were available
- inclusion of patients with and without mutations makes analysis more difficult

Anmerkungen der FB Med:

• Phase II Studien eingeschlossen, Jadad Score aber insgesamt gering

|                                                                        | DISCLOSURES: The authors indicated no financial relationships.                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perez-Moreno MA et                                                     | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                     |
| al., 2014 [45].<br>Systematic review of                                | to evaluate the efficacy and safety of pemetrexed therapy in adult patients with advanced stage NSCLC.                                                                                                                                                                                                                                                                               |
| efficacy and safety of<br>pemetrexed in non-<br>small-cell-lung cancer | And the specific objectives were to evaluate the efficacy of pemetrexed in NSCLC in each of the approved indications first-line induction, maintenance and second-line), according to histology (squamous/epidermoid adenocarcima or large cell) and to assess safety according to concomitant therapy administered.                                                                 |
|                                                                        | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                        | Population: NSCLC, Population: age 18 years or older patients                                                                                                                                                                                                                                                                                                                        |
|                                                                        | Intervention: pemetrexed                                                                                                                                                                                                                                                                                                                                                             |
|                                                                        | Komparator: Other available therapies                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | Endpunkte: Nicht vorab spezifiziert                                                                                                                                                                                                                                                                                                                                                  |
|                                                                        | Suchzeitraum: 04/ 2004 is 04/ 2012                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | Anzahl eingeschlossene Studien/Patienten (Gesamt): 5/ 3 541, nur RCTs                                                                                                                                                                                                                                                                                                                |
|                                                                        | <b>Qualitätsbewertung der Studien:</b> specific assessment scales, Critical Appraisal Skills Program (CASP) adapted for CASP Spain                                                                                                                                                                                                                                                   |
|                                                                        | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                               |
|                                                                        | Studienqualität moderate bis high                                                                                                                                                                                                                                                                                                                                                    |
|                                                                        | <u>First line</u>                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                        | <ul> <li>pemetrexed associated with a platinum was similar in terms of efficacy to<br/>other alternative chemotherapy regimens,</li> </ul>                                                                                                                                                                                                                                           |
|                                                                        | <ul> <li>except in patients with non-squamous histology, in whom survival was<br/>higher in the experimental group</li> </ul>                                                                                                                                                                                                                                                        |
|                                                                        | Second line                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                        | <ul> <li>no significant differences in terms of efficacy and safety for pemetrexed<br/>treatment versus other chemotherapy options</li> </ul>                                                                                                                                                                                                                                        |
|                                                                        | adverse reactions                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                        | <ul> <li>most frequent: hematological, gastrointestinal and neurological</li> <li>all significantly less frequent with pemetrexed versus other alternative therapies, except for liver toxicity.</li> </ul>                                                                                                                                                                          |
|                                                                        | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                     |
|                                                                        | Due to the high degree of uncertainty as to its efficacy in certain subgroups of patients, including conflicting data; to its recent incorporation, and therefore lack of safety data in the medium and long term, and the high budgetary impact of its incorporation into health systems, it seems reasonable to optimize its use, identifying those patients who may benefit most. |

|                                            | Anmerkungen der FB Med:                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | <ul> <li>supported by the Health Department of the Spanish Government.<br/>(Investigacio'n Cli'nica Independiente. Ministerio de Sanidad y Poli'tica<br/>Social).</li> </ul>                                                                                                                                                                        |
|                                            | The authors declare that they have no conflicts of interest.                                                                                                                                                                                                                                                                                        |
| Shi L et al., 2014                         | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                    |
| [58].<br>Risk of interstitial lung         | We performed a systematic review and meta-analysis to determine the incidence and the relative risk (RR) associated with the use of gefitinib and erlotinib.                                                                                                                                                                                        |
| disease with gefitinib<br>and erlotinib in | 2. Methodik                                                                                                                                                                                                                                                                                                                                         |
| advanced non-small<br>cell lung cancer: A  | <b>Population</b> : Patients with advanced NSCLC, assigned to treatment with gefitinib or erlotinib                                                                                                                                                                                                                                                 |
| systematic review                          | Intervention: Gefitinib oder Erlotinib                                                                                                                                                                                                                                                                                                              |
| and meta-analysis of clinical trials       | <b>Komparator</b> : Platinbasierte Chemotherapie, Pemetrexed, Docetaxel, Paclitaxel, Vinorelbin oder Placebo                                                                                                                                                                                                                                        |
|                                            | Endpunkte: Overall incidence of interstitial lung disease (ILD)                                                                                                                                                                                                                                                                                     |
|                                            | Suchzeitraum: Januar 2000 bis Oktober 2012                                                                                                                                                                                                                                                                                                          |
|                                            | Anzahl eingeschlossene Studien/Patienten (Gesamt): 29 RCTs/15 618                                                                                                                                                                                                                                                                                   |
|                                            | Qualitätsbewertung der Studien: Jadad Score                                                                                                                                                                                                                                                                                                         |
|                                            | Heterogenitätsuntersuchungen: wurden durchgeführt                                                                                                                                                                                                                                                                                                   |
|                                            | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                              |
|                                            | The overall incidence for all-grade ILD events was 1.2% (95% CI, 0.9–1.6%) among patients receiving gefitinib and erlotinib, with a mortality of 22.8% (95% CI, 14.6–31.0%). Compared with controls, the RR of all-grade ILD events associated with gefitinib and erlotinib was 1.53 (95% CI, 1.13–2.08; $P = 0.006$ ) using a fixed effects model. |
|                                            | The RR of fatal ILD events associated with EGFR TKIs treatment was 1.96 (95% CI, 1.03–3.72, $P = 0.041$ ) compared with control patients. The analysis was also stratified for drug type, study location, treatment arm, and treatment line, but no significant differences in RRs were observed.                                                   |
|                                            | 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                                    |
|                                            | Treatment with EGFR TKIs gefitinib and erlotinib is associated with a significant increase in the risk of developing both all-grade and fatal ILD events in advanced NSCLC.<br>Limits:                                                                                                                                                              |
|                                            | The National Cancer Institute's common toxicity criteria grading system for ILD has its own limitations. No term specific for ILD is listed in NCI CTCAE v2.0 or v3.0. Also, the majority of trials included in this analysis reported ILD events in combined grades (all-grade, or high-grade), we cannot distinguish cases in each                |

| gra                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   | ade.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dis<br>the<br>abi                                                                 | D is not a single disease, but encompasses many different pathological seases. There were no uniform diagnostic criteria of ILD in various studies, also, e trials included in the analysis were performed at various centers, and the ility to detect ILD events might vary among these institutions, which could result a bias of reported incidence rates.                                                                                              |
| stu<br>che<br>diff<br>hor                                                         | he incidence of ILD events showed significant heterogeneity among the included<br>audies. This might reflect differences in trial designs, sample sizes, concomitant<br>emotherapy, and many other factors among these studies. Despite these<br>ferences, the RRs reported by all of these studies showed remarkable<br>progeneity. In addition, calculation using the random-effects model for overall<br>cidence estimation might minimize the problem. |
| gro<br>tha<br>not                                                                 | he study might have a potential observation time bias because EGFR TKIs<br>oups might have longer follow-up time than controls owing to the prolonged PFS<br>at is often associated with the use of EGFR TKIs. However, most ILD events did<br>of occur evenly over time, but in the early phase (first 4 weeks) of EGFR TKIs<br>eatment.                                                                                                                  |
| clin<br>The<br>dev<br>sta                                                         | his is a meta-analysis at the study level, data were abstracted from published<br>nical trial results, and individual patient information was not available.<br>herefore, subgroup analyses according to possible risk factors for the<br>evelopment of ILD, including preexisting pulmonary fibrosis, age, performance<br>atus, gender, smoking history, lung cancer histology, and the mutational status<br>EGFR, are not possible in this analysis.     |
| Lee JK, et al. 2014 1.                                                            | Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Epidermal growthtyrefactor receptortreationtyrosine kinasetreationinhibitors vsEG | urrent guidelines recommend both epidermal growth factor receptor (EGFR)<br>rosine kinase inhibitors (TKIs) and cytotoxic chemotherapy drugs as standard<br>eatment options for patients with wild-type (WT) EGFR who were previously<br>eated for non–small cell lung cancer (NSCLC). However, it is not clear that<br>GFR TKIs are as efficacious as chemotherapy in patients with WT EGFR.                                                              |
| conventional <b>2.</b>                                                            | Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| small cell lung cancer Po                                                         | <b>opulation</b> : Patients with advanced NSCLC, defined as inoperable locally lvanced (stage IIIB) or metastatic or recurrentdisease (stage IV)                                                                                                                                                                                                                                                                                                           |
| factor receptor: a The                                                            | tervention: first-generation EGFR TKI (erlotinib and gefitinib), alle nerapielinien                                                                                                                                                                                                                                                                                                                                                                        |
| meta-analysis Ko                                                                  | omparator: chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| En                                                                                | ndpunkte: OS, OR, PFS                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Su                                                                                | uchzeitraum: bis 12/2013                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| An                                                                                | nzahl eingeschlossene Studien/Patienten (Gesamt): 11/1 605                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                   | unlitätehowartung der Studion: Diek of bies ossessment                                                                                                                                                                                                                                                                                                                                                                                                     |
| Qu                                                                                | ualitätsbewertung der Studien: Risk of bias assessment                                                                                                                                                                                                                                                                                                                                                                                                     |

## 3. Ergebnisdarstellung

- 4 trials in first-line settings, 4 in second-line, 3 in second- or later-line settings
- all 11 trials open-labeled

|                                             |                      |                                             |                         |                           |                         |                                                       |             | No. of F           | Patients                |                    | Follow-up                                  |
|---------------------------------------------|----------------------|---------------------------------------------|-------------------------|---------------------------|-------------------------|-------------------------------------------------------|-------------|--------------------|-------------------------|--------------------|--------------------------------------------|
|                                             |                      |                                             | Dominant                |                           | Adeno-                  |                                                       | TKL         | Group              | Contro                  | l Group            | Duration,<br>Median                        |
| Source                                      | Line of<br>Treatment | Experimental<br>Drugs                       | Ethnicity,<br>No. (%)   | Age, Median<br>(Range), y | carcinoma,<br>No. (%)   | EGFR Mutation<br>Analysis                             | EGFR<br>WTª | Total <sup>b</sup> | EGFR<br>WT <sup>a</sup> | Total <sup>b</sup> | (Range),<br>mo                             |
| INTEREST, <sup>12,27</sup><br>2008 and 2010 | Second<br>or later   | Gefitinib vs<br>Docetaxel                   | White<br>1090 (74.4)    | 61 (20-84)                | 830 (56.6)              | Direct<br>sequencing                                  | 106         | 733                | 123                     | 733                | 7.6 (NR)                                   |
| IPASS, <sup>5,28</sup><br>2009 and 2011     | First                | Gefitinib vs<br>paclitaxel +<br>carboplatin | Asian<br>1214 (99.8)    | 57 (24-84)                | 1214 (99.8)             | ARMS                                                  | 91          | 609                | 85                      | 608                | 17.0 (NR)                                  |
| ML20322, <sup>29</sup><br>2012              | First                | Erlotinib vs<br>vinorelbine<br>(oral)       | Asian<br>(100)          | 77 (70-90)                | 73 (64.6)               | Direct sequencing                                     | 21          | 57                 | 15                      | 56                 | 13.0 (NR)                                  |
| TITAN, <sup>13</sup><br>2012                | Second               | Erlotinib vs<br>docetaxel or<br>pemetrexed  | White<br>362 (85.4)     | 59 (22-80)                | 210 (49.5)              | Direct sequencing                                     | 75          | 203                | 74                      | 221                | 27.9 vs<br>24.8 <sup>c</sup><br>(0.0-50.3) |
| First-SIGNAL, <sup>30</sup><br>2012         | First                | Gefitinib vs<br>gemcitabine<br>+ cisplatin  | Asian<br>(100)          | 57 (19-74)                | 313 (100)               | Direct<br>sequencing                                  | 27          | 159                | 27                      | 154                | 35.0<br>(19.3-49.4)                        |
| TORCH, <sup>14</sup><br>2012                | First                | Erlotinib vs<br>gemcitabine<br>+ cisplatin  | Non-Asian<br>736 (96.8) | 62 (27-81)                | 422 (55.5)              | Direct sequenc-<br>ing + fragment<br>analysis + MS    | 119         | 380                | 117                     | 380                | 24.3 (NR)                                  |
| KCSG-LU08-01, <sup>31</sup><br>2012         | Second               | Gefitinib vs<br>pemetrexed                  | Asian<br>(NR)           | NR (30-78)                | 141 (100)               | Direct<br>sequencing                                  | 18          | 71                 | 20                      | 70                 | 15.9 (NR)                                  |
| CT/06.05, <sup>32</sup><br>2013             | Second<br>or third   | Erlotinib vs<br>pemetrexed                  | White<br>(NR)           | 66 (37-86)                | 257 <sup>d</sup> (77.4) | Direct<br>sequencing                                  | 55°         | 179                | 57 <sup>e</sup>         | 178                | 29.0 vs<br>27.3 <sup>c</sup> (NR)          |
| TAILOR, <sup>15</sup><br>2013               | Second               | Erlotinib vs<br>docetaxel                   | White<br>217 (99.1)     | 67 (35-83)                | 155 (70.8)              | Direct sequenc-<br>ing + fragment<br>analysis         | 109         | 112                | 110                     | 110                | 33.0 (NR)                                  |
| DELTA, <sup>33</sup><br>2013                | Second<br>or third   | Erlotinib vs<br>docetaxel                   | Asian<br>(NR)           | 67 (31-85)                | 207 (68.8)              | Highly sensitive<br>PCR-based<br>method <sup>43</sup> | 109         | 150                | 90                      | 151                | (NR)                                       |
| CTONG-0806, <sup>34</sup><br>2013           | Second               | Gefitinib vs<br>pemetrexed                  | Asian<br>(NR)           | 57 (24-78)                | 151 (96.2)              | Direct<br>sequencing                                  | 81          | 81                 | 76                      | 76                 | (NR)                                       |

Abbreviations: ARMS, amplification-refractory mutation system; *EGFR*, epidermal growth factor receptor; MS, mass spectrometry; NR, not reported; PCR, polymerase chain reaction; TKI, tyrosine kinase inhibitors; WT, wild type. <sup>a</sup> Numbers used in the analyses of progression-free survival.

<sup>c</sup> TKI group vs chemotherapy group.

<sup>d</sup> Number of nonsquamous histology (number of adenocarcinoma was not available).

<sup>b</sup> Numbers of randomized patients

<sup>e</sup> Numbers used in the analyses of time to progression.

## PFS

• significantly longer PFS with chemotherapy than with TKI in the patients with WT *EGFR* (HR, 1.41; 95% CI, 1.10-1.81); significant statistical heterogeneity noted ( $l^2 = 79.1\%$ )

# os

HR for TKI (1.08; 95% CI, 0.96-1.22)

|                                        |     | o. of Patients<br>/ith WT EGFR | HR               | Favors 👔 Favors           | Weight, |
|----------------------------------------|-----|--------------------------------|------------------|---------------------------|---------|
| Source                                 | TKI | Chemotherapy                   | (95% CI)         | TKI Chemotherapy          | %       |
| INTEREST, 12, 27 2008 and 2010         | 119 | 134                            | 1.02 (0.78-1.33) |                           | 20.28   |
| IPASS, <sup>5,28</sup> 2009 and 2011   | 91  | 85                             | 1.18 (0.86-1.63) |                           | 14.12   |
| ML20322, <sup>29</sup> 2012            | 21  | 15                             | 0.62 (0.30-1.24) |                           | 2.87    |
| TITAN, <sup>13</sup> 2012              | 75  | 74                             | 0.85 (0.59-1.22) |                           | 10.94   |
| First-SIGNAL, <sup>30</sup> 2012       | 27  | 27                             | 1.00 (0.52-1.91) |                           | 3.44    |
| TORCH, <sup>14</sup> 2012              | 119 | 117                            | 1.29 (0.97-1.71) |                           | 17.96   |
| CT/06.05, <sup>32</sup> 2013           | 55  | 57                             | 1.19 (0.77-1.84) |                           | 7.61    |
| TAILOR, <sup>15</sup> 2013             | 109 | 110                            | 1.28 (0.95-1.96) |                           | 11.01   |
| DELTA, <sup>33</sup> 2013              | 109 | 90                             | 0.98 (0.69-1.39) |                           | 11.77   |
| Overall: 1 <sup>2</sup> = 0%; P = .496 | 725 | 709                            | 1.08 (0.96-1.22) | •                         | 100     |
|                                        |     |                                |                  |                           |         |
|                                        |     |                                |                  | 0.1 1.0 10<br>HR (95% CI) | )       |

|                       | Subgruppen                                                                                              |                  |            |                          |                                      |                |                        |                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------|------------------|------------|--------------------------|--------------------------------------|----------------|------------------------|-----------------------------------|
|                       |                                                                                                         | No. 6            |            | of Patients<br>h WT EGFR | Progression-Free                     | F              | Faulana                | Heterogeneity<br>Within Subgroups |
|                       | Subgroup                                                                                                | No. of<br>Trials |            | Chemotherapy             | Survival,<br>HR (95% CI)             | Favors<br>TKI  | Favors<br>Chemotherapy | I <sup>2</sup> , % P Value        |
|                       | Line of treatment<br>First <sup>5,14,28-30</sup>                                                        | 4                | 250        | 244                      | 1 52 (0 97 3 60)                     |                |                        | 96.6 × 001                        |
|                       | Second or later <sup>12,13,15,27,31-34</sup>                                                            | 6                | 258<br>498 | 244<br>493               | 1.53 (0.87-2.69)<br>1.34 (1.09-1.65) | _              | -                      | 86.6 <.001<br>55.2 .048           |
|                       | Subgroup difference: P = .58                                                                            |                  |            |                          |                                      |                |                        |                                   |
|                       | Experimental drug<br>Erlotinib <sup>13-15,29,32,33</sup>                                                | 5                | 433        | 406                      | 1.33 (0.97-1.81)                     |                |                        | 76.7 .002                         |
|                       | Gefitinib <sup>5,12,27,28,30,31,34</sup>                                                                | 5                | 323        | 331                      | 1.49 (0.95-2.33)                     |                |                        | 83.9 <.001                        |
|                       | Subgroup difference: P = .67<br>Ethnicity                                                               |                  |            |                          |                                      |                |                        |                                   |
|                       | Asian-dominant <sup>5,28-31,33,34</sup>                                                                 | 6                | 347        | 313                      | 1.30 (0.82-2.06)                     | -              |                        | 85.2 <.001                        |
|                       | White-dominant <sup>12-15,27,32</sup><br>Subgroup difference: P=.78                                     | 4                | 409        | 424                      | 1.47 (1.15-1.87)                     |                |                        | 65.1 .04                          |
|                       | EGFR mutation analysis method                                                                           |                  |            |                          |                                      |                |                        |                                   |
|                       | Direct sequencing-only <sup>12,13,27,29-32,34</sup><br>More sensitive platform <sup>5,14,15,28,33</sup> | 6<br>4           | 328        | 335                      | 1.12 (0.79-1.58)                     | -              |                        | 73.3 .002<br>78.7 .003            |
|                       | Subgroup difference: P=.11                                                                              | 4                | 428        | 402                      | 1.84 (1.35-2.52)                     |                |                        | 78.7 .003                         |
|                       |                                                                                                         |                  |            |                          |                                      |                |                        |                                   |
|                       |                                                                                                         |                  |            |                          |                                      | 0.1 1<br>HR (9 | .0 10<br>5% CI)        |                                   |
|                       | Figure 4. Subgroup Anal<br>vs Second or Later), EG                                                      | -                |            | -                        |                                      | -              |                        | -                                 |
|                       | WithWT EGFR                                                                                             |                  |            |                          |                                      |                |                        |                                   |
|                       | 4. Anmerkungen/                                                                                         | Fazit            | der .      | Autorer                  | ו                                    |                |                        |                                   |
|                       | Among patients with                                                                                     | , adv            | anco       |                          | C harborin                           |                | EP conve               | ntional                           |
|                       | • ·                                                                                                     |                  |            |                          |                                      | •              |                        |                                   |
|                       | chemotherapy, com                                                                                       |                  |            | -                        |                                      | UTR INI,       | was asso               |                                   |
|                       | improvement in PFS                                                                                      | b DUt            | not o      | verall st                | urvival.                             |                |                        |                                   |
|                       | Limitierungen:                                                                                          |                  |            |                          |                                      |                |                        |                                   |
|                       | • a large number of                                                                                     | of tria          | als ha     | d availa                 | ble data o                           | n the EGF      | R mutatic              | on status in                      |
|                       | only a small port                                                                                       |                  |            |                          |                                      |                |                        |                                   |
|                       | , ,                                                                                                     |                  |            |                          | •                                    | o doolwith     |                        | ncorn                             |
|                       | <ul> <li>toxitity: not poss</li> </ul>                                                                  |                  | •          |                          | •                                    |                |                        |                                   |
|                       | because reports                                                                                         | or a             | uvers      | e events                 | s from eac                           | n subgrou      | p were no              | n avalladie                       |
|                       | 5. Anmerkungen                                                                                          | der F            | -B Me      | ed                       |                                      |                |                        |                                   |
|                       | <ul> <li>Auswertungen n</li> </ul>                                                                      |                  |            |                          | Theraniel                            | inie (und F    | GFR-Mu                 | ationsstatus)                     |
|                       | erfolgte nicht                                                                                          |                  | •••••      | <u>unu</u>               | morupier                             |                |                        |                                   |
|                       | •                                                                                                       | ا منا ا          | Natio      |                          | orah Com                             | adatice of     | Konos /N               |                                   |
|                       | supported in par                                                                                        | -                |            |                          |                                      |                | •                      |                                   |
|                       | funded by the Ke                                                                                        |                  | 0          |                          | · ·                                  |                |                        | ,                                 |
|                       | Dr DW. Kim re                                                                                           | ports            | havir      | ng recei                 | ved grants                           | from the       | Korean go              | overnment and                     |
|                       | personal fees fro                                                                                       | om P             | fizer,     | Lilly, an                | d Novartis                           | . Dr SH.       | Lee repoi              | rts having                        |
|                       | received person                                                                                         | al fee           | es fro     | m Pfize                  | r, Novartis                          | , Bayer, ar    | nd GlaxoS              | mithKline. No                     |
|                       | other disclosure                                                                                        |                  |            |                          |                                      | • ·            |                        |                                   |
| WY at al. 2012        |                                                                                                         |                  |            |                          |                                      |                |                        |                                   |
| WX et al., 2013<br>]. | 1. Fragestellung                                                                                        |                  |            |                          |                                      |                |                        |                                   |
| 1.                    | Epidermal growth fa                                                                                     | actor            | recep      | otor-tyro                | sine kinas                           | e inhibitors   | s (EGFR-               | TKIs) have                        |
| cidence and risk of   | become the corners                                                                                      | stone            | in the     | e treatm                 | ent of lung                          | cancers t      | hat harbo              | or EGFR                           |
| eatment-related       | mutations, but also                                                                                     |                  |            |                          |                                      |                |                        |                                   |
| ortality in cancer    | and have been inve                                                                                      |                  |            | •                        |                                      |                |                        | •                                 |
|                       |                                                                                                         |                  |            | mona v                   | arini is tune                        |                |                        | NWAVAT TRACA                      |
| •                     |                                                                                                         | -                |            | -                        |                                      |                |                        |                                   |
| EGFR-TKIs: a meta-    | drugs have been as<br>threatening adverse                                                               | socia            | ated v     | vith an i                | ncrease in                           | the risk of    | f potential            | ly life-                          |

| analysis of 22 phase<br>III randomized | performed a meta-<br>events (FAEs) in ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                              | ncidence and risk of fatal adverse<br>EGFR-TKIs.                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| controlled trials                      | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                           |
|                                        | Population: Cance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er patients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                           |
|                                        | Interventionen un<br>EGFRTKIs-contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ren: E                                                                                                                                                                                     | GFR                                                                                                                                                                                                          | TKIs (erlotinib and gefitinib) vs. non-                                   |
|                                        | <i>Endpunkte</i> : incide<br>EGFR-TKIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ence and risk c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of FAEs                                                                                                                                                                                    | asso                                                                                                                                                                                                         | ociated with the clinical use of                                          |
|                                        | Suchzeitraum: 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1990 – 12/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                           |
|                                        | Anzahl eingeschl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ossene Studie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | en/Pati                                                                                                                                                                                    | ente                                                                                                                                                                                                         | n (Gesamt):                                                               |
|                                        | 22 (13825), prospe<br>n = 6317)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ective phase III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RCTs;                                                                                                                                                                                      | (EG                                                                                                                                                                                                          | FR-TKIs: n = 7508; non-EGFR-TKIs:                                         |
|                                        | Qualitätsbewertu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng der Studiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>n:</b> Jada                                                                                                                                                                             | ıd-Sc                                                                                                                                                                                                        | ale                                                                       |
|                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | study heteroge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                              | effects models were used regardless<br>th were quantified using the chi-  |
|                                        | 3. Ergebnisdarst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nts asso                                                                                                                                                                                   | ociate                                                                                                                                                                                                       | ed with EGFR-TKIs versus non-                                             |
|                                        | EGFR-TKIs therap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            | oolat                                                                                                                                                                                                        |                                                                           |
|                                        | Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Estimate (95% C.I.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ev/Trt                                                                                                                                                                                     | Ev/Ctrl                                                                                                                                                                                                      |                                                                           |
|                                        | Herbst R.S. et al 2004 (INTACT-2)<br>Herbst R.S. et al 2005 (TRIBUTE)<br>Shepherd F.A. et al 2005<br>Thatcher N. et al 2007<br>Galzemeier U. et al 2007<br>Kim E.S. et al 2008 (V-15-32)<br>Mokr M.J. et al 2008 (V-15-32)<br>Mokr J.S. et al 2009<br>Lee D.H. et al 2010 (ISTANA)<br>Masmondo M. et al 2010<br>Mitsudomi T. et al. 2010 (WJTOG 3405)<br>Natale R.B. et al 2011<br>Zhou C. et al 2011 (OPTIMAL)<br>Ciuleanu T. et al 2012 (ITTAN)<br>Han J.Y. et al 2012 (SIGNAL)<br>Lee J. et al 2012 (SIGNAL)<br>Lee J. et al 2012 (EURTAC)<br>Sun J.M. et al 2012 (KCSG-LU08-01)<br>Zhang L. et al 2012 (INFORM)<br><b>Overall (I^2=41% , P=0.023)</b> | 0.997 (0.184, 5.416)<br>2.229 (1.226, 4.055)<br>0.499 (0.031, 7.943)<br>1.270 (0.784, 2.059)<br>0.943 (0.684, 1.300)<br>12.908 (0.731, 228.036)<br>0.392 (0.153, 1.005)<br>8.816 (0.477, 162.856)<br>1.395 (0.744, 2.614)<br>0.123 (0.014, 1.089)<br>1.810 (0.341, 9.600)<br>3.000 (0.124, 72.872)<br>3.034 (0.125, 73.469)<br>0.494 (0.284, 0.857)<br>0.494 (0.284, 0.857)<br>0.494 (0.284, 0.857)<br>0.494 (0.284, 1.047)<br>1.887 (0.173, 20.592)<br>0.397 (0.019, 8.228)<br>0.498 (0.021, 51.541)<br>0.397 (0.020, 48.5279)<br>0.986 (0.020, 48.5279)<br>0.986 (0.020, 41.5238)<br>0.993 (0.702, 1.405) | 33/526<br>1/485<br>56/1126<br>64/579<br>6/282<br>6/729<br>4/244<br>23/607<br>1/324<br>4/84<br>1/114<br>1/87<br>18/614<br>0/83<br>3/196<br>2/159<br>0/131<br>0/155<br>1/84<br>0/68<br>3/147 | 2/341<br>15/533<br>1/242<br>22/562<br>68/580<br>0/280<br>15/715<br>0/239<br>16/589<br>4/159<br>2/76<br>0/114<br>0/185<br>2/309<br>2/82<br>0/72<br>11/213<br>1/150<br>0/135<br>2/309<br>2/82<br>0/67<br>0/148 |                                                                           |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                              | 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200<br>Relative Risk (log scale) |

|                                                                                                                      | Table 1 Incidence and                                                                                             | relative risk                    | of FAEs with                     | FGFR-TKIC                            | according to pre                         | specified subgro                            | NIDS.                                               |                      |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------|
|                                                                                                                      | Groups                                                                                                            | Studies, n                       |                                  |                                      | Incidence of f<br>events, % (95%         | atal adverse                                | RR (95%CI)                                          | p Value              |
|                                                                                                                      |                                                                                                                   |                                  | EGFR-TKIs                        | Control                              | EGFR-TKIs                                | Control                                     |                                                     |                      |
|                                                                                                                      | Tumor type                                                                                                        | 10                               | 224/4774                         | 104/5742                             | 2 1 (1 2 2 2)                            | 21/1220                                     | 1 00 (0 72 1 40)                                    | 0.08                 |
|                                                                                                                      | NSCLC<br>Pancreatic cancer                                                                                        | 19<br>1                          | 224/6771<br>6/282                | 194/5743<br>0/280                    | 2.1 (1.3-3.3)<br>2.1 (1.0-4.7)           | 2.1 (1.3–3.4)<br>0.2 (0–2.8)                | 1.00 (0.72–1.40)<br>12.91 (0.73–228.05)             | 0.98<br>0.08         |
|                                                                                                                      | Head and neck cancer<br>Biliary-tract cancer                                                                      | 1<br>1                           | 1/324<br>0/135                   | 4/159<br>0/131                       | 0.3 (0–2.2)<br>0                         | 2.5 (0.9–6.5)<br>0                          | 0.12 (0.01–1.09)                                    | 0.06                 |
|                                                                                                                      | EGFR-TKIs<br>Erlotinib                                                                                            | 10                               | 105/4373                         | 62/3248                              |                                          | 1.9 (1.2-2.9)                               | 1 12 (0 72 4 79)                                    | 0.60                 |
|                                                                                                                      | Gefitinib                                                                                                         | 12                               | 126/3135                         | 136/3069                             | · · · ·                                  | 2.5 (1.3-4.9)                               | 1.13 (0.72–1.78)<br>0.87 (0.50–1.51)                | 0.60                 |
|                                                                                                                      | Country<br>Asia                                                                                                   | 10                               | 38/1724                          | 19/1678                              |                                          | 1.2 (0.6-2.4)                               | 1.65 (0.98-2.78)                                    | 0.058                |
|                                                                                                                      | Non-Asia<br>EGFR-TKIs-based regime                                                                                | 12<br>ns                         | 193/5784                         | 179/4639                             | 1.9 (1.1–3.5)                            | 2.6 (1.5-4.5)                               | 0.80 (0.51-1.25)                                    | 0.32                 |
|                                                                                                                      | Monotherapy                                                                                                       | 17                               | 124/5306                         | 113/4448                             | 1.7 (1.1–2.7)                            |                                             | 0.83 (0.54-1.29)                                    | 0.41                 |
|                                                                                                                      | Combinations<br>Treatment strategy                                                                                | 5                                | 107/2202                         | 85/1869                              | 2.9 (1.1–7.1)                            | 1.6 (0.4–6.2)                               | 1.48(0.75-2.92)                                     | 0.26                 |
|                                                                                                                      | First-line                                                                                                        | 12                               | 191/4462                         | 126/3526                             |                                          | 1.8 (0.9-3.6)                               | 1.22 (0.98-1.52)                                    | 0.08                 |
|                                                                                                                      | Salvage treatment<br>Maintenance                                                                                  | 8<br>2                           | 37/2744<br>3/302                 | 70/2334<br>2/457                     | 1.4 (0.7–2.7)<br>1.3 (0.3–6.0)           | · · · · · · · · · · · · · · · · · · ·       | 0.51 (0.29–0.87)<br>1.71 (0.10–28.59)               | 0.013<br>0.71        |
|                                                                                                                      | Controlled therapy                                                                                                |                                  |                                  |                                      |                                          |                                             |                                                     |                      |
|                                                                                                                      | Placebo<br>Active therapy                                                                                         | 3<br>19                          | 60/1758<br>171/5750              | 23/952<br>175/5365                   | 1.7 (0.4–7.2)<br>1.8 (1.1–3.0)           | 1.1 (0.2–7.0)<br>1.9 (1.2–3.3)              | 1.29 (0.81–2.07)<br>0.94 (0.63–1.41)                | 0.29<br>0.76         |
|                                                                                                                      | Overall                                                                                                           | 22                               | 231/7508                         | 198/6317                             | 1.9 (1.2–2.9)                            | 1.9 (1.2–3.0)                               | 0.99 (0.70-1.41)                                    | 0.97                 |
|                                                                                                                      | Abbreviations: NSCLC, nor                                                                                         | n-small-cell lu                  | ng cancer; EC                    | GFR-TKIs, epi                        | dermal growth fa                         | ctor receptor tyr                           | osine kinase.                                       |                      |
|                                                                                                                      | 4. Anmerkung                                                                                                      | en/Fazit                         | der Au                           | toren                                |                                          |                                             |                                                     |                      |
|                                                                                                                      | In conclusion, thi<br>increase the risk<br>are safety and to<br>patients.<br><i>Hinweise der FB</i><br>• 3 von 22 | of FAEs<br>lerable f             | s in patie<br>for canc           | ents witt<br>er patie                | h advance<br>nts, espec                  | ed solid tur                                | mors, and EGF                                       |                      |
|                                                                                                                      | Vergleich     sind nich                                                                                           | stherap<br>t spezifiz            | ien (19 /                        | /22 Stu                              |                                          | 0.0                                         | gen aktive Kon                                      | trolle)              |
| Zhou H et al., 2013                                                                                                  | 1. Fragestellur                                                                                                   | ng                               |                                  |                                      |                                          |                                             |                                                     |                      |
| [68].<br>Chemotherapy with or<br>without gefitinib in<br>patients with<br>advanced non-small-<br>cell lung cancer: a | Gefitinib is widely<br>(NSCLC), in who<br>findings regardin<br>free survival (PF<br>gefitinib versus o            | om chem<br>g the eff<br>S). This | notherap<br>ficacy of<br>study w | by had fa<br>f gefitini<br>vas to ev | ailed. Prev<br>b on overa<br>valuate the | vious triais<br>all survival<br>e effects o | s reported inco<br>I (OS) and pro<br>of chemotherap | nsistent<br>gression |
| meta-analysis of                                                                                                     | 2. Methodik                                                                                                       |                                  |                                  |                                      |                                          |                                             |                                                     |                      |
| 6,844 patients                                                                                                       | Population: adv                                                                                                   | anced N                          | ISCLC                            |                                      |                                          |                                             |                                                     |                      |
|                                                                                                                      | Interventionen                                                                                                    | und Kor                          | nparato                          | oren: G                              | efitinib vs.                             | [Kontrolle                                  | e nicht präspez                                     | ifiziert]            |
|                                                                                                                      | Endpunkte: PFS                                                                                                    | 6, OS, O                         | RR, UE                           |                                      |                                          |                                             |                                                     |                      |
|                                                                                                                      | Suchzeitraum: b                                                                                                   | ois 20.01                        | 1.2012                           |                                      |                                          |                                             |                                                     |                      |
|                                                                                                                      | Anzahl eingesc                                                                                                    | hlossen                          | ne Studi                         | ien/Pati                             | ienten (G                                | esamt): 12                                  | 2 (6844)                                            |                      |
|                                                                                                                      | Qualitätsbewert                                                                                                   | tung de                          | r Studie                         | <b>en:</b> Jad                       | ad Score                                 |                                             |                                                     |                      |
|                                                                                                                      | Heterogenitätsu                                                                                                   | Intersu                          | chunge                           | <b>n:</b> Chi s                      | quare Te                                 | st and I-sq                                 | uared statistic                                     |                      |

| 3. Ergebnis                                                                                                                                                                                                                                      |                                                                                                                | -                            | e 1. Rase        | line chara                                                             | cteristics for included t                             | rials                     |                                                                                                                                 |                                                                                                                                                                   |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------|------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Trials                                                                                                                                                                                                                                           | Number o                                                                                                       | f Median age                 | Sex, male        | Stage IIIB                                                             | Intervention                                          | Treatment status          | Follow-up                                                                                                                       | Main endpoint                                                                                                                                                     | Jadad score                                                        |
| ISEL (2005) <sup>14</sup>                                                                                                                                                                                                                        | Patients<br>1692                                                                                               | <u>(years)</u><br>62         | <u>(%)</u><br>67 | <u>or IV (%)</u><br>81                                                 | Gefitinib; placebo                                    | Second line               | (months)<br>7.2                                                                                                                 | OS, ORR                                                                                                                                                           | 4                                                                  |
| INVITE (2008)"                                                                                                                                                                                                                                   | 196                                                                                                            | 74                           | 76               | 100                                                                    | Gefitinib; vinorelbine                                | First line                | 20                                                                                                                              | OS, PFS, ORR                                                                                                                                                      | 3                                                                  |
| V-15-32 (2008)16                                                                                                                                                                                                                                 | 489                                                                                                            | 20 years or older            | 62               | 83                                                                     | Gefitinib; docetaxel                                  | First line                | 36                                                                                                                              | OS, PFS, ORR                                                                                                                                                      | 3                                                                  |
| SWOG S0023 (2008)17                                                                                                                                                                                                                              | 243                                                                                                            | 61                           | 63               | 52                                                                     | Gefitinib; placebo                                    | Second line               | 60                                                                                                                              | OS, PFS                                                                                                                                                           | 3                                                                  |
| INTEREST (2008)18                                                                                                                                                                                                                                | 1466                                                                                                           | 61                           | 65               | 79                                                                     | Gefitinib; docetaxel                                  | Second line               | 7.6<br>24                                                                                                                       | OS, PFS, ORR                                                                                                                                                      | 4<br>4                                                             |
| INSTEP (2009) <sup>19</sup><br>IPASS (2009) <sup>8</sup>                                                                                                                                                                                         | 201<br>1217                                                                                                    | 75<br>57                     | 61<br>21         | NG<br>100                                                              | Gefitinib; placebo<br>Gefitinib;                      | Second line<br>First line | 24<br>24                                                                                                                        | OS, PFS, ORR<br>OS, PFS, ORR                                                                                                                                      | 4                                                                  |
| IFA55 (2009)                                                                                                                                                                                                                                     | 1217                                                                                                           | 37                           | 21               | 100                                                                    | carboplatin plus paclitaxel                           |                           | 24                                                                                                                              | 05, 115, 0100                                                                                                                                                     | 4                                                                  |
| ISTANA (2010) <sup>9</sup>                                                                                                                                                                                                                       | 161                                                                                                            | 57                           | 61               | 100                                                                    | Gefitinib; docetaxel                                  | Second line               | 15                                                                                                                              | OS, PFS, ORR                                                                                                                                                      | 3                                                                  |
| WJTOG 3405 (2010) <sup>10</sup>                                                                                                                                                                                                                  | 172                                                                                                            | 64                           | 31               | 59                                                                     | Gefitinib; cisplatin plus                             | Second line               | 40                                                                                                                              | OS, PFS, ORR                                                                                                                                                      | 3                                                                  |
| North-East Japan (2010) <sup>11</sup>                                                                                                                                                                                                            | 230                                                                                                            | 63                           | 36               | 91                                                                     | docetaxel<br>Gefitinib; paclitaxel and<br>carboplatin | First line                | 42                                                                                                                              | PFS, ORR                                                                                                                                                          | 4                                                                  |
| WJTOG 0203 (2010)12                                                                                                                                                                                                                              | 604                                                                                                            | 62                           | 64               | 100                                                                    | Gefitinib; platinum-                                  | First line                | 60                                                                                                                              | OS, PFS, ORR                                                                                                                                                      | 4                                                                  |
|                                                                                                                                                                                                                                                  |                                                                                                                |                              |                  |                                                                        | doublet chemotherapy                                  |                           |                                                                                                                                 |                                                                                                                                                                   |                                                                    |
| EORTC 08021/ILCP<br>01/03 (2011) <sup>13</sup>                                                                                                                                                                                                   | 173                                                                                                            | 62                           | 77               | 100                                                                    | Gefitinib; placebo                                    | Second line               | 60                                                                                                                              | OS, PFS, ORR                                                                                                                                                      | 4                                                                  |
| 2<br>Study                                                                                                                                                                                                                                       | ·····                                                                                                          |                              | ···              | ··                                                                     | T                                                     |                           | HR<br>(95% C                                                                                                                    | [1)                                                                                                                                                               | % Wei                                                              |
| 2<br>Study<br>The ISEL study (2                                                                                                                                                                                                                  | 005)                                                                                                           |                              | ··· <b>-</b>     |                                                                        |                                                       |                           | (95% C                                                                                                                          | [I)<br>0,77, 1.02)                                                                                                                                                |                                                                    |
| Study                                                                                                                                                                                                                                            |                                                                                                                |                              | ···              |                                                                        |                                                       |                           | (95% C                                                                                                                          |                                                                                                                                                                   | 17.                                                                |
| Study<br>The ISEL study (2                                                                                                                                                                                                                       | (2008)                                                                                                         | )                            | <b></b>          |                                                                        | <br>                                                  |                           | (95% C<br>0.89 (1<br>0.98 (1                                                                                                    | 0,77, 1.02)                                                                                                                                                       | <br>17.<br>3.                                                      |
| Study<br>The ISEL study (2<br>The INVITE study                                                                                                                                                                                                   | (2008)<br>dy (2008                                                                                             |                              |                  | <b>لی</b><br>۱<br>۱ ۱                                                  |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1                                                                                         | 0,77, 1.02)<br>0,66, 1.47)                                                                                                                                        | 17.<br>3,<br>9,                                                    |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG S0023<br>The INTEREST stu                                                                                                                                          | (2008)<br>dy (2008<br>study (2<br>dy (2008                                                                     | - (800                       |                  | ی<br>ہے۔<br>آ<br>-۹<br>1                                               |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1                                                                              | 0,77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)                                                                                                                         | 17.<br>3.<br>9.<br>4.                                              |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V–15–32 stu<br>The SWOG S0023<br>The INTEREST stu<br>The INSTEP study                                                                                                                      | (2008)<br>dy (2008<br>study (2<br>dy (2008<br>(2009)                                                           | - (800                       | 1                | ی<br>ہے۔<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱                                 |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1                                                                   | 0,77, 1.02)<br>0,66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)                                                                                                          | 17.<br>3.<br>9.<br>4.<br>21.                                       |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG SO023<br>The INTEREST study<br>The INSTEP study<br>The IPASS] study                                                                                                | (2008)<br>dy (2008<br>study (2<br>dy (2008<br>(2009)<br>(2009)                                                 | - (800                       |                  | ی ایس<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1<br>0.84 (1<br>0.91 (1                                             | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)                                                             | % Weigh<br>17.<br>3.<br>9.<br>4.<br>21.<br>5.5<br>12.5             |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V–15–32 stu<br>The SWOG S0023<br>The INTEREST study<br>The INSTEP study<br>The IPASS) study<br>The ISTANA study                                                                            | (2008)<br>dy (2008<br>study (2<br>dy (2008<br>(2009)<br>(2009)<br>(2010)                                       | (008) -<br>!)                | •••••            |                                                                        |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1,12 (1<br>0.63 (1<br>1,02 (1<br>0.84 (1<br>0.91 (1<br>0.87 (1                                  | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)<br>0.61, 1.24)                                              | 17.<br>3.)<br>9.(<br>4.<br>21.(<br>5.)<br>12.)                     |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG S0023<br>The INTEREST study<br>The INSTEP study<br>The ISTANA study<br>The ISTANA study<br>The WJTOG 3405                                                          | (2008)<br>dy (2008)<br>study (2<br>dy (2008)<br>(2009)<br>(2009)<br>(2010)<br>study (20                        | 008) -<br>I)<br>010)         | <b>1</b>         | الالا<br>الم<br>الم<br>الم<br>الم<br>الم<br>الم<br>الم                 |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1<br>0.84 (1<br>0.91 (1<br>0.87 (1<br>1.64 (1                       | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)<br>0.61, 1.24)<br>0.75, 3.58)                               | 173<br>3,3<br>9,0<br>4,4<br>21,1<br>5,5<br>12,5<br>4,7             |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG S0023<br>The INTEREST study<br>The INSTEP study<br>The INSTEP study<br>The IPASS] study<br>The ISTANA study<br>The WJTOG 3405<br>The WJTOG 0203                    | (2008)<br>dy (2008)<br>study (2<br>dy (2008)<br>(2009)<br>(2009)<br>(2009)<br>(2010)<br>study (2)<br>study (2) | 008) -<br>I)<br>010)<br>010) | 1                | ی ایس<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1<br>0.84 (1<br>0.91 (1<br>0.87 (1<br>1.64 (1<br>0.86 (1            | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)<br>0.61, 1.24)<br>0.75, 3.58)<br>0.72, 1.03)                | 17.<br>3.<br>9.<br>4.<br>21.<br>5.5                                |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG SO023<br>The INTEREST study<br>The INSTEP study<br>The INSTEP study<br>The IPASS] study<br>The ISTANA study<br>The WJTOG 3405<br>The WJTOG 0203<br>The EORTC 08021 | (2008)<br>dy (2008)<br>study (2<br>dy (2008)<br>(2009)<br>(2009)<br>(2009)<br>(2010)<br>study (2)<br>study (2) | 008) -<br>I)<br>010)<br>010) |                  |                                                                        |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1<br>0.84 (1<br>0.91 (1<br>0.87 (1<br>1.64 (1<br>0.86 (1            | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)<br>0.61, 1.24)<br>0.75, 3.58)                               | 17.<br>3,<br>9,<br>4,<br>21.<br>5,<br>12:<br>4,<br>1,              |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG S0023<br>The INTEREST study<br>The INSTEP study<br>The INSTEP study<br>The IPASS] study<br>The ISTANA study<br>The WJTOG 3405<br>The WJTOG 0203                    | (2008)<br>dy (2008)<br>study (2<br>dy (2008)<br>(2009)<br>(2009)<br>(2009)<br>(2010)<br>study (2)<br>study (2) | 008) -<br>I)<br>010)<br>010) | 11)              |                                                                        |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1<br>0.84 (1<br>0.91 (1<br>0.87 (1<br>1.64 (1<br>0.86 (1<br>0.83 (1 | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)<br>0.61, 1.24)<br>0.75, 3.58)<br>0.72, 1.03)                | 17.<br>3,<br>9.<br>4.<br>21.<br>5.<br>12.<br>4.<br>1.<br>1.<br>13. |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG SO023<br>The INTEREST study<br>The INSTEP study<br>The INSTEP study<br>The IPASS] study<br>The ISTANA study<br>The WJTOG 3405<br>The WJTOG 0203<br>The EORTC 08021 | (2008)<br>dy (2008)<br>study (2<br>dy (2008)<br>(2009)<br>(2009)<br>(2009)<br>(2010)<br>study (2)<br>study (2) | 008) -<br>I)<br>010)<br>010) | 11)              |                                                                        |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1<br>0.84 (1<br>0.91 (1<br>0.87 (1<br>1.64 (1<br>0.86 (1<br>0.83 (1 | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)<br>0.61, 1.24)<br>0.75, 3.58)<br>0.72, 1.03)<br>0.60, 1.15) | 17.<br>3.<br>9.<br>4.<br>21.<br>5.<br>12.<br>4,<br>1.<br>13.<br>5. |
| Study<br>The ISEL study (2<br>The INVITE study<br>The V-15-32 stu<br>The SWOG SO023<br>The INTEREST study<br>The INSTEP study<br>The INSTEP study<br>The IPASS) study<br>The ISTANA study<br>The WJTOG 3405<br>The WJTOG 0203<br>The EORTC 08021 | (2008)<br>dy (2008)<br>study (2<br>dy (2008)<br>(2009)<br>(2009)<br>(2009)<br>(2010)<br>study (2)<br>study (2) | 008) -<br>I)<br>010)<br>010) |                  |                                                                        |                                                       |                           | (95% C<br>0.89 (1<br>0.98 (1<br>1.12 (1<br>0.63 (1<br>1.02 (1<br>0.84 (1<br>0.91 (1<br>0.87 (1<br>1.64 (1<br>0.86 (1<br>0.83 (1 | 0.77, 1.02)<br>0.66, 1.47)<br>0.89, 1.40)<br>0.44, 0.91)<br>0.90, 1.15)<br>0.62, 1.15)<br>0.76, 1.10)<br>0.61, 1.24)<br>0.75, 3.58)<br>0.72, 1.03)<br>0.60, 1.15) | 17.<br>3.<br>9.<br>4.<br>21.<br>5.<br>12.<br>4,<br>1.<br>13.<br>5. |
| 3<br>Study                                                                                                                                                                                                                                                                                                                                                                    | מט                     |                                           | HR<br>(95% CI)                                                                                                                                                                                                                                                      | % Weig)                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| The INVITE study (2008)                                                                                                                                                                                                                                                                                                                                                       |                        |                                           | — — 1.19 ( 0.85, 1.65)                                                                                                                                                                                                                                              | 8.3                                                                            |
| The V-15-32 study (2008)                                                                                                                                                                                                                                                                                                                                                      |                        | <b></b> .                                 | 0.90 ( 0.72, 1.12)                                                                                                                                                                                                                                                  | 9.3                                                                            |
| The SWOG 50023 study (2008)                                                                                                                                                                                                                                                                                                                                                   |                        |                                           | 0.80 ( 0.58, 1,10)                                                                                                                                                                                                                                                  | 8.                                                                             |
| The INTEREST study (2008)                                                                                                                                                                                                                                                                                                                                                     |                        | - 101 -                                   | 1.04 ( 0.93, 1.18)                                                                                                                                                                                                                                                  | 10.                                                                            |
| The INSTEP study (2009)                                                                                                                                                                                                                                                                                                                                                       |                        |                                           | 0.82 (0.60, 1.12)                                                                                                                                                                                                                                                   | 8.6                                                                            |
| The (IPASS) study (2009)                                                                                                                                                                                                                                                                                                                                                      |                        |                                           | 0.74 ( 0.65, 0.85)                                                                                                                                                                                                                                                  | 10.5                                                                           |
| The ISTANA study (2010)                                                                                                                                                                                                                                                                                                                                                       |                        | · · · · · · ·                             | 0.73 ( 0.53, 1.00)                                                                                                                                                                                                                                                  | 8.6                                                                            |
| The WJTOG 3405 study (2010)                                                                                                                                                                                                                                                                                                                                                   | · ·· - 📾 · ·           |                                           | 0.49 (0.34, 0.71)                                                                                                                                                                                                                                                   | 7.8                                                                            |
| The North–East Japan Study Group (2010)                                                                                                                                                                                                                                                                                                                                       | <b>2</b>               | r i                                       | 0.30 ( 0.22, 0.41)                                                                                                                                                                                                                                                  | 8.6                                                                            |
| The WJTOG 0203 study (2010)                                                                                                                                                                                                                                                                                                                                                   |                        | 5 <b>1</b>                                | 0.68 ( 0.57, 0.80)                                                                                                                                                                                                                                                  | 10.2                                                                           |
| The EORTC 08021/ILCP 01/ 03 study (2011)                                                                                                                                                                                                                                                                                                                                      | - · •                  | <b>B</b> <sup>1</sup> · · ·               | 0.61 ( 0.45, 0.83)                                                                                                                                                                                                                                                  | 8.6                                                                            |
| Overali                                                                                                                                                                                                                                                                                                                                                                       | -                      | -v 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 0.72 ( 0.60, 0.87)                                                                                                                                                                                                                                                  | 100.0                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                               | ٢                      |                                           | —                                                                                                                                                                                                                                                                   |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                               | .5                     | )<br>HB                                   | 1.5                                                                                                                                                                                                                                                                 |                                                                                |
| DRR                                                                                                                                                                                                                                                                                                                                                                           |                        |                                           |                                                                                                                                                                                                                                                                     |                                                                                |
| ORR<br><sup>4</sup> Study                                                                                                                                                                                                                                                                                                                                                     |                        |                                           | Odds ratio<br>(95% CI)                                                                                                                                                                                                                                              | % Weigh                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                               | I<br>J                 |                                           |                                                                                                                                                                                                                                                                     | % Weigh<br>8.9                                                                 |
| 4 Study                                                                                                                                                                                                                                                                                                                                                                       | 1<br>3 · · · · · · · · |                                           | (95% CI)                                                                                                                                                                                                                                                            | 8.9                                                                            |
| <sup>4</sup> Study<br>The ISEL study (2005)                                                                                                                                                                                                                                                                                                                                   |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)                                                                                                                                                                                                                                     |                                                                                |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V–15–32 study (2008)                                                                                                                                                                                                                                                                                       |                        |                                           | (95% Cl)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )                                                                                                                                                                                                              | 8.9<br>5.1<br>11.9                                                             |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V–15–32 study (2008)<br>The INTEREST study (2008)                                                                                                                                                                                                                                                          |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)                                                                                                                                                                                        | 8.9<br>5.1<br>11.9<br>12.8                                                     |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V–15–32 study (2008)<br>The INTEREST study (2008)<br>The INSTEP study (2009)                                                                                                                                                                                                                               |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)                                                                                                                                                                  | 8.9<br>5.1<br>11.9<br>12.8<br>2.9                                              |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V–15–32 study (2008)<br>The INTEREST study (2008)                                                                                                                                                                                                                                                          |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)<br>6.38 ( 0.75, 54.02)                                                                                                                                           | 8.9<br>5.1<br>11.9<br>12.8<br>2.9<br>13.7                                      |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V–15–32 study (2008)<br>The INTEREST study (2008)<br>The INSTEP study (2009)<br>The [IPASS] study (2009)<br>The ISTANA study (2010)                                                                                                                                                                        |                        |                                           | (95% Cl)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)<br>6.38 ( 0.75, 54.02)<br>1.59 ( 1.26, 2.01)                                                                                                                     | 8.9<br>5.1<br>11.9<br>12.8<br>2.9<br>13.7<br>8.0                               |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V-15-32 study (2008)<br>The INTEREST study (2008)<br>The INSTEP study (2009)<br>The [IPASS] study (2009)<br>The ISTANA study (2010)<br>The WJTOG 3405 study (2010)                                                                                                                                         |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)<br>6.38 ( 0.75, 54.02)<br>1.59 ( 1.26, 2.01)<br>4.74 ( 1.81, 12.41)                                                                                              |                                                                                |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V-15-32 study (2008)<br>The INTEREST study (2008)<br>The INSTEP study (2009)<br>The [IPASS] study (2009)<br>The ISTANA study (2010)<br>The WJTOG 3405 study (2010)<br>The North-East Japan Study Group (2010)                                                                                              |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)<br>6.38 ( 0.75, 54.02)<br>1.59 ( 1.26, 2.01)<br>4.74 ( 1.81, 12.41)<br>3.44 ( 1.61, 7.38 )<br>6.32 ( 3.55, 11.25)                                                | 8.9<br>5.1<br>11.9<br>12.8<br>2.9<br>13.7<br>8.0<br>9.6                        |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V-15-32 study (2008)<br>The INTEREST study (2008)<br>The INSTEP study (2009)<br>The [IPASS] study (2009)<br>The ISTANA study (2010)<br>The WJTOG 3405 study (2010)<br>The WJTOG 0203 study (2010)                                                                                                          |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)<br>6.38 ( 0.75, 54.02)<br>1.59 ( 1.26, 2.01)<br>4.74 ( 1.81, 12.41)<br>3.44 ( 1.61, 7.38 )<br>6.32 ( 3.55, 11.25)<br>1.26 ( 0.89, 1.78 )                         | 8.9<br>5.1<br>11.9<br>12.8<br>2.9<br>13.7<br>8.0<br>9.6<br>11.1                |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V-15-32 study (2008)<br>The INTEREST study (2008)<br>The INTEREST study (2009)<br>The [IPASS] study (2009)<br>The [IPASS] study (2009)<br>The ISTANA study (2010)<br>The WJTOG 3405 study (2010)<br>The WJTOG 0203 study (2010)<br>The WJTOG 0203 study (2010)<br>The EORTC 08021/ILCP 01/ 03 study (2011) |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)<br>6.38 ( 0.75, 54.02)<br>1.59 ( 1.26, 2.01)<br>4.74 ( 1.81, 12.41)<br>3.44 ( 1.61, 7.38 )<br>6.32 ( 3.55, 11.25)<br>1.26 ( 0.89, 1.78 )<br>11.32 ( 1.42, 90.46) | 8.5<br>5.1<br>11.9<br>12.8<br>2.9<br>13.7<br>8.0<br>9.6<br>11.1<br>13.0<br>3.0 |
| 4 Study<br>The ISEL study (2005)<br>The INVITE study (2008)<br>The V-15-32 study (2008)<br>The INTEREST study (2008)<br>The INSTEP study (2009)<br>The [IPASS] study (2009)<br>The ISTANA study (2010)<br>The WJTOG 3405 study (2010)<br>The WJTOG 0203 study (2010)                                                                                                          |                        |                                           | (95% CI)<br>6.90 ( 2.98, 15.95)<br>0.60 ( 0.14, 2.58 )<br>1.99 ( 1.23, 3.22)<br>1.22 ( 0.84, 1.76)<br>6.38 ( 0.75, 54.02)<br>1.59 ( 1.26, 2.01)<br>4.74 ( 1.81, 12.41)<br>3.44 ( 1.61, 7.38 )<br>6.32 ( 3.55, 11.25)<br>1.26 ( 0.89, 1.78 )                         | 8.9<br>5.1<br>11.9<br>12.8<br>2.9<br>13.7<br>8.0<br>9.6<br>[1.1<br>13.0        |

| Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Included studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OR and 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P values                                                                                                                                                                                                                                             | Heterogeneity (%)                                                                                                                                                                             | P values for heterogeneity                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rash                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-16,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.73 (6.13, 12.45)                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001                                                                                                                                                                                                                                               | 77                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Diarrhoea                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 816,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.63 (1.96, 3.52)                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                               | 73                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Nausea                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8-10,12,14-16,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.47 (0.28, 0.79)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.004                                                                                                                                                                                                                                                | 93                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Anorexia                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,9,11,12,14-16,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.70 (0.47, 1.06)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.09                                                                                                                                                                                                                                                 | 87                                                                                                                                                                                            | < 0.001                                                                                                                                                                                                                       |
| Vomiting                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,9,11,12,14-16,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.88 (0.54, 1.45)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.62                                                                                                                                                                                                                                                 | 87                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Dry skin                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,9,11,12,14-16,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.37 (5.98, 18.01)                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                                                                                                                                                                                                                              | 64                                                                                                                                                                                            | 0.004                                                                                                                                                                                                                         |
| Constipation                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8-10,12,14-16,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.56 (0.40, 0.78)                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                               | 76                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Pruritus                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.03 (1.67, 5.49)                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                               | 79                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,9,14,16,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                               |
| Pyrexia                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14-16,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.79 (0.41, 1.53)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.48                                                                                                                                                                                                                                                 | 85                                                                                                                                                                                            | < 0.001                                                                                                                                                                                                                       |
| Asthenic condition                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,9,14,15,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.45 (0.25, 0.80)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.006                                                                                                                                                                                                                                                | 91                                                                                                                                                                                            | < 0.001                                                                                                                                                                                                                       |
| Cough                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9,13,14,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.94 (0.76, 1.17)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.59                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                             | 0.61                                                                                                                                                                                                                          |
| Dyspnea                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9,10,13-15,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.96 (0.79, 1.17)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                             | 0.79                                                                                                                                                                                                                          |
| Stomatitis                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8-10,12,14,16,18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.24 (0.77, 2.00)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.38                                                                                                                                                                                                                                                 | 79                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Hemoptysis                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.34 (0.86, 2.11)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                             | 0.37                                                                                                                                                                                                                          |
| Pneumonia                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11-14,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97 (0.70, 1.34)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.85                                                                                                                                                                                                                                                 | 13                                                                                                                                                                                            | 0.33                                                                                                                                                                                                                          |
| Cancer pain                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,13,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.69 (0.37, 1.28)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.24                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                            | 0.23                                                                                                                                                                                                                          |
| Edema peripheral                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               | 0.17                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14-16,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.47 (0.33, 0.68)                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                               | 38                                                                                                                                                                                            |                                                                                                                                                                                                                               |
| Paronychia                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8-10,14,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.00 (1.14, 171.75)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                 | 87                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Fatigue                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-13,15,16,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35 (0.19, 0.63)                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                               | 78                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Anemia                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-13,15,18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.29 (0.14, 0.61)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                                                | 84                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Hypokalemia                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.34 (0.09, 1.34)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                             | 0.38                                                                                                                                                                                                                          |
| Neutropenia                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-13,15,16,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05 (0.01, 0.28)                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.001                                                                                                                                                                                                                                              | 98                                                                                                                                                                                            | < 0.001                                                                                                                                                                                                                       |
| Leukopenia                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,12,15,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08 (0.01, 0.69)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                 | 97                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Febrile neutropenia                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,12,15,16,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.19 (0.05, 0.70)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                 | 88                                                                                                                                                                                            | < 0.001                                                                                                                                                                                                                       |
| Upper abdominal pain                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,15,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.61 (0.20, 1.82)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                 | 53                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.76 (3.15, 10.55)                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001                                                                                                                                                                                                                                               | 0                                                                                                                                                                                             | 0.68                                                                                                                                                                                                                          |
| Abnormal hepatic function                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                               |
| Insomnia                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,16,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.36 (0.60, 3.10)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.46                                                                                                                                                                                                                                                 | 66                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                          |
| Alopecia                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8-10,16,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.06 (0.05, 0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                               | 38                                                                                                                                                                                            | 0.17                                                                                                                                                                                                                          |
| Myalgia                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8,9,16,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18 (0.14, 0.24)                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.001                                                                                                                                                                                                                                              | 4                                                                                                                                                                                             | 0.37                                                                                                                                                                                                                          |
| Neurotoxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,9,13,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19 (0.05, 0.65)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.008                                                                                                                                                                                                                                                | 95                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Arthralgia                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,9,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15 (0.04, 0.55)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.004                                                                                                                                                                                                                                                | 83                                                                                                                                                                                            | 0.003                                                                                                                                                                                                                         |
| Dyspepsia                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,11,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.45 (0.05, 3.89)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.47                                                                                                                                                                                                                                                 | 88                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| Dizziness                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.09 (0.40, 2.93)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.87                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                             | 0.45                                                                                                                                                                                                                          |
| Sensory disturbance                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.13 (0.02, 0.77)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                 | 86                                                                                                                                                                                            | <0.001                                                                                                                                                                                                                        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                 | 00                                                                                                                                                                                            |                                                                                                                                                                                                                               |
| Thrombocytopenia<br>Variables                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.37 (0.20, 0.71)<br>malysis for the effect of C                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               | 0.11 P values for heterogen                                                                                                                                                                                                   |
| Variables<br>OS                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 3. Subgroup a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               | 0.11 P values for heterogen                                                                                                                                                                                                   |
| Variables<br>OS<br>Number of patients                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 3. Subgroup a<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nalysis for the effect of (<br>lazard ratio (HR)                                                                                                                                                                                                                                                                                                                                                                                                                | efitinib therap                                                                                                                                                                                                                                      | y on OS and PFS<br>Heterogeneity (%)                                                                                                                                                          | P values for heteroger                                                                                                                                                                                                        |
| Variables<br>OS<br>Number of patients<br>≥1000                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 3, Subgroup a<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>1.95 (0.87–1.04)                                                                                                                                                                                                                                                                                                                                                                                   | efitinib therap<br><u>P values</u><br>0.266                                                                                                                                                                                                          | y on OS and PFS<br>Heterogeneity (%)<br>16.1                                                                                                                                                  | <i>P</i> values for heteroger<br>0.304                                                                                                                                                                                        |
| Variables<br>OS<br>Number of patients                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 3, Subgroup a<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nalysis for the effect of (<br>lazard ratio (HR)                                                                                                                                                                                                                                                                                                                                                                                                                | efitinib therap                                                                                                                                                                                                                                      | y on OS and PFS<br>Heterogeneity (%)                                                                                                                                                          | P values for heteroger                                                                                                                                                                                                        |
| Variables<br>OS<br>Number of patients<br>≥1000                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 3, Subgroup a<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>1.95 (0.87–1.04)                                                                                                                                                                                                                                                                                                                                                                                   | efitinib therap<br><u>P values</u><br>0.266                                                                                                                                                                                                          | y on OS and PFS<br>Heterogeneity (%)<br>16.1                                                                                                                                                  | <i>P</i> values for heteroger<br>0.304                                                                                                                                                                                        |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000                                                                                                                                                                                                                                                                                                                                                                                                        | Table 3. Subgroup a<br>H<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>1.95 (0.87–1.04)                                                                                                                                                                                                                                                                                                                                                                                   | efitinib therap<br><u>P values</u><br>0.266                                                                                                                                                                                                          | y on OS and PFS<br>Heterogeneity (%)<br>16.1                                                                                                                                                  | <i>P</i> values for heteroger<br>0.304                                                                                                                                                                                        |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64                                                                                                                                                                                                                                                                                                                                                                                   | Table 3, Subgroup a<br>H<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>).95 (0.87–1.04)<br>).90 (0.78–1.03)<br>).92 (0.84-1.00)                                                                                                                                                                                                                                                                                                                                           | P values<br>0.266<br>0.110<br>0.061                                                                                                                                                                                                                  | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1                                                                                                                                  | <i>P</i> values for heterogen<br>0.304<br>0.171<br>0.141                                                                                                                                                                      |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64                                                                                                                                                                                                                                                                                                                                                                            | Table 3, Subgroup a<br>H<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)                                                                                                                                                                                                                                                                                                                                                               | Gefitinib therap:<br>P values<br>0.266<br>0.110                                                                                                                                                                                                      | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2                                                                                                                                          | <i>P</i> values for heterogen<br>0.304<br>0.171                                                                                                                                                                               |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)                                                                                                                                                                                                                                                                                                                                                        | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)                                                                                                                                                                                                                                                                                                                       | Defitiníb therapy<br><u>P values</u><br>0.266<br>0.110<br>0.061<br>0.761                                                                                                                                                                             | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5                                                                                                                          | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289                                                                                                                                                                    |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>><5%                                                                                                                                                                                                                                                                                                                                                | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)                                                                                                                                                                                                                                                                                                   | Defitinib therapy<br><u>P values</u><br>0.266<br>0.110<br>0.061<br>0.761<br>0.282                                                                                                                                                                    | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0                                                                                                                     | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414                                                                                                                                                           |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%                                                                                                                                                                                                                                                                                                                                        | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)                                                                                                                                                                                                                                                                                                                       | Defitiníb therapy<br><u>P values</u><br>0.266<br>0.110<br>0.061<br>0.761                                                                                                                                                                             | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5                                                                                                                          | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289                                                                                                                                                                    |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br>Control drug                                                                                                                                                                                                                                                                                                                        | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)                                                                                                                                                                                                                                                                               | Defitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126                                                                                                                                                                  | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5                                                                                                             | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128                                                                                                                                                  |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)                                                                                                                                                                                                                                                                               | Defitinib therapy           P values           0.266           0.110           0.061           0.761           0.282           0.126           0.517                                                                                                 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7                                                                                                      | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369                                                                                                                                         |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo                                                                                                                                                                                                                                                                         | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)                                                                                                                                                                                                                                                                               | Defitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126                                                                                                                                                                  | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5                                                                                                             | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128                                                                                                                                                  |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status                                                                                                                                                                                                                                                                     | Table 3, Subgroup a<br>H<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.95 (0.87–1.04)<br>.90 (0.78–1.03)<br>.92 (0.84–1.00)<br>.96 (0.73–1.26)<br>.95 (0.88–1.04)<br>.90 (0.79–1.03)<br>.97 (0.89–1.06)<br>.85 (0.76–0.95)                                                                                                                                                                                                                                               | Defitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004                                                                                                                                                | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0                                                                                                 | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397                                                                                                                                |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line                                                                                                                                                                                                                                               | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.95 (0.87–1.04)<br>.90 (0.78–1.03)<br>.92 (0.84–1.00)<br>.96 (0.73–1.26)<br>.95 (0.88–1.04)<br>.90 (0.79–1.03)<br>.97 (0.89–1.06)<br>.85 (0.76–0.95)<br>.94 (0.84–1.06)                                                                                                                                                                                                                            | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.304<br>0.319                                                                                                                                       | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9                                                                                         | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333                                                                                                                       |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line                                                                                                                                                                                                                        | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.95 (0.87–1.04)<br>.90 (0.78–1.03)<br>.92 (0.84–1.00)<br>.96 (0.73–1.26)<br>.95 (0.88–1.04)<br>.90 (0.79–1.03)<br>.97 (0.89–1.06)<br>.85 (0.76–0.95)                                                                                                                                                                                                                                               | Defitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004                                                                                                                                                | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0                                                                                                 | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397                                                                                                                                |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>≥64<br>264<br>264<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up                                                                                                                                                                                                                                  | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>1.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)<br>0.97 (0.89–1.06)<br>0.85 (0.76–0.95)<br>0.94 (0.84–1.06)<br>0.90 (0.79–1.02)                                                                                                                                                                                               | Defitinib therapy           P values           0.266           0.110           0.061           0.761           0.282           0.126           0.517           0.304           0.319           0.085                                                 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0                                                                                 | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125                                                                                                              |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months                                                                                                                                                                                             | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.95 (0.87–1.04)<br>.90 (0.78–1.03)<br>.92 (0.84–1.00)<br>.95 (0.88–1.04)<br>.90 (0.79–1.03)<br>.97 (0.89–1.06)<br>.85 (0.76–0.95)<br>.94 (0.84–1.06)<br>.90 (0.79–1.02)<br>.90 (0.73–1.12)                                                                                                                                                                                                         | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345                                                                                                                     | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6                                                                         | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042                                                                                                     |
| Variables       OS       Number of patients       ≥1000       <1000                                                                                                                                                                                                                                                                                                                                                                                            | Table 3. Subgroup a<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>1.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)<br>0.97 (0.89–1.06)<br>0.85 (0.76–0.95)<br>0.94 (0.84–1.06)<br>0.90 (0.79–1.02)                                                                                                                                                                                               | Defitinib therapy           P values           0.266           0.110           0.061           0.761           0.282           0.126           0.517           0.304           0.319           0.085                                                 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0                                                                                 | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125                                                                                                              |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>264<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br>Smoker                                                                                                                                                              | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                             | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.95 (0.88–1.04)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)<br>0.97 (0.89–1.06)<br>0.85 (0.76–0.95)<br>0.94 (0.84–1.06)<br>0.90 (0.73–1.12)<br>0.90 (0.73–1.12)                                                                                                                                                                           | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124                                                                                                            | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0                                                                    | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666                                                                                            |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br><36 months<br><36 months<br><36 months<br>Smoker<br>Never smoker                                                                                                           | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                             | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.95 (0.87–1.04)<br>.90 (0.78–1.03)<br>.92 (0.84–1.00)<br>.95 (0.88–1.04)<br>.90 (0.79–1.03)<br>.97 (0.89–1.06)<br>.85 (0.76–0.95)<br>.94 (0.84–1.06)<br>.90 (0.79–1.02)<br>.90 (0.73–1.12)                                                                                                                                                                                                         | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345                                                                                                                     | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6                                                                         | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291                                                                                   |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br><36 months<br>Smoker<br>Never smoker<br>Current/former smoker                                                                                                                      | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                             | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.95 (0.88–1.04)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)<br>0.97 (0.89–1.06)<br>0.85 (0.76–0.95)<br>0.94 (0.84–1.06)<br>0.90 (0.73–1.12)<br>0.90 (0.73–1.12)                                                                                                                                                                           | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124                                                                                                            | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0                                                                    | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666                                                                                            |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br>Smoker<br>Never smoker<br>Current/former smoker<br>Racial                                                                                                                  | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                         | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87-1.04)<br>0.90 (0.78-1.03)<br>0.92 (0.84-1.00)<br>0.96 (0.73-1.26)<br>0.95 (0.88-1.04)<br>0.90 (0.79-1.03)<br>0.97 (0.89-1.06)<br>0.85 (0.76-0.95)<br>0.94 (0.84-1.06)<br>1.90 (0.73-1.12)<br>0.94 (0.87-1.02)<br>0.76 (0.59-0.98)<br>-                                                                                                                                                  | Defitinib therapy           P values           0.266           0.110           0.061           0.761           0.282           0.126           0.517           0.004           0.319           0.085           0.345           0.124           0.034 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-                                                       | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-                                                                              |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br><36 months<br>Smoker<br>Never smoker<br>Current/former smoker                                                                                                                      | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                                         | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.95 (0.87–1.04)<br>.90 (0.78–1.03)<br>.92 (0.84–1.00)<br>.96 (0.73–1.26)<br>.95 (0.88–1.04)<br>.90 (0.79–1.03)<br>.95 (0.89–1.06)<br>.85 (0.76–0.95)<br>.94 (0.84–1.06)<br>.90 (0.79–1.02)<br>.90 (0.73–1.12)<br>.94 (0.87–1.02)<br>.94 (0.87–1.02)<br>.97 (0.59–0.98)                                                                                                                             | Defitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034                                                                                                   | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0                                                            | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291                                                                                   |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br>Smoker<br>Never smoker<br>Current/former smoker<br>Racial                                                                                                                  | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                 | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)<br>0.97 (0.89–1.06)<br>0.85 (0.76–0.95)<br>0.94 (0.84–1.06)<br>1.90 (0.73–1.12)<br>0.94 (0.87–1.02)<br>0.76 (0.59–0.98)<br>-                                                                                                                                                  | Defitinib therapy           P values           0.266           0.110           0.061           0.761           0.282           0.126           0.517           0.004           0.319           0.085           0.345           0.124           0.034 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-                                                       | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-                                                                              |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br><36 months<br><36 months<br><36 months<br><36 months<br><36 months<br><36 months<br><36 months<br><36 months<br>Smoker<br>Never smoker<br>Current/former smoker<br>Racial<br>Asian | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                 | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>                                                                                                                                                                                                                                                                                                                                                                                                   | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216                                                                                     | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5                                               | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084                                                                     |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br><36 months<br>Smoker<br>Never smoker<br>Current/former smoker<br>Recial<br>Asian<br>Non-Asian                                                                              | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                             | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>                                                                                                                                                                                                                                                                                                                                                                                                   | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216                                                                                     | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5                                               | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084                                                                     |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                     | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>                                                                                                                                                                                                                                                                                                                                                                                                   | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025                                                                   | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0                                     | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964                                                   |
| Variables<br>OS<br>Number of patients<br>≥1000<br><1000<br>Median age<br><64<br>≥64<br>Gender (male, %)<br>>65%<br><65%<br><65%<br>Control drug<br>Traditional chemotherapy<br>Placebo<br>Treatment status<br>First line<br>Second line<br>Follow-up<br>≥36 months<br><36 months<br><36 months<br><36 months<br>Smoker<br>Never smoker<br>Current/former smoker<br>Racial<br>Asian<br>Non-Asian<br>Disease status (IIIB or IV)<br>≥90%<br><30%                 | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                     | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>                                                                                                                                                                                                                                                                                                                                                                                                   | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015                                                                            | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0                                          | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409                                                            |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                             | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>).95 (0.87–1.04)<br>).90 (0.78–1.03)<br>).92 (0.84–1.00)<br>).96 (0.73–1.26)<br>).95 (0.88–1.04)<br>).90 (0.79–1.03)<br>).97 (0.89–1.06)<br>1.85 (0.76–0.95)<br>).94 (0.84–1.06)<br>1.90 (0.73–1.12)<br>).94 (0.84–1.06)<br>1.90 (0.73–1.12)<br>).94 (0.87–1.02)<br>).91 (0.78–1.06)<br>.87 (0.78–0.97)<br>).88 (0.79–0.98)<br>1.96 (0.81–1.13)                                                    | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593                                                 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6                             | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.030                                          |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                             | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>0.95 (0.87–1.04)<br>0.90 (0.78–1.03)<br>0.92 (0.84–1.00)<br>0.96 (0.73–1.26)<br>0.95 (0.88–1.04)<br>0.90 (0.79–1.03)<br>0.97 (0.89–1.06)<br>0.85 (0.76–0.95)<br>0.94 (0.84–1.06)<br>0.90 (0.73–1.12)<br>0.94 (0.84–1.06)<br>0.90 (0.73–1.12)<br>0.94 (0.87–1.02)<br>0.76 (0.59–0.98)<br>-<br>-<br>0.91 (0.78–1.06)<br>0.87 (0.78–0.97)<br>0.88 (0.79–0.98)<br>0.96 (0.81–1.13)<br>0.85 (0.76–0.95) | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593<br>0.005                                                 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>6<br>62.6<br>0                        | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.300<br>0.599                                 |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                             | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>).95 (0.87–1.04)<br>).90 (0.78–1.03)<br>).92 (0.84–1.00)<br>).96 (0.73–1.26)<br>).95 (0.88–1.04)<br>).90 (0.79–1.03)<br>).97 (0.89–1.06)<br>1.85 (0.76–0.95)<br>).94 (0.84–1.06)<br>1.90 (0.73–1.12)<br>).94 (0.84–1.06)<br>1.90 (0.73–1.12)<br>).94 (0.87–1.02)<br>).91 (0.78–1.06)<br>.87 (0.78–0.97)<br>).88 (0.79–0.98)<br>1.96 (0.81–1.13)                                                    | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593                                                 | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6                             | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.030                                          |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                     | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.990 (0.78–1.04)<br>.990 (0.78–1.03)<br>.922 (0.84–1.00)<br>.963 (0.73–1.26)<br>.995 (0.88–1.04)<br>.900 (0.79–1.03)<br>.970 (0.89–1.04)<br>.855 (0.76–0.95)<br>.944 (0.84–1.06)<br>.990 (0.73–1.12)<br>.940 (0.87–1.02)<br>.910 (0.73–1.12)<br>.911 (0.78–1.06)<br>.877 (0.78–0.97)<br>.888 (0.79–0.98)<br>.996 (0.81–1.13)<br>.985 (0.76–0.95)                                                   | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593<br>0.005<br>-                                            | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6<br>0<br>-                   | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.300<br>0.599<br>-                            |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>).95 (0.87–1.04)<br>).90 (0.78–1.03)<br>).92 (0.84–1.00)<br>).96 (0.73–1.26)<br>).95 (0.88–1.04)<br>).90 (0.79–1.03)<br>).97 (0.89–1.06)<br>).85 (0.76–0.95)<br>).94 (0.84–1.06)<br>).90 (0.73–1.12)<br>).94 (0.84–1.06)<br>).90 (0.73–1.12)<br>).94 (0.87–1.02)<br>).91 (0.78–1.06)<br>).87 (0.78–0.97)<br>).88 (0.79–0.98)<br>).96 (0.81–1.13)<br>).95 (0.76–0.95)                               | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593<br>0.005<br>-<br>0.14                                    | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>6<br>62.6<br>0                        | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.030<br>0.599<br>-<br>0.004                   |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.990 (0.78–1.04)<br>.990 (0.78–1.03)<br>.922 (0.84–1.00)<br>.963 (0.73–1.26)<br>.995 (0.88–1.04)<br>.900 (0.79–1.03)<br>.970 (0.89–1.04)<br>.855 (0.76–0.95)<br>.944 (0.84–1.06)<br>.990 (0.73–1.12)<br>.940 (0.87–1.02)<br>.910 (0.73–1.12)<br>.911 (0.78–1.06)<br>.877 (0.78–0.97)<br>.888 (0.79–0.98)<br>.996 (0.81–1.13)<br>.985 (0.76–0.95)                                                   | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593<br>0.005<br>-                                            | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6<br>0<br>-                   | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.300<br>0.599<br>-                            |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>).95 (0.87–1.04)<br>).90 (0.78–1.03)<br>).92 (0.84–1.00)<br>).96 (0.73–1.26)<br>).95 (0.88–1.04)<br>).90 (0.79–1.03)<br>).97 (0.89–1.06)<br>).85 (0.76–0.95)<br>).94 (0.84–1.06)<br>).90 (0.73–1.12)<br>).94 (0.84–1.06)<br>).90 (0.73–1.12)<br>).94 (0.87–1.02)<br>).91 (0.78–1.06)<br>).87 (0.78–0.97)<br>).88 (0.79–0.98)<br>).96 (0.81–1.13)<br>).95 (0.76–0.95)                               | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593<br>0.005<br>-<br>0.14                                    | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6<br>0<br>-<br>87.9           | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.030<br>0.599<br>-<br>0.004                   |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                     | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.990 (0.78–1.04)<br>.990 (0.78–1.03)<br>.922 (0.84–1.00)<br>.926 (0.73–1.26)<br>.959 (0.88–1.04)<br>.900 (0.79–1.03)<br>.970 (0.89–1.04)<br>.900 (0.79–1.02)<br>.900 (0.73–1.12)<br>.940 (0.84–1.06)<br>.900 (0.73–1.12)<br>.940 (0.87–1.02)<br>.910 (0.78–1.06)<br>.870 (0.78–0.98)<br><br>                                                                                                       | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593<br>0.005<br>-<br>0.14<br>0.59                            | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6<br>0<br>-<br>87.9<br>0      | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.030<br>0.599<br>-<br>0.004<br>0.539          |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                     | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>).95 (0.87–1.04)<br>).90 (0.78–1.03)<br>).92 (0.84–1.00)<br>).96 (0.73–1.26)<br>).95 (0.88–1.04)<br>).90 (0.79–1.03)<br>).97 (0.89–1.06)<br>1.85 (0.76–0.95)<br>).94 (0.84–1.06)<br>1.90 (0.73–1.12)<br>).94 (0.84–1.06)<br>1.90 (0.73–1.12)<br>).94 (0.87–1.02)<br>).91 (0.78–1.06)<br>1.87 (0.78–0.97)<br>).88 (0.79–0.98)<br>.99 (0.81–1.13)<br>).95 (0.81–1.13)<br>).95 (0.76–0.95)            | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.345<br>0.124<br>0.015<br>0.0216<br>0.015<br>0.025<br>0.593<br>0.005<br>-<br>0.14<br>0.59<br>0.031              | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6<br>0<br>-<br>87.9<br>0<br>0 | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.030<br>0.599<br>-<br>0.004<br>0.539<br>0.505 |
| Variables         OS         Number of patients         ≥1000         <1000                                                                                                                                                                                                                                                                                                                                                                                    | Table 3. Subgroup a           H           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                     | nalysis for the effect of (<br>lazard ratio ( <i>HR</i> )<br>.990 (0.78–1.04)<br>.990 (0.78–1.03)<br>.922 (0.84–1.00)<br>.926 (0.73–1.26)<br>.959 (0.88–1.04)<br>.900 (0.79–1.03)<br>.970 (0.89–1.04)<br>.900 (0.79–1.02)<br>.900 (0.73–1.12)<br>.940 (0.84–1.06)<br>.900 (0.73–1.12)<br>.940 (0.87–1.02)<br>.910 (0.78–1.06)<br>.870 (0.78–0.98)<br><br>                                                                                                       | Befitinib therapy<br>P values<br>0.266<br>0.110<br>0.061<br>0.761<br>0.282<br>0.126<br>0.517<br>0.004<br>0.319<br>0.085<br>0.345<br>0.124<br>0.034<br>-<br>0.216<br>0.015<br>0.025<br>0.593<br>0.005<br>-<br>0.14<br>0.59                            | y on OS and PFS<br>Heterogeneity (%)<br>16.1<br>32.2<br>36.1<br>19.5<br>0<br>39.5<br>7.7<br>0<br>11.9<br>40.0<br>59.6<br>0<br>19.0<br>-<br>48.5<br>0<br>0<br>62.6<br>0<br>-<br>87.9<br>0      | P values for heterogen<br>0.304<br>0.171<br>0.141<br>0.289<br>0.414<br>0.128<br>0.369<br>0.397<br>0.333<br>0.125<br>0.042<br>0.666<br>0.291<br>-<br>0.084<br>0.409<br>0.964<br>0.030<br>0.599<br>-<br>0.004<br>0.539          |

| <b></b>                                                                                                                                                                                             | _ NP3                                         | · · ·                                                                                                                                                                                             |                                                                                   |                                                                |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|
|                                                                                                                                                                                                     | PFS<br>Number of patients                     |                                                                                                                                                                                                   |                                                                                   |                                                                |                  |
|                                                                                                                                                                                                     | ≥1000<br><1000                                | 0.88 (0.63–1.23)<br>0.68 (0.54–0.86)                                                                                                                                                              | 0.447<br>0.001                                                                    | 92.8<br>83.8                                                   | <0.001<br><0.001 |
|                                                                                                                                                                                                     | Mean age<br><64                               | 0.70 (0.560.87)                                                                                                                                                                                   | 0.002                                                                             | 89.4                                                           | <0.001           |
|                                                                                                                                                                                                     | ≥64<br>Gender (male, %)                       | 0.79 (0.49-1.27)                                                                                                                                                                                  | 0.329                                                                             | 83.6                                                           | 0.002            |
|                                                                                                                                                                                                     | >65%<br><65%                                  | 0.92 (0.65-1.29)<br>0.66 (0.54-0.81)                                                                                                                                                              | 0.623<br><0.001                                                                   | 82.5<br>82.3                                                   | 0.003<br><0.001  |
|                                                                                                                                                                                                     | Drug<br>Traditional chemotherapy              | 0.71 (0.56-0.91)                                                                                                                                                                                  | 0.006                                                                             | 90.7                                                           | <0.001           |
|                                                                                                                                                                                                     | Placebo<br>Treatment status                   | 0.73 (0.61–0.89)                                                                                                                                                                                  | 0.001                                                                             | 7.7                                                            | 0.339            |
|                                                                                                                                                                                                     | First line                                    | 0.70 (0.51-0.95)                                                                                                                                                                                  | 0.024                                                                             | 90.9                                                           | <0.001           |
|                                                                                                                                                                                                     | Second line<br>Follow-up                      | 0.75 (0.58–0.95)                                                                                                                                                                                  | 0.017                                                                             | 79.6                                                           | <0.001           |
|                                                                                                                                                                                                     | ≥36 months<br><36 months                      | 0.60 (0.45–0.81)<br>0.88 (0.72–1.08)                                                                                                                                                              | 0.001<br>0.228                                                                    | 86.2<br>78.5                                                   | <0.001<br>0.001  |
|                                                                                                                                                                                                     | Smoker<br>Never smoker                        | 0.48 (0.33-0.70)                                                                                                                                                                                  | <0.001                                                                            | 0                                                              | 0.832            |
|                                                                                                                                                                                                     | Current/former smoker<br>Racial               | -                                                                                                                                                                                                 | -                                                                                 | -                                                              | -                |
|                                                                                                                                                                                                     | Asian<br>Non-Asian                            | 0.62 (0.48–0.79)<br>0.83 (0.63–1.08)                                                                                                                                                              | <0.001<br>0.161                                                                   | 86.6<br>64.5                                                   | <0.001<br>0.037  |
|                                                                                                                                                                                                     | Disease status (IIIB or IV)<br>≥90%           | 0.66 (0.50-0.86)                                                                                                                                                                                  | 0.002                                                                             | 87,4                                                           | <0.001           |
|                                                                                                                                                                                                     | <90%<br>Pre-existent diseases                 | 0.81 (0.62–1.06)                                                                                                                                                                                  | 0.128                                                                             | 80.8                                                           | 0.001            |
|                                                                                                                                                                                                     | Adenocarcinoma                                | 0.63 (0.42-0.93)                                                                                                                                                                                  | 0.021                                                                             | 76                                                             | 0.041            |
|                                                                                                                                                                                                     | Non-adenocarcinoma<br>EGFR FISH               |                                                                                                                                                                                                   | -                                                                                 | -                                                              | -                |
|                                                                                                                                                                                                     | Positive<br>Negative                          | 0.76 (0.22–2.65)<br>1.29 (0.53–3.15)                                                                                                                                                              | 0.665<br>0.579                                                                    | 91.0<br>90.9                                                   | <0.001<br><0.001 |
|                                                                                                                                                                                                     | Jadad score<br>4                              | 0.67 (0.50-0.88)                                                                                                                                                                                  | 0.005                                                                             | 92.2                                                           | <0.001           |
|                                                                                                                                                                                                     |                                               | 0.80 (0.62-1.03)                                                                                                                                                                                  | 0.080                                                                             | 70.2                                                           | 0.009            |
|                                                                                                                                                                                                     | 4. Anmerkungen/Fazi                           | t der Autoren                                                                                                                                                                                     |                                                                                   |                                                                |                  |
| AI-Saleh K, et al.<br>2012 [1].<br>Role of pemetrexed in<br>advanced non-small-<br>cell lung cancer:<br>meta-analysis of<br>randomized<br>controlled trials, with<br>histology subgroup<br>analysis | •                                             | to the OS. Furthermo<br>py among patlents w<br><i>hklar beschrieben bz</i><br><i>ten waren sage IIIB d</i><br>of pemetrexed with the<br>NSCLC<br>ed<br>tments or plecebo<br>al outcome with a min | ore, there wa<br>vith adenoca<br>w. stark zuse<br>oder IV (ca. &<br>that of other | is some evid<br>rcinoma.<br>ammengefas<br>30%)<br>treatments i | n advanced       |
|                                                                                                                                                                                                     | Anzahl eingeschlosse<br>Qualitätsbewertung de |                                                                                                                                                                                                   | . ,                                                                               | Ū.                                                             |                  |
|                                                                                                                                                                                                     | handbook guidelines an                        | d GRADE                                                                                                                                                                                           |                                                                                   |                                                                |                  |
|                                                                                                                                                                                                     | Heterogenitätsuntersu                         | chungen: Cochran (                                                                                                                                                                                | Q and the <i>P</i>                                                                |                                                                |                  |

| TABLE I Studies included in                                      | the meta-and                         | alysis               |                                                                                                              |                                  |                                                                                          |
|------------------------------------------------------------------|--------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|
| Reference                                                        | Pts<br>(n)                           |                      | Regimen                                                                                                      | Remarks                          | Grade and quality                                                                        |
| Hanna et al., 2004 11                                            | 288                                  | un<br>(med           | xel 75 mg/m <sup>2</sup> every 21 days<br>til disease progression<br>lian number of cycles: 4)               | Second line<br>PS 0–2            | Moderate<br>No important study limitat<br>Direct                                         |
|                                                                  | 283                                  | un                   | ted 500 mg/m² every 21 days<br>til disease progression<br>lian number of cycles: 4)                          |                                  | No important imprecisio<br>Unlikely publication bia<br>+++                               |
| Scagliotti <i>et al.</i> , 2008 <sup>12</sup>                    | 863                                  | -                    | tin 75 mg/m <sup>2</sup> on day 1 and<br>te 1250 mg/m <sup>2</sup> on days 1 and 8<br>for 6 cycles           | First line<br>ps 0–1             | Moderate-high<br>Few important study limita<br>No important inconsistence                |
|                                                                  | 862                                  |                      | isplatin 75 mg/m <sup>2</sup> and<br>rexed 500 mg/m <sup>2</sup> on day 1<br>for 6 cycles                    |                                  | Direct<br>No important imprecisio<br>Unlikely publication bia                            |
| Ciuleanu et al., 2009 <sup>14</sup>                              | 441                                  | every 21             | rexed 500 mg/m <sup>2</sup> on day 1<br>days till disease progression<br>tian number of cycles: 5)           | Maintenance<br>therapy<br>PS 0–1 | Moderate-high<br>No important study limitat<br>No important inconsisten                  |
|                                                                  | 222                                  | ţ                    | Placebo                                                                                                      |                                  | Direct<br>No important imprecisio<br>Possible publication bia<br>(sponsor heavily involv |
| Grønberg et al., 2009 13                                         | 217                                  |                      | ne 1000 mg/m <sup>2</sup> on days 1 and 8<br>us carboplatin AUC 5<br>for 4 cycles                            | First line<br>PS 0–2             | Moderate-high<br>Few important study limitat<br>No important inconsistence               |
|                                                                  | 219                                  |                      | emetrexed 500 mg/m <sup>2</sup><br>us carboplatin AUC 5<br>for 4 cycles                                      |                                  | No important inconsistent<br>No important imprecisio<br>Unlikely publication bia         |
| Obasaju <i>et al.,</i> 2009 <sup>15</sup>                        | 74                                   |                      | netrexed 500 mg/m <sup>2</sup> and carboplatin AUC 6                                                         | First line<br>Abstract only      | Low<br>Serious study limitation                                                          |
|                                                                  | 72                                   | Do                   | ry 3 weeks for 6 cycles<br>ocetaxel 75 mg/m <sup>2</sup> and<br>carboplatin AUC 6<br>ry 3 weeks for 6 cycles | 3-Arm trial                      | Direct<br>Imprecision<br>Unlikely publication bia                                        |
| <ul> <li><u>first- or s</u></li> <li>non-squa</li> </ul>         | ked sup<br><u>econd-l</u><br>amous h | erior to<br>ine ther | carboplatin AUC 6                                                                                            | ).88; Figu<br>)I: 0.73 to        | Imprecision<br>Unlikely publication t<br>+<br>95%; CI: 0.80<br>re 2                      |
|                                                                  | og[Hazard R                          | 0,                   | Hazard Ratio<br>Weight IV, Random, 95% 0                                                                     | 1                                | lazard Ratio<br>Random, 95% Cl                                                           |
| 1.1.1 Pemetrexed vs. Pla                                         |                                      |                      |                                                                                                              |                                  |                                                                                          |
| Ciuleanu 2009<br>Subtotal (95% CI)<br>Heterogeneity: Not applic: |                                      | 0.24 0.1             | 20.1%         0.79 [0.65, 0.96]           20.1%         0.79 [0.65, 0.96]                                    |                                  |                                                                                          |
| Test for overall effect: Z =                                     | 2.40 (P = 0.                         | ,                    |                                                                                                              |                                  |                                                                                          |
| 1.1.2 Pemetrexed vs act                                          | ive treatmer                         | nt                   |                                                                                                              |                                  |                                                                                          |
|                                                                  |                                      |                      |                                                                                                              |                                  |                                                                                          |
| Gronberg 2009                                                    |                                      | 0.06 0.12            | 15.6% 0.94 [0.74, 1.19]                                                                                      |                                  |                                                                                          |
| Gronberg 2009<br>Hanna 2004                                      |                                      | 0.03 0.09            | 23.0% 0.97 [0.81, 1.16                                                                                       |                                  | _                                                                                        |
| Gronberg 2009                                                    |                                      |                      |                                                                                                              | ·                                |                                                                                          |

0.94 [0.84, 1.06] 0.93 [0.83, 1.03]

0.5

0.7

1

Favours experimental Favours control

100.0% 0.89 [0.80, 0.99]

Heterogeneity: Tau<sup>2</sup> = 0.00; Chi<sup>2</sup> = 3.68, df = 3 (P = 0.30); I<sup>2</sup> = 18%

Heterogeneity: Tau<sup>2</sup> = 0.01; Chi<sup>2</sup> = 6.06, df = 4 (P = 0.19); I<sup>2</sup> = 34%

Test for subgroup differences: Chi<sup>2</sup> = 2.38, df = 1 (P = 0.12), l<sup>2</sup> = 58.0%

Test for overall effect: Z = 1.43 (P = 0.15)

Test for overall effect: Z = 2.07 (P = 0.04)

FIGURE 1 Overall effect of pemetrexed treatment.

79.9%

Subtotal (95% CI)

Total (95% CI)

1.5 ź

|                                                                                                                                     |                                                                                                              |                                             |                                                       | Hazard Ratio                                                                        | Hazard Katio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study or Subgroup<br>5.1.1 Second line                                                                                              | log[Hazard Ratio]                                                                                            | SE                                          | Weight                                                | IV, Random, 95% (                                                                   | CI IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ciuleanu 2009                                                                                                                       | -0.24                                                                                                        | 0.1                                         | 20.1%                                                 | 0.79 [0.65, 0.96]                                                                   | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hanna 2004                                                                                                                          | -0.03                                                                                                        | 0.09                                        | 23.0%<br>43.2%                                        | 0.97 [0.81, 1.16                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> :                                                                              | 0.01; Chi <sup>2</sup> = 2.44, df                                                                            | = 1 (P                                      |                                                       | 0.88 [0.71, 1.08]<br>= 59%                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for overall effect                                                                                                             |                                                                                                              | - 1 (-                                      | - 0.12), 1                                            | - 55 %                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.1.2 First line                                                                                                                    |                                                                                                              |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gronberg 2009                                                                                                                       | -0.06                                                                                                        |                                             | 15.6%                                                 | 0.94 [0.74, 1.19                                                                    | · ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Obasaju 2009                                                                                                                        | -0.46                                                                                                        |                                             | 6.1%                                                  | 0.63 [0.42, 0.95                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Scagliotti 2008<br>Subtotal (95% CI)                                                                                                | -0.06                                                                                                        | 0.06                                        | 35.1%<br>56.8%                                        | 0.94 [0.84, 1.06]<br>0.89 [0.75, 1.05]                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                     | = 0.01; Chi <sup>2</sup> = 3.41, df =                                                                        | = 2 (P                                      |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for overall effect                                                                                                             |                                                                                                              |                                             | ,                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total (95% CI)                                                                                                                      |                                                                                                              |                                             | 100.0%                                                | 0.89 [0.80, 0.99]                                                                   | 1 🔶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect                                                                        | = 0.01; Chi <sup>z</sup> = 6.06, df =<br>: Z = 2.07 (P = 0.04)                                               | = 4 (P                                      | = 0.19); l <sup>z</sup>                               |                                                                                     | 0.5 0.7 1 1.5 2<br>Favours experimental Favours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FIGURE 2 First-line compar                                                                                                          | ed with second-line pem                                                                                      | etrexed                                     | <i>d.</i>                                             |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                     |                                                                                                              |                                             |                                                       | Hazard Ratio                                                                        | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Study or Subgroup                                                                                                                   | log[Hazard Ratio]                                                                                            | ] SE                                        | Weight                                                | IV, Random, 95% 0                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ciuleanu 2009,non-sq                                                                                                                |                                                                                                              | 0.12                                        |                                                       | 0.70 [0.55, 0.88]                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gornberg 2009, nos-se                                                                                                               |                                                                                                              | 0.14                                        | 14.9%                                                 | 0.96 [0.73, 1.26]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hanna 2009, non-sq                                                                                                                  |                                                                                                              | 0.13                                        |                                                       | 0.78 [0.60, 1.00]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| scagliotti 2008,non-sq                                                                                                              | -0.17                                                                                                        | 0.07                                        | 48.2%                                                 | 0.84 [0.74, 0.97]                                                                   | 」 ───│                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total (95% CI)                                                                                                                      |                                                                                                              |                                             | 100.0%                                                | 0.82 [0.73, 0.91]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Heterogeneity: Tau <sup>2</sup> = 0                                                                                                 | ).00; Chi <sup>z</sup> = 3.42. df = 3                                                                        | (P=0                                        |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for overall effect: 2                                                                                                          |                                                                                                              | <b>.</b>                                    |                                                       |                                                                                     | 0.5 0.7 1 1.5 2<br>Favours experimental Favours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                     |                                                                                                              |                                             |                                                       |                                                                                     | ravours experimental ravours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IGURE 3 Pemetrexed in nor                                                                                                           | i-squamous histology.                                                                                        |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                     |                                                                                                              |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                     |                                                                                                              |                                             |                                                       | Hazard Ratio                                                                        | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Study or Subgroup                                                                                                                   | log[Hazard Ratio]                                                                                            | SE                                          | Weight                                                | IV, Random, 95% C                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ciuleanu 2009,Sq                                                                                                                    | 0.07                                                                                                         |                                             | 23.0%                                                 | 1.07 [0.77, 1.50]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gronberg 2009                                                                                                                       | -0.09                                                                                                        | 0.21                                        | 16.4%                                                 | 0.91 [0.61, 1.38]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hanna 2009, sq                                                                                                                      | 0.44                                                                                                         | 0.19                                        | 19.3%                                                 | 1.55 [1.07, 2.25]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| scagliotti 2008 , sq                                                                                                                | 0.21                                                                                                         | 0.11                                        | 41.2%                                                 | 1.23 [0.99, 1.53]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total (95% CI)                                                                                                                      |                                                                                                              |                                             | 100.0%                                                | 1.19 [0.99, 1.43]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                   | 0.01: Chi2 = 4.02 df =                                                                                       |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test for overall effect:                                                                                                            |                                                                                                              | 5 (I                                        | 0.20), 1                                              |                                                                                     | 0.5 0.7 1 1.5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                     | 2                                                                                                            |                                             |                                                       | Fi                                                                                  | avours experimental Favours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IGURE 4 Pemetrexed in squ                                                                                                           | amous histology.                                                                                             |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Toxicity:                                                                                                                           |                                                                                                              |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TOXICILY.                                                                                                                           |                                                                                                              |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e fouvor o                                                                                                                          | ido offonto for                                                                                              | not                                         | ionto                                                 | tracted with r                                                                      | amatravad: lower rate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                     |                                                                                                              | •                                           |                                                       | •                                                                                   | pemetrexed: lower rate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| hemato                                                                                                                              | logic toxicitv.                                                                                              | sigr                                        | nifican                                               | tly less neutr                                                                      | openia observed [odds ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                     | •                                                                                                            | •                                           |                                                       | •                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                     |                                                                                                              |                                             |                                                       |                                                                                     | n mind that all studies manda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| vitamin                                                                                                                             | B12 and folic                                                                                                | aci                                         | d sup                                                 | plementation                                                                        | for patients receiving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                     |                                                                                                              |                                             |                                                       |                                                                                     | - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| pemetre                                                                                                                             | exea                                                                                                         |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                     |                                                                                                              |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| more el                                                                                                                             | evation of ala                                                                                               | nine                                        | e amir                                                | notransferase                                                                       | e (or: 11.68 <sup>,</sup> 95 % Cl <sup>,</sup> 0.64 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                     |                                                                                                              | nine                                        | e amir                                                | notransferase                                                                       | e (or: 11.68; 95 % CI: 0.64 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>more el 212.19)</li> </ul>                                                                                                 |                                                                                                              | Inine                                       | e amir                                                | notransferase                                                                       | e (or: 11.68; 95 % Cl: 0.64 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 212.19)                                                                                                                             |                                                                                                              |                                             |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 212.19)<br>• no sign                                                                                                                | ificant differer                                                                                             | nce                                         | in the                                                | incidence of                                                                        | anemia for patients treated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 212.19)<br>• no sign                                                                                                                |                                                                                                              | nce                                         | in the                                                | incidence of                                                                        | anemia for patients treated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 212.19)<br>• no sign<br>with pe                                                                                                     | ificant differer<br>metrexed (or:                                                                            | nce<br>1.3                                  | in the<br>6; 95%                                      | incidence of<br>% ci: 0.73 to 2                                                     | anemia for patients treated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 212.19)<br>• no sign                                                                                                                | ificant differer<br>metrexed (or:                                                                            | nce<br>1.3                                  | in the<br>6; 95%                                      | incidence of<br>% ci: 0.73 to 2                                                     | anemia for patients treated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 212.19) <ul> <li>no sign</li> <li>with per</li> </ul> 4. Anmerkun                                                                   | ificant differer<br>metrexed (or:<br><b>gen/Fazit de</b>                                                     | nce<br>1.3<br>r Au                          | in the<br>6; 95%<br><b>Itorer</b>                     | incidence of<br>% ci: 0.73 to 2<br>n                                                | anemia for patients treated<br>2.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 212.19) <ul> <li>no sign</li> <li>with per</li> </ul> 4. Anmerkun                                                                   | ificant differer<br>metrexed (or:<br><b>gen/Fazit de</b>                                                     | nce<br>1.3<br>r Au                          | in the<br>6; 95%<br><b>Itorer</b>                     | incidence of<br>% ci: 0.73 to 2<br>n                                                | anemia for patients treated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 212.19) <ul> <li>no sign</li> <li>with per</li> </ul> 4. Anmerkun                                                                   | ificant differer<br>metrexed (or:<br><b>gen/Fazit de</b><br>other chemo                                      | nce<br>1.3<br><b>r Au</b>                   | in the<br>6; 95%<br><b>itorer</b><br>rapy a           | incidence of<br>% ci: 0.73 to 2<br>n<br>ngents, peme                                | anemia for patients treated<br>2.52)<br>trexed is more effective for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 212.19)<br>• no sign<br>with per<br><b>4. Anmerkun</b><br>Compared with                                                             | ificant differer<br>metrexed (or:<br><b>gen/Fazit de</b><br>other chemo<br>SCLC in patie                     | nce<br>1.3<br><b>r Au</b>                   | in the<br>6; 95%<br><b>itorer</b><br>rapy a           | incidence of<br>% ci: 0.73 to 2<br>n<br>ngents, peme                                | anemia for patients treated<br>2.52)<br>trexed is more effective for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 212.19)<br>• no sign<br>with per<br><b>4. Anmerkun</b><br>Compared with<br>treatment of NS<br><i>Anmerkungen</i>                    | ificant differer<br>metrexed (or:<br>gen/Fazit de<br>other chemo<br>SCLC in patie<br>FB Med:                 | nce<br>1.3<br><b>r Au</b><br>othei          | in the<br>6; 959<br><b>Itorer</b><br>rapy a<br>with n | incidence of<br>% ci: 0.73 to 2<br>n<br>gents, peme<br>non-squamou                  | anemia for patients treated<br>2.52)<br>trexed is more effective for the state of the sta |
| 212.19)<br>• no sign<br>with per<br><b>4. Anmerkun</b><br>Compared with<br>treatment of NS<br><i>Anmerkungen</i><br>• <i>PE has</i> | ificant differer<br>metrexed (or:<br>gen/Fazit de<br>other chemo<br>SCLC in patie<br>FB Med:<br>received hon | nce<br>1.3<br><b>r Au</b><br>othei<br>othei | in the<br>6; 95%<br><b>Itorer</b><br>rapy a<br>with n | incidence of<br>% ci: 0.73 to 2<br>n<br>gents, peme<br>non-squamou<br>d research fu | anemia for patients treated<br>2.52)<br>trexed is more effective for the<br>s histology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 212.19)<br>• no sign<br>with per<br><b>4. Anmerkun</b><br>Compared with<br>treatment of NS<br><i>Anmerkungen</i><br>• <i>PE has</i> | ificant differer<br>metrexed (or:<br>gen/Fazit de<br>other chemo<br>SCLC in patie<br>FB Med:<br>received hon | nce<br>1.3<br><b>r Au</b><br>othei<br>othei | in the<br>6; 95%<br><b>Itorer</b><br>rapy a<br>with n | incidence of<br>% ci: 0.73 to 2<br>n<br>gents, peme<br>non-squamou<br>d research fu | anemia for patients treated<br>2.52)<br>trexed is more effective for the state of the sta |

|                                     | C                                                                                        | decla                                                                         | are.                |            |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |
|-------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|--------------|---------------|------------------|------------------------|
| Gao H et al., 2011                  | 1. Frage                                                                                 | I. Fragestellung                                                              |                     |            |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |
| [17].                               | to asses                                                                                 | o assess the efficacy and safety of erlotinib in patients with advanced NSCLC |                     |            |                                                                                                                                                                                                       |                    |              | CLC          |               |                  |                        |
| Efficacy of erlotinib in            | 2. Methodik                                                                              |                                                                               |                     |            |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |
| patients with<br>advanced non-small | Population: advanced NSCLC                                                               |                                                                               |                     |            |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |
| cell lung cancer: a                 | Interver                                                                                 | ntior                                                                         | n: erlot            | inib       | alone or based combination t                                                                                                                                                                          | herar              | ΟV           |              |               |                  |                        |
| pooled analysis of                  | Intervention: erlotinib alone or based combination therapy                               |                                                                               |                     |            |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |
| randomized trials                   | Komparator: other agent or based combination regimen<br>Endpunkt: OS, PFS, ORR, toxicity |                                                                               |                     |            |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |
|                                     | -                                                                                        |                                                                               |                     |            | · · ·                                                                                                                                                                                                 |                    | <b>a</b> t.  | - L - A      |               |                  | ha                     |
|                                     | quality o                                                                                | f rar                                                                         | ndomiz              | zed c      | l <b>er Primärstudien</b> : nach Moł<br>controlled trials: an annotated<br>Trials 1995; 16:62–73.                                                                                                     |                    |              |              |               | •                |                        |
|                                     | Suchzei                                                                                  | trau                                                                          | <b>ım</b> : 19      | 97 b       | is 2011                                                                                                                                                                                               |                    |              |              |               |                  |                        |
|                                     | Anzahl                                                                                   | eing                                                                          | eschl               | osse       | ene Studien/Patienten (Ges                                                                                                                                                                            | amt):              | : 14         | /7 9         | 74            |                  |                        |
|                                     | 3. Erg                                                                                   | ebni                                                                          | sdars               | tellu      | ing                                                                                                                                                                                                   |                    |              |              |               |                  |                        |
|                                     | Validity a                                                                               | asse                                                                          | ssme                | nt: no     | o significant difference amon                                                                                                                                                                         | g the              | trial        | s, re        | esult         | s not            |                        |
|                                     | consider                                                                                 | considered in this pooled analysis                                            |                     |            |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |
|                                     | Table 1 Char                                                                             | acteris                                                                       | tics of the         | fourtee    | n trials included in this pooled analysis                                                                                                                                                             |                    | PS           |              | Stage         | Adeno-           |                        |
|                                     | Author                                                                                   | Year                                                                          | Publication<br>form | Patients   | Chemo/target therapy regimen                                                                                                                                                                          | Sex<br>(male, %)   | 0-1<br>(%)   | Age          | III/IV<br>(%) | carcinoma<br>(%) | Smoking<br>history (%) |
|                                     | Gatzemeier<br>et al. [18]                                                                | 2007                                                                          | Full text           | 586<br>586 | Erlotinib 150 mg/day, per oral + gemcitabine 1250 mg/m <sup>2</sup> , days 1,8 + cisplatin 80 mg/m <sup>2</sup> , day 1, 6 cycles Placebo + gemcitabine 1250 mg/m <sup>2</sup> , days 1,8 + cisplatin | 78.0<br>75.0       | 99.8<br>99.8 | 60.0<br>59.1 | 99.6<br>99.8  | 38.0<br>38.0     | -                      |
|                                     | Herbst                                                                                   | 2005                                                                          | Full text           | 539        | 80 mg/m <sup>2</sup> , day 1, 6 cycles<br>Erlotinib 150 mg/day, per oral + carboplatin AUC 6,                                                                                                         | 61.6               | 100          | 62.7         | 100           | 59.9             | 86.6                   |
|                                     | <i>et al.</i> [19]                                                                       |                                                                               |                     | 540        | day 1 + paclitaxel 200 mg/m <sup>2</sup> , day 1, 6 cycles<br>Placebo + carboplatin AUC 6, day 1 + paclitaxel 200<br>mg/m <sup>2</sup> , day 1, 6 cycles                                              | 59.7               | 99.8         | 62.6         | 100           | 61.4             | 91.8                   |
|                                     | Lee et al. [20]                                                                          | 2010                                                                          | Abstract            | 350        | Erlotinib 150 mg/day, per oral                                                                                                                                                                        | 61.0               |              | 77.4         | 100           | 38               | 95.0                   |
|                                     | Lilenbaum                                                                                | 2008                                                                          | Full text           | 320<br>52  | Placebo<br>Erlotinib 150 mg/day, per oral                                                                                                                                                             | 61.0<br>44.0       |              | 77.2<br>51.0 | 100<br>100    | 38<br>50.0       | 94.0<br>88.0           |
|                                     | et al. [21]                                                                              |                                                                               |                     | 51         | Carboplatin AUC 6, day 1 + paclitaxel 200 mg/m <sup>2</sup> , day 1,<br>6 cycles                                                                                                                      | 55.0               | 0            | 52.0         | 100           | 63.0             | 92.0                   |
|                                     | Reck et al. [22]                                                                         | 2010                                                                          | Abstract            | 144<br>140 | Erlotinib 150 mg/day, per oral<br>Carboplatin AUC 5, day 1 + vinorelbine 25 mg/m <sup>2</sup> , days<br>1,8, 6 cycles                                                                                 | 65.0<br>71.0       | 100<br>100   | 75.5<br>76.1 | 100<br>99.0   | 50.0<br>49.0     | 82.0<br>86.0           |
|                                     | Cappuzzo                                                                                 | 2010                                                                          | Full text           | 438        | After CT, erlotinib 150 mg/day, per oral                                                                                                                                                              | 73.0               | 31.0         | 60.0         | 100           | 47.0             | 82.0                   |
|                                     | <i>et al.</i> [23]<br>Miller                                                             | 2009                                                                          | Abstract            | 451<br>370 | After CT, placebo<br>After CT, erlotinib 150 mg/day, per oral + bevacizumab                                                                                                                           | 75.0<br>52.2       | 32.0<br>100  | 60.0<br>64.0 | 100<br>100    | 44.0<br>81.3     | 83.0<br>83.5           |
|                                     | et al. [11]                                                                              |                                                                               |                     | 373        | 15 mg/kg, day 1, q3weeks<br>After CT, placebo+bevacizumab 15 mg/kg, day 1, q3                                                                                                                         | 52.3               | 99.7         | 64.0         | 100           | 82.5             | 82.3                   |
|                                     | Mok et al. [24]                                                                          | 2010                                                                          | Full text           | 76         | weeks<br>Erlotinib 150 mg/day, days 15-28 + gemcitabine 1250<br>mg /m <sup>2</sup> , days 1, 8 + cisplatin 75 mg/m <sup>2</sup> (carboplatin                                                          | 71.0               | 100          | 57.0         | 100           | 67.0             | 68.0                   |
|                                     |                                                                                          |                                                                               |                     | 78         | AUC 5), day 1, 6 cycles<br>Placebo + gemcitabine 1250 mg/m <sup>2</sup> , days 1,8 + cisplatin<br>75 mg/m <sup>2</sup> (carboplatin AUC 5), day 1, 6 cycles                                           | 69.0               | 100          | 57.5         | 100           | 67.0             | 64.0                   |
|                                     | Perol et al. [25]                                                                        | 2010                                                                          | Abstract            | 155        | After CT, erlotinib 150 mg/day, per oral                                                                                                                                                              | 73                 | 100          | 56.4         | 100           | 63               | -                      |
|                                     | Shepherd                                                                                 | 2005                                                                          | Full text           | 155<br>488 | After CT, observation<br>Erlotinib 150 mg/day, per oral                                                                                                                                               | 73<br>64.5         | 100<br>91.4  | 59.8<br>62.0 | 100<br>100    | 67<br>50.4       | 73.4                   |
|                                     | <i>et al.</i> [26]<br>Herbst                                                             | 2007                                                                          | Full text           | 243<br>39  | Placebo<br>Erlotinib 150 mg/day, per oral +bevacizumab 15 mg/kg,                                                                                                                                      | 65.8<br>43.6       | 91.4<br>100  | 59.0<br>68.0 | 100<br>100    | 49.0<br>82.1     | 77.0<br>84.6           |
|                                     | et al. [27]                                                                              |                                                                               |                     | 40         | day 1, q3 weeks<br>Paclitaxel 75 mg/m <sup>2</sup> , day 1/ pemetrexed 500 mg/m <sup>2</sup> ,<br>day 1 + bevacizumab 15 mg/kg, day 1, q3 weeks                                                       | 57.5               | 100          | 63.5         | 100           | 75.0             | 90.0                   |
|                                     | Vamvakas                                                                                 | 2010                                                                          | Abstract            | 166        | Erlotinib 150 mg/day, per oral                                                                                                                                                                        | 81.3               | 79.2         | 65           | 100           | 53.6             | -                      |
|                                     | <i>et al.</i> [28]<br>Natale                                                             | 2011                                                                          | Full text           | 166<br>617 | MTA 500 mg/m², d1, q3wks<br>Erlotinib 150 mg/day, per oral                                                                                                                                            | 82.5<br>64.0       | 81.3<br>88.0 | 66<br>61.0   | 100<br>100    | 56.6<br>57.0     | _<br>76.0              |
|                                     | et al. [29]                                                                              |                                                                               |                     | 623        | Vandetanib 300 mg/day, per oral ( a targeted drug)                                                                                                                                                    | 61.0               | 99.0         | 60.0         | 100           | 63.0             | 79.0                   |
|                                     | Boyer et al. [30]                                                                        | 2010                                                                          | Abstract            | 94<br>94   | Erlotinib 150 mg/day, per oral<br>PF299804 45 mg/day, per oral                                                                                                                                        | 59.6<br>58.5       | 96.8<br>81.9 | 67.0<br>69.0 | 100<br>100    | 64.9<br>66.0     | 78.7<br>79.8           |
|                                     | controlled phase                                                                         | II trials.                                                                    |                     |            | trials except for Lilenbaum et al. [21], Mok et al. [24], and I                                                                                                                                       | Herbst <i>et a</i> | /. [27] t    | rials, wh    | iich were     | designed as      | randomized             |
|                                     |                                                                                          |                                                                               |                     |            | e curve; CT, chemotherapy; PS, performance status.                                                                                                                                                    |                    |              |              |               |                  |                        |
|                                     | First-lin                                                                                | e th                                                                          | erapy               | ,          |                                                                                                                                                                                                       |                    |              |              |               |                  |                        |

| <b>Overall survival (4 trials)</b> : no statistically significant difference between erlotinib-<br>based regimens and other regimens, Significant heterogeneity                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>The subgroup analysis showed a similar OS compared with placebo (HR:<br/>1.02; 95% CI: 0.92–1.13; P=0.73)</li> </ul>                                                                                                                                                                                                                                                                       |
| <ul> <li>a <u>decreased</u> OS compared with chemotherapy (HR: 1.39; 95% CI: 0.99–<br/>1.94; P=0.05)</li> </ul>                                                                                                                                                                                                                                                                                     |
| <b>PFS (3 trials)</b> : no statistically significant difference between erlotinib-based regimens and other regimens, significant heterogeneity                                                                                                                                                                                                                                                      |
| <ul> <li>The pooled estimate showed a similar PFS when compared with placebo<br/>(HR: 0.93; 95% CI: 0.85–1.01; P=0.09)</li> </ul>                                                                                                                                                                                                                                                                   |
| <ul> <li>a <u>decreased</u> PFS compared with chemotherapy (HR: 1.55; 95% CI: 1.24–<br/>1.93; P&lt;0.01)</li> </ul>                                                                                                                                                                                                                                                                                 |
| <ul> <li>but a prolonged PFS compared with placebo as maintenance therapy (HR: 0.71; 95% CI: 0.60–0.83; P&lt;0.01).</li> </ul>                                                                                                                                                                                                                                                                      |
| Second/third-line therapy                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Overall survival (3 trials)</b> : similar OS for erlotinib-based regimens, significant heterogeneity                                                                                                                                                                                                                                                                                             |
| <ul> <li>subgroup analysis showed a prolonged OS compared with placebo (HR:<br/>0.70; 95% CI: 0.58–0.84; P&lt;0.01), similar OS compared with chemotherapy</li> </ul>                                                                                                                                                                                                                               |
| <b>PFS (3 trials):</b> pooled estimate showed a similar PFS for erlotinib-based regimens, significant heterogeneity                                                                                                                                                                                                                                                                                 |
| <ul> <li>subgroup analysis showed a prolonged PFS compared with placebo (HR:<br/>0.61; 95% CI: 0.51–0.73; P&lt;0.01), similar PFS compared with<br/>chemotherapy</li> </ul>                                                                                                                                                                                                                         |
| Toxicity:                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Grade 3/4 diarrhea (OR: 4.87; 95% CI: 3.19–7.44; P&lt;0.01),</li> <li>rash (OR: 28.94; 95% CI: 14.28–58.66; P&lt;0.01),</li> <li>anemia (OR: 1.39; 95% CI: 1.06–1.82; P=0.02)</li> <li>all significantly prominent in the erlotinib-based regimens</li> </ul>                                                                                                                              |
| 4. Anmerkungen/Fazit der Autoren                                                                                                                                                                                                                                                                                                                                                                    |
| Our findings demonstrate that erlotinib-based regimens significantly increase<br>ORR and improve PFS as a first-line maintenance therapy or as a second/third-<br>line therapy compared with placebo. Thus, the use of erlotinib may be a new<br>effective therapy in treating advanced NSCLC as first-line maintenance therapy or<br>second/third-line therapy compared with best supportive care. |
| Anmerkungen der FB Med:                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Publicationbias untersucht und als unwahrscheinlich bewertet</li> <li>3 Phase II Studien eingeschlossen</li> <li>"There are no conflicts of interest"</li> </ul>                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                     |

| He X et al., 2015                      | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [28].<br>Efficacy and safety of        | The aim was to conduct a meta-analysis to compare the efficacy and safety of docetaxel and pemetrexed or docetaxel and vinca alkaloid for non-small-cell lung cancer.                                                                                                                                                                                                                                                                                                                        |
| docetaxel for advanced non-small-      | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| cell lung cancer: a meta-analysis of   | Population: advanced NSCLC patients                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Phase III randomized controlled trials | Intervention/Komparator: docetaxel vs. pemetrexed bzw. docetaxel vs. vinca alkaloid                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | Endpunkte: overall survival, progression-free survival, and overall response rate with 95% confidence intervals and major grade 3/4 toxicity                                                                                                                                                                                                                                                                                                                                                 |
|                                        | Suchzeitraum (Aktualität der Recherche): to January 24, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | Anzahl eingeschlossene Studien/Patienten (Gesamt): 7 trials involving 2,080 patients<br>There were 1,048 and 1,032 patients randomized to docetaxel and to other anti-NSCLC drug arms, respectively. Of the included studies, three studies compared docetaxel and pemetrexed, two studies compared docetaxel and vinorelbine and two studies compared docetaxel and vinorelbine analogs (vinflunine or vindesine).                                                                          |
|                                        | Qualitätsbewertung der Studien: Jadad scoring system was used. I <sup>2</sup> for heterogeneity.                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | Qualität der Studien: Overall, two trials scored 4, while the others scored 3.                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | <ul> <li>Overall survival:</li> <li>We performed subgroup analysis in first-line and second-line, respectively, in order to distinguish the efficacy of the different lines of treatment. Five trials provided HR results of overall survival (OS) → No significant difference was found in the pooled HR for OS between docetaxel and pemetrexed as both first-line and second-line treatment.</li> <li>Results were similar in the comparison of docetaxel with vinca alkaloid.</li> </ul> |
|                                        | PFS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | <ul> <li>No statistically significant difference between docetaxel and pemetrexed as both first-line and second-line treatment.</li> <li>In terms of docetaxel with vinca alkaloid as first-line treatment, there was a significant statistical difference in PFS (HR 0.63, 95% CI: 0.45–0.82, P=0.001), but not for second-line treatment.</li> </ul>                                                                                                                                       |

|                                                                                                                                                                                                                          | ORR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          | <ul> <li>There were no ORR data available for the comparison between docetaxel and pemetrexed as first-line treatment.</li> <li>No significant statistical difference in ORR was detected in docetaxel versus pemetrexed as second-line treatment</li> <li>In terms of first-line treatment, compared with vinca alkaloid, docetaxel was associated with significant improvement of ORR (OR 1.98, 95% CI: 1.33–2.95, P=0.0008).</li> <li>In addition, there was a similar result for ORR between docetaxel and vinca alkaloid as second-line treatment</li> </ul>       |
|                                                                                                                                                                                                                          | Grade 3/4 hematological and non-hematological toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          | <ul> <li>Compared with pemetrexed, docetaxel led to higher neutropenia and febrile neutropenia (P=0.05), but there was no difference in non-hematological toxicity.</li> <li>Docetaxel led to a lower rate of anemia as first-line treatment (P=0.05).</li> <li>Moreover, docetaxel caused less grade 3/4 hematological and non-hematological toxicity compared with vinca alkaloid</li> </ul>                                                                                                                                                                          |
|                                                                                                                                                                                                                          | 4. Fazit der Autoren: In terms of the effectiveness and safety on patients with<br>advanced NSCLC in first-line therapy, docetaxel leads to a better result than vinca<br>alkaloid. Docetaxel also causes lower toxicity in second-line therapy compared<br>with vinca alkaloid. However, the differences in efficacy and safety between<br>docetaxel and pemetrexed are not obvious. Therefore, further clinical study with<br>more details, such as sex, age, histology, and so on, should be considered for<br>illustrating the differences between these two drugs. |
| Li G et al., 2016 [33].                                                                                                                                                                                                  | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The Efficacy of Single-Agent                                                                                                                                                                                             | To determine the efficacy of first-generation single-agent epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy in advanced non-small-cell lung cancer patients with known EGFR mutation status                                                                                                                                                                                                                                                                                                                                              |
| Epidermal Growth<br>Factor Receptor<br>Tyrosine Kinase<br>Inhibitor Therapy in<br>Biologically Selected<br>Patients with Non-<br>Small-Cell Lung<br>Cancer: A Meta-<br>Analysis of 19<br>Randomized<br>Controlled Trials | <ul> <li>2. Methodik</li> <li>Population: advanced non-small-cell lung cancer patients with known EGFR mutation status (defined as inoperable locally advanced (stage IIIB) or metastatic or recurrent disease (stage IV)</li> <li>Intervention: firstgeneration single-agent EGFR-TKI therapy (erlotinib or gefitinib)</li> <li>Komparator: standard chemotherapy</li> <li>Endpunkte: PFS (primary endpoint) and/or overall survival (OS)</li> </ul>                                                                                                                   |

| Suchzeitraum (Aktualität der Recherche): to April 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anzahl eingeschlossene Studien/Patienten (Gesamt): 19 RCTs<br>enrolling 2,016 patients with wild-type EGFR tumors and 1,034 patients with<br>mutant EGFR tumors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Qualitätsbewertung der Studien: Two reviewers independently assessed the quality of selected studies using the following criteria: (1) generation of allocation concealment, (2) description of dropouts, (3) masking of randomization, intervention, and outcome assessment, and (4) intention-to-treat analysis. Each criterion was rated as 'yes', 'no', or 'unclear'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Qualität der Studien: All included trials were open-labeled. Random sequence generation and allocation concealment were performed adequately in most of the trials. None was blinded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>For EGFR mutant patients, single-agent EGFR-TKI therapy improved progression-free survival (PFS) over chemotherapy: the summary hazard ratios (HRs) were 0.41 (p &lt; 0.001) for the first-line setting and 0.46 (p = 0.02) for the second-/thirdline setting.</li> <li>For those EGFR wild-type patients, single-agent EGFR-TKI therapy did not do as well as chemotherapy in the first-line setting (HR = 1.65, p = 0.03) and in the second-/third-line setting (HR = 1.27, p = 0.006).</li> <li>No statistically significant difference was observed in terms of overall survival (OS).</li> <li>Using platinum-based doublet chemotherapy as a common comparator, indirect comparison showed the superior efficacy of single-agent EGFR-TKI therapy over EGFR-TKIs added to chemotherapy in PFS [HR = 1.35 (1.03, 1.77), p= 0.03].</li> <li>A marginal trend towards the same direction was found in the OS analysis [HR = 1.16 (0.99, 1.35), p = 0.06].</li> <li>For those EGFR wild-type tumors, single-agent EGFR-TKI therapy was inferior to EGFRTKIs added to chemotherapy in PFS [HR = 0.38 (0.33, 0.44), p &lt; 0.001] and OS [HR = 0.83 (0.71, 0.97), p= 0.02].</li> </ul> |
| 4. Fazit der Autoren: Despite these limitations, our pooled analysis contributes to<br>a better understanding of the efficacy of singleagent EGFR-TKI therapy in<br>patients with known EGFR mutation status. We found that for these EGFR mutant<br>patients, single-agent EGFR-TKI therapy prolonged PFS over chemotherapy.<br>However, single-agent EGFR-TKI therapy was inferior to chemotherapy in PFS<br>for those EGFR wild-type patients. Single-agent EGFR-TKI therapy could improve<br>PFS over the combination of EGFR-TKIs and chemotherapy in these EGFR<br>mutant patients. However, EGFR-TKIs combined with chemotherapy could<br>provide additive PFS and OS benefit over single-agent EGFR-TKI therapy in<br>those EGFR wild-type patients.                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Petrelli Fet al., 2015                     | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [46].                                      | to provide a pooled analysis of published studies on the efficacy of treatments in patients who have had at least three unsuccessful lines of therapy.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Efficacy of fourth-line chemotherapy in    | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| advanced non-small-<br>cell lung cancer: a | Population: patients with advanced/metastatic NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| systematic review<br>and pooled analysis   | Intervention/Komparator: fourth-line chemotherapy or biological agents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| of published studies                       | <ul> <li>Endpunkte:</li> <li><u>Primäre Endpunkte:</u> response rate (RR) and complete response rate (DCR)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            | <u>Sekundäre Endpunkte:</u> PFS, OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            | Suchzeitraum (Aktualität der Recherche): up to 11 January 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | Anzahl eingeschlossene Studien/Patienten (Gesamt): Overall, 14 studies (673 patients), which were almost entirely published by Asian institutions, were eligible for this pooled analysis.                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | Qualitätsbewertung der Studien: k.A → <u>Hinweis FBMed</u> : 3 Phase 2 Studien,<br>der Rest der Studien (N=12) mit retrospektivem Design.<br>I² für Heterogenität                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                            | <u><i>Hinweis</i></u> : Pooled analysis of a retrospective series of small unrandomized trials without a comparator arm; thus, a hypothetical survival benefit versus BSC cannot be shown                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | RR and DCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | <ul> <li>Thirteen trials were available for the RR analysis: The pooled overall RR was 13.6% (95% CI 10–18.3). Heterogeneity was moderate (I<sup>2</sup>=42.6, P=0.058), and so a random-effect model was used. After excluding the study by Massarelli and colleagues, which used older agents (it included patients treated in European countries between 1993 and 2000), the final results were unchanged.</li> <li>Thirteen trials were available for the DCR analysis. The pooled overall DCR was 47.2% (05% CI 28, 56.0). Heterogeneity was high (I2 –77.7, D = 0.0001).</li> </ul> |
|                                            | was 47.3% (95% CI 38–56.9). Heterogeneity was high (I2 =77.7, P< 0.0001), and so a random-effect model was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | Median PFS and OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            | <ul> <li>Eight studies presented the median PFS rate with respective 95% CIs. The pooled median PFS for these studies was 3.34 months (95% CI 2.42–4.27). Heterogeneity was high (I<sup>2</sup>= 72.2, P &lt; 0.0001), and so a random-effect model was used.</li> </ul>                                                                                                                                                                                                                                                                                                                  |

|                                                               | <ul> <li>Only seven trials reported a median OS rate that was useful for calculating pooled OS. The pooled median OS for these studies was 10.5 months (95% CI 9.57–11.52). Heterogeneity was low (I2 =0, P = 0.62), and so a fixed-effect model was used.</li> </ul>                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | 4. Fazit der Autoren: In conclusion, for NSCLC patients failing three or more lines<br>of therapy, fourth-line treatment could be offered in select cases to good PS<br>patients according to previous treatment exposure, patient wishes and physician<br>choice. The present pooled analysis suggests that in this subgroup of patients,<br>the activity of fourth-line agents is comparable with that of second-line and third-<br>line trials. What the preferable agent is and whether these data can be<br>generalized to Western countries cannot, however, be shown. |
|                                                               | <ul> <li>5. Hinweise durch FBMed:</li> <li>There are limited literature data on current treatment beyond first-line and second-line therapies for NSCLC</li> <li>Almost totally Asian patients with intrinsically different outcomes and benefits from chemotherapy and biological agents.</li> </ul>                                                                                                                                                                                                                                                                        |
| Sheng J et al., 2015                                          | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [55].<br>The Efficacy of                                      | The purpose of this meta-analysis was to assess the advantage and toxicity profile of chemotherapy plus EGFR-mAbs versus chemotherapy alone for patients with NSCLC.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Combining EGFR                                                | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Monoclonal Antibody<br>With Chemotherapy<br>for Patients With | Population: patients with advanced NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| advanced Nonsmall<br>Cell Lung Cancer                         | Intervention: standard chemotherapy plus EGFR-mAbs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               | Komparator: chemotherapy alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | Endpunkte: OS, progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), or toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Suchzeitraum (Aktualität der Recherche): bis Januar 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                               | Anzahl eingeschlossene Studien/Patienten (Gesamt): 13 phase II/III RCTs which involved a total of 8358 participants                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               | Qualitätsbewertung der Studien: Cochrane Collaboration guidelines. I <sup>2</sup> for hetergeneity                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                               | 3. Ergebnisdarstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Qualität der Studien: In general, no high risk of bias was detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| OS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>In general, the median OS of patients treated with EGFRmAbs plus chemotherapy was superior to those treated with chemotherapy alone (HR was 0.91, 95% confidence interval [CI]: 0.86–0.97, P=0.006).</li> <li>Seven studies provided the detailed analysis in chemotherapy-naive patients. The median OS were 8.3 to 12.0 months for the combination group, compared with 7.3 to 11.5 months among the chemotherapy alone group in first-line setting. The pooled HR for OS was 0.88 (95% CI: 0.82–0.95, P=0.0006) in favor of the addition of EGFR-mAbs to the first-line standard chemotherapy. However, it failed to provided additional survival benefit in second-line setting.</li> <li>the addition of EGFR-mAbs to chemotherapy produced a significant OS improvement for patients with squamous cancer (HR¼0.83, 95% CI: 0.74–0.93, P=0.001). The risk of death was decreased 17% by combination with EGFR-mAbs. Similarly, there were 3 studies provided the result of the adenocarcinoma subgroup. However, this group population only got slightly survival improvement from the addition of EGFR-mAbs and the pooled HR → no statistically significant difference</li> </ul> |
| PFS, ORR, DCR, and Serious Adverse Effects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>the risk of disease progression was slightly but significantly decreased by 7% compared with the control group (pooled HR was 0.93, 95% CI: 0.87–0.98, P=0.01). Meanwhile, the addition of EGFR-mAbs to chemotherapy also significantly improved the ORR (pooled OR was 1.28, 95% CI: 1.12–1.47, P=0.0003) and DCR (pooled OR was 1.17, 95% CI: 1.01–1.36, P=0.04).</li> <li>Serious adverse effects for patients receiving chemotherapy plus EGFRmAbs were mainly acne-like rash (weighted rate: 10.39% vs 0.18%; OR 41.00, 95% CI: 18.25–92.08, P&lt;0.0001), infusion related reactions (weighted rate: 4.56% vs 0.81%; OR 4.83, 95% CI: 1.94–12.01, P=0.0007) and diarrhea (weighted rate: 4.03% vs 1.86%; OR 2.17, 95% CI: 1.33–3.52, P=0.002).</li> <li>Besides, the risk for some Grade 3 toxicities, such as leukopenia, febrile neutropenia, and thromboembolic events also slightly increased by the addition of EGFR-mAbs, compared with chemotherapy alone.</li> <li>The combination regimens did not significantly increased the incidence of neutropenia, anemia, or fatigue.</li> </ul>                                                                                    |
| 4. Fazit der Autoren: The addition of EGFR-mAbs to chemotherapy could provide superior clinical benefit to patients with advanced NSCLC, especially those harboring squamous cancer and in first-line setting. Further validation in front-line investigation, proper selection of the potential benefit population by tumor histology, and development of prognostic biomarkers are warranted for future research and clinical application of EGFR-mAbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Leitlinien

| NCCN 2016                               | 1. Fragestellung                                                                                                                                                                                                                                                                                               |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [38].                                   | Diagnose, Pathologie, Staging, Therapie des NSCLC                                                                                                                                                                                                                                                              |
| Non-Small Cell                          | 2. Methodik                                                                                                                                                                                                                                                                                                    |
| Lung Cancer<br>(Vers. 4.2016)           | Update der LL von 2014.                                                                                                                                                                                                                                                                                        |
| ( , , , , , , , , , , , , , , , , , , , | Literatursuche: in PubMed zwischen 06/2013 und 06/2014                                                                                                                                                                                                                                                         |
|                                         | Diskussion der Literatur und Empfehlungen im Expertenpanel.                                                                                                                                                                                                                                                    |
|                                         | GoR, LoE: Alle Empfehlungen entsprechen der Kategorie 2A, sofern nicht explizit anders spezifiziert.                                                                                                                                                                                                           |
|                                         | NCCN Categories of Evidence and Consensus                                                                                                                                                                                                                                                                      |
|                                         | <b>Category 1:</b> Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.                                                                                                                                                                                       |
|                                         | Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.                                                                                                                                                                                            |
|                                         | Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.                                                                                                                                                                                                    |
|                                         | <b>Category 3:</b> Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.                                                                                                                                                                                    |
|                                         | All recommendations are category 2A unless otherwise noted.                                                                                                                                                                                                                                                    |
|                                         | 3. Empfehlungen (siehe Anhang)                                                                                                                                                                                                                                                                                 |
| Masters GA                              | 1. Fragestellung                                                                                                                                                                                                                                                                                               |
| et al., 2015                            | To provide evidence-based recommendations to update the American Society of                                                                                                                                                                                                                                    |
| [36].                                   | Clinical Oncology guideline on systemic therapy for stage IV non-small-cell lung                                                                                                                                                                                                                               |
| Systemic                                | cancer (NSCLC).                                                                                                                                                                                                                                                                                                |
| Therapy for                             |                                                                                                                                                                                                                                                                                                                |
| Stage IV                                | 2. Methodik                                                                                                                                                                                                                                                                                                    |
| Non–Small-                              |                                                                                                                                                                                                                                                                                                                |
| Cell Lung                               | Update der LL von 2009                                                                                                                                                                                                                                                                                         |
| Cancer:                                 | An Update Committee of the American Society of Clinical Oncology NSCLC                                                                                                                                                                                                                                         |
| American                                | Expert Panel based recommendation on a systematic review of randomized                                                                                                                                                                                                                                         |
| Society of                              | controlled trials from January 2007 to February 2014.                                                                                                                                                                                                                                                          |
| Clinical                                | LoE                                                                                                                                                                                                                                                                                                            |
| Oncology                                |                                                                                                                                                                                                                                                                                                                |
| Clinical                                | Rating Definition                                                                                                                                                                                                                                                                                              |
| Practice                                | High         High confidence that the available evidence reflects the true                                                                                                                                                                                                                                     |
| Guideline                               | magnitude and direction of the net effect (e.g., balance of benefits                                                                                                                                                                                                                                           |
| Update                                  | Intermedversus harms) and further research is very unlikely to change eitherIntermediate confidence that the available evidence reflects the true<br>magnitude and direction of the net effect. Further research is unlikely to<br>alter the direction of the net effect, however it might alter the magnitude |

| Low                                           | and dir                                                                                                                                                                                                                   | onfidence that the available evidence reflects the true magnitude<br>rection of the net effect. Further research may change the                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Insuffici<br>ent                              | fici Evidence is insufficient to discern the true magnitude and direction of the net effect. Further research may better inform the topic. Reliance on consensus opinion of experts may be reasonable to provide guidance |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GoR                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Type of<br>Recomm                             | endati                                                                                                                                                                                                                    | Definition                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Evidence-                                     | based                                                                                                                                                                                                                     | There was sufficient evidence from published studies to inform a recommendation to guide clinical practice.                                                                                                                                                                                                                                                                                                                          |
| Formal<br>Consensu                            | IS                                                                                                                                                                                                                        | The available evidence was deemed insufficient to inform a recommendation to guide clinical practice. Therefore, the expert Panel used a formal consensus process to reach this recommendation, which is considered the best current guidance for practice. The Panel may choose to provide a rating for the strength of the recommendation (i.e., "strong," "moderate," or "weak"). The results of the formal consensus process are |
| Informal TI<br>Consensus re<br>cc<br>cc<br>pr |                                                                                                                                                                                                                           | The available evidence was deemed insufficient to inform a recommendation to guide clinical practice. The recommendation is considered the best current guidance for practice, based on informal consensus of the expert Panel. The Panel agreed that a formal consensus process was not necessary for reasons described in the literature review and discussion. The Panel may choose to provide a rating for the strength          |
| No<br>Recommendatio<br>n                      |                                                                                                                                                                                                                           | There is insufficient evidence, confidence, or agreement to provide a recommendation to guide clinical practice at this time. The Panel deemed the available evidence as insufficient and concluded it was unlikely that a formal consensus process would achieve the level of                                                                                                                                                       |
| Rating for                                    | or                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Strength                                      |                                                                                                                                                                                                                           | Definition                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Strong                                        |                                                                                                                                                                                                                           | There is high confidence that the recommendation reflects<br>best practice. This is based on: a) strong evidence for a<br>true net effect (e.g., benefits exceed harms); b) consistent                                                                                                                                                                                                                                               |
| Moderate                                      | <del>)</del>                                                                                                                                                                                                              | There is moderate confidence that the recommendation<br>reflects best practice. This is based on: a) good evidence<br>for a true net effect (e.g., benefits exceed harms); b)                                                                                                                                                                                                                                                        |
| Weak                                          |                                                                                                                                                                                                                           | There is some confidence that the recommendation offers<br>the best current guidance for practice. This is based on: a)<br>limited evidence for a true net effect (e.g., benefits exceed                                                                                                                                                                                                                                             |
|                                               |                                                                                                                                                                                                                           | ionen zur Leitlinienmethodik:<br>nstituteforquality.org/guideline-development-process                                                                                                                                                                                                                                                                                                                                                |
| 3. Empfe                                      | hlunge                                                                                                                                                                                                                    | en e                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Witho<br/>perfor</li> </ul>          | ut an E<br>mance<br>ination                                                                                                                                                                                               | ment for Patients:<br>GFR-sensitizing mutation or ALK gene rearrangement and<br>status (PS) 0 to 1 (or appropriate PS 2): a variety of<br>cytotoxic chemotherapies are recommended. Platinum-based<br>preferred, along with early concurrent palliative care and                                                                                                                                                                     |

- Adding bevacizumab to carboplatin plus paclitaxel is recommended if there are no contraindications (evidence quality: intermediate; strength of recommendation: moderate).
- With PS 2: combination or single-agent chemotherapy or palliative care alone may be used (chemotherapy: evidence quality: intermediate; strength of recommendation: weak; palliative care: evidence quality: intermediate; strength of recommendation: strong).
- With sensitizing EGFR mutations: afatinib, erlotinib, or gefitinib is recommended (evidence quality: high; strength of recommendation: strong for each).
- With ALK gene rearrangements: crizotinib is recommended (evidence quality: high; strength of recommendation).
- With ROS1 rearrangement: crizotinib is recommended (type: informal consensus; evidence quality: low; strength of recommendation: weak). Clinical interpretation: Because no data were found in the systematic review to inform this clinical question, the Update Committee chose to make an informal consensus recommendation. The Update Committee relied on clinical experience, training, and judgment to formulate this recommendation, given that there were no conclusive data regarding this question. A study was published after the close of the date parameters for the systematic review that included 50 patients from a second-line crizotinib trial who had ROS1 rearrangements. The objective response rate was 72% (95% CI, 58 to 84), and there were three complete responses and 33 partial responses. Median duration of response was 17.6 months (95% CI, 14.5 to not reached). Median PFS was 19.2 months (95% CI, 14.4 to not reached). The authors state that "the safety profile of crizotinib was similar to that seen in patients with ALK-rearranged NSCLC."78(p1) Although these results are from an early trial, they are impressive. ( $\rightarrow$  Quelle der Studie: Shaw AT, Ou SH, Bang YJ, et al: Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371:1963-1971, 2014
- With large-cell neuroendocrine carcinoma: platinum plus etoposide or the same treatment as other patients with nonsquamous carcinoma may be administered (*type: informal consensus; evidence quality: low; strength of recommendation: weak*).
- First-line cytotoxic chemotherapy should be stopped at disease progression or after four cycles in patients with nonresponsive stable disease (no change).
- With stable disease or response after four cycles of a first-line pemetrexedcontaining regimen: pemetrexed continuation maintenance may be used; if initial regimen does not contain pemetrexed, an alternative chemotherapy (switch) may be used, or a break from chemotherapy may be recommended until disease progression (addition of pemetrexed: evidence quality: intermediate; strength of recommendation: moderate).

### Second-Line Treatment for Patients:

With nonsquamous cell carcinoma (NSCC): docetaxel, erlotinib, gefitinib, or

|                                                                              | <ul> <li>pemetrexed are acceptable (evidence quality: high; strength of recommendation: strong).</li> <li>With SCC: docetaxel, erlotinib, or gefitinib are acceptable (evidence quality: high; strength of recommendation: strong).</li> <li>With sensitizing EGFR mutations who did not respond to a first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI): combination cytotoxic chemotherapy is recommended for those with NSCC, as listed in under first-line treatment (type: informal consensus; evidence quality: intermediate; strength of recommendation: strong).</li> <li>With sensitizing EGFR mutations who received a first-line EGFR TKI and experienced disease progression after an initial response: may be switched to chemotherapy or another EGFR TKI as second-line therapy (type: informal consensus; evidence quality: linermediation: weak).</li> <li>With ALK rearrangement and progression after first-line crizotinib: chemotherapy or ceritinib may be offered (chemotherapy: evidence quality: high; strength of recommendation: strong; ceritinib: evidence quality: intermediate; strength of recommendation: moderate).</li> </ul> <b>Third-Line Treatment for Patients:</b> <ul> <li>Who have not received erlotinib or gefitinib and have PS 0 to 3: erlotinib may be recommended.</li> <li>Data are insufficient to recommend routine third-line cytotoxic drugs.</li> </ul> |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Australian<br>Government,<br>Cancer<br>Council<br>Australia.<br>2015 [4].    | Fragestellung<br>What is the optimal first-line chemotherapy regimen in patients with stage IV<br>inoperable NSCLC?<br>Is carboplatin based chemotherapy as effective as cisplatin based chemotherapy<br>for treatment of stage IV inoperable NSCLC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Clinical<br>practice<br>guidelines for<br>the treatment<br>of lung<br>cancer | for treatment of stage IV inoperable NSCLC?<br>Which new agent or platinum combination regimen is best for treatment of stage<br>IV inoperable NSCLC?<br>Is monotherapy with new third generation (3G) agents as effective as platinum<br>combination therapy for treatment of stage IV inoperable NSCLC?<br>Are three chemotherapy agents better than two chemotherapy agents for<br>treatment of stage IV inoperable NSCLC?<br>Are non-platinum doublet chemotherapy regimens as effective as platinum<br>doublet regimens for treatment of stage IV inoperable NSCLC?<br>Is chemotherapy with a biologic or targeted therapy superior to chemotherapy<br>alone in unselected patients for treatment of stage IV inoperable NSCLC?<br>What is the optimal chemotherapy regimen for overall quality of life for patients in<br>the treatment of stage IV inoperable NSCLC?<br>What is the optimal second-line therapy in patients with stage IV inoperable<br>NSCLC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

What is the optimal third-line therapy in unselected patients with stage IV inoperable NSCLC?

What is the optimal systemic therapy regimen for patients with poor performance status for treatment of stage IV inoperable NSCLC?

What is the optimal systemic therapy regimen in selected patients for treatment of stage IV inoperable NSCLC?

### Methodik

Grundlage der Leitlinie: Systematischer Review und Konsensusprozess über Empfehlungen. Alle Aussagen sind mit Literaturstellen (Meta-Analysen oder RCTs) belegt.

Suchzeitraum: bis 2012

LoE (nur die hier benötigten):

I: A systematic review of level II studies

II: A randomised controlled trial

#### GoR:

| Grade of<br>recommendation    | Description                                                                                                                                                                         |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                             | Body of evidence can be trusted to guide practice                                                                                                                                   |
| в                             | Body of evidence can be trusted to guide practice in most situations                                                                                                                |
| с                             | Body of evidence provides some support for recommendation(s) but care should be taken in its application                                                                            |
| D                             | Body of evidence is weak and recommendation must be applied with caution                                                                                                            |
| <b>PP</b><br>(practice point) | Where no good-quality evidence is available but there is consensus among Guideline committee members, consensus-based guidance points are given, these are called "Practice points" |

## Empfehlungen

#### Stage IV inoperable

### Chemotherapy

#### Evidence summary

Platinum-based chemotherapy improves survival in stage IV NSCLC compared with best supportive care. Note that this evidence is based on clinical trials conducted in fit patients, with predominant performance status 0-1, no unstable co-morbidities, adequate organ function and without uncontrolled brain metastases.

Recommendation

Platinum-based chemotherapy can be used to extend survival in newly diagnosed patients with stage IV NSCLC.

#### Practice piont(s)

The decision to undertake empirical platinum-based chemotherapy in a given patient should consider factors such as patient performance status (0,1 versus 2 or more) and co-morbidities, their disease extent and symptoms, proposed treatment toxicity and their individual preferences for benefit from specific treatment(s) and toxicities.

Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ 1995;311(7010):899-909

LoE

Grad

е

А

| -                                                                                                                                      | themotherapy and supportive care versus supportive care<br>nrane Database Syst Rev 2010 May 12;(5):CD007309                                               |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evidence summary                                                                                                                       | LoE                                                                                                                                                       |
| First-line chemotherapy involving cisplati                                                                                             |                                                                                                                                                           |
| likelihood of tumour response than the sa<br>carboplatin.                                                                              |                                                                                                                                                           |
| There is no definite overall survival differ carboplatin based first-line chemotherap                                                  |                                                                                                                                                           |
| Cisplatin-based chemotherapy is associa<br>nausea and vomiting and nephrotoxicity;<br>is more frequent during carboplatin-base         | severe thrombocytopaenia I                                                                                                                                |
| Recommendation                                                                                                                         | Grad                                                                                                                                                      |
| In patients with high tumour burden and                                                                                                | e<br>symptoms from stage IV                                                                                                                               |
| NSCLC cisplatin based chemotherapy m<br>carboplatin for the purpose of inducing a<br>benefit may be offset by its greater risk o       | ay be used in preference to B<br>response, however, this                                                                                                  |
| Practice piont(s)                                                                                                                      |                                                                                                                                                           |
| The choice of cisplatin versus carboplatin<br>balance between perceived benefit (in tu<br>toxicity, whilst considering patient prefere | mour response) versus known                                                                                                                               |
|                                                                                                                                        | nimoto M. Role of adjuvant chemotherapy in patients with<br>a meta-analysis of randomized controlled trials. J Clin                                       |
|                                                                                                                                        | H, Paesmans M, et al. Cisplatin- versus carboplatin-based<br>n-small-cell lung cancer: an individual patient data meta-<br>57                             |
| Jiang J, Liang X, Zhou X, Huang R, Chu Z. A meta-a<br>carboplatin-based to cisplatin-based chemotherapy<br>Sep;57(3):348-58            | analysis of randomized controlled trials comparing<br>in advanced non-small cell lung cancer. Lung Cancer 2007                                            |
| Evidence summary                                                                                                                       | LoE                                                                                                                                                       |
| 3G platinum-based chemotherapy (vinor<br>or gemcitabine) is associated with higher<br>2G platinum-based chemotherapy.                  |                                                                                                                                                           |
| No 3G platinum-based chemotherapy.<br>paclitaxel, docetaxel or gemcitabine) has<br>to another.                                         | gimen (vinorelbine,<br>been shown to be superior I                                                                                                        |
| In first-line empirical treatment of advance                                                                                           |                                                                                                                                                           |
| with cisplatin and pemetrexed is superior<br>patients with non-squamous cell carcinor<br>In first-line empirical treatment of advance  | ma histology.                                                                                                                                             |
| with cisplatin and pemetrexed is inferior<br>patients with SCC histology.                                                              |                                                                                                                                                           |
| Recommendation                                                                                                                         | Grad                                                                                                                                                      |
|                                                                                                                                        | е                                                                                                                                                         |
| is recommended in preference to cisplati                                                                                               | h cicplatin and compitabing                                                                                                                               |
| patients with squamous cell carcinoma h                                                                                                | istology.                                                                                                                                                 |
|                                                                                                                                        | in and pemetrexed in<br>istology.<br>vinorelbine, paclitaxel,<br>of care as first-line A                                                                  |
| patients with squamous cell carcinoma h<br>3G platinum-based chemotherapy (with<br>docetaxel or gemcitabine) is a standard             | in and pemetrexed in<br>histology.<br>vinorelbine, paclitaxel,<br>of care as first-line<br>/ NSCLC.<br>h cisplatin and pemetrexed<br>n and gemcitabine in |

| The choice of first-line platinum combination chemotherapy in a given mayconsider patient performance status and co-morbidities, the prop treatment toxicity, treatment scheduling and individual patient prefere                                          | osed      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Baggstrom MQ, Stinchcombe TE, Fried DB, Poole C, Hensing TA, Socinski MA. Third-g agents in the treatment of advanced non-small cell lung cancer: a meta-analysis. J Thor Sep;2(9):845-53                                                                  |           |
| Gao G, Jiang J, Liang X, Zhou X, Huang R, Chu Z, et al. A meta-analysis of platinum plu vinorelbine in the treatment of advanced non-small-cell lung cancer. Lung Cancer 2009                                                                              | _         |
| Grossi F, Aita M, Defferrari C, Rosetti F, Brianti A, Fasola G, et al. Impact of third-genera<br>activity of first-line chemotherapy in advanced non-small cell lung cancer: a meta-analyti<br>Oncologist 2009 May;14(5):497-510                           | -         |
| Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Pha<br>cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients<br>non-small-cell lung cancer. J Clin Oncol 2008 Jul 20;26(21):3543-51 |           |
| Evidence summary                                                                                                                                                                                                                                           | LoE       |
| 3G platinum-based combination chemotherapy (vinorelbine, paclitaxel, docetaxel, irinotecan or gemcitabine) is superior to 3G                                                                                                                               | I         |
| agent monotherapy.<br>3G platinum-based monotherapy (vinorelbine, paclitaxel, docetaxel,<br>or gemcitabine) improves survival compared with best supportive<br>care.                                                                                       | I         |
| Recommendation                                                                                                                                                                                                                                             | Grad      |
| Patients fit for chemotherapy should be offered 3G platinum-based                                                                                                                                                                                          | е         |
| combination chemotherapy (vinorelbine, paclitaxel, docetaxel,<br>irinotecan or gemcitabine) in preference to 3G agent monotherapy,<br>as it is more effective.                                                                                             | A         |
| Patients unfit for combination chemotherapy could be considered for 3G monotherapy with vinorelbine, paclitaxel, docetaxel or gemcitabine.                                                                                                                 | A         |
| Hotta K, et al. 2004                                                                                                                                                                                                                                       |           |
| Baggstrom MQ, et al. 2007                                                                                                                                                                                                                                  |           |
| Delbaldo C, Michiels S, Rolland E, Syz N, Soria JC, Le Chevalier T, et al. Second or thir chemotherapy drug for non-small cell lung cancer in patients with advanced disease. Co Rev 2007 Oct 17;(4):CD004569                                              |           |
| Evidence summary                                                                                                                                                                                                                                           | LoE       |
| Triplet chemotherapy regimens are associated with higher response rate, but no improvement in survival.                                                                                                                                                    | I         |
| Triplet chemotherapy regimens are associated with greater grade 3 /4 toxicities.                                                                                                                                                                           | I         |
| Recommendation                                                                                                                                                                                                                                             | Grad<br>e |
| Triplet chemotherapy regimens are not recommended, as benefit in responserate does not outweigh extra toxicity.                                                                                                                                            | Ă         |
| Delbaldo C, et al. 2007                                                                                                                                                                                                                                    |           |
| Baggstrom MQ, et al. 2007                                                                                                                                                                                                                                  |           |
| Evidence summary                                                                                                                                                                                                                                           | LoE       |
| Platinum-based doublet 3G chemotherapy is associated with a<br>higher response rate and slightly higher one-year survival than<br>non-platinum doublet chemotherapy.                                                                                       | I         |
| Platinum-based doublet 3G chemotherapy is associated with greater risk of anaemia and thrombocytopaenia than non-platinum combination therapy.                                                                                                             | I         |
| Gemcitabine and paclitaxel improves response ratio without added                                                                                                                                                                                           | I         |

| toxicity, compared with gemcitabine or paclitexel and carboplatin combinations.                                                                                                                                                                                                                                       |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Recommendation                                                                                                                                                                                                                                                                                                        | Grad<br>e                   |
| Non-platinum 3G doublet chemotherapy is an effective alternative option for patients unsuitable for platinum-based therapy.                                                                                                                                                                                           | A                           |
| D'Addario G, Pintilie M, Leighl NB, Feld R, Cerny T, Shepherd FA. Platinum-based versu chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published 2005 May 1;23(13):2926-36                                                                                                                | -                           |
| Rajeswaran A, Trojan A, Burnand B, Giannelli M. Efficacy and side effects of cisplatin- a doublet chemotherapeutic regimens versus non-platinum-based doublet chemotherapeut treatment of metastatic non-small cell lung carcinoma: a systematic review of randomize Cancer 2008 Jan;59(1):1-11                       | itic regimens as first line |
| Li C, Sun Y, Pan Y, Wang Q, Yang S, Chen H. Gemcitabine plus paclitaxel versus carbo<br>gemcitabine or paclitaxel in advanced non-small-cell lung cancer: a literature-based met<br>Oct;188(5):359-64                                                                                                                 |                             |
| Evidence summary                                                                                                                                                                                                                                                                                                      | LoE                         |
| In carefully selected** patients with advanced NSCLC, high dose bevacizumab improves tumour response rate and progression free survival.                                                                                                                                                                              |                             |
| **Patients with the following criteria were excluded from the trials: SCC histologic type,<br>brain metastases, clinically significant haemoptysis,inadequate organ function, ECOG<br>PS of 1, therapeutic anticoagulation, clinically significant cardiovascular disease, or<br>medically uncontrolled hypertension. |                             |
| In carefully selected** patients with advanced NSCLC, treatment with<br>high dose bevacizumab is associated with an increase in treatment<br>related deaths.                                                                                                                                                          | I                           |
| Recommendation                                                                                                                                                                                                                                                                                                        | Grad                        |
| High dose bevacizumab (15 mg/kg three-weekly) may be considered<br>in addition to chemotherapy (carboplatin/paclitaxel or<br>cisplatin/gemcitabine) in carefully selected** patients with non-<br>squamous cell carcinoma.                                                                                            | e<br>B                      |
| Yang K, Wang YJ, Chen XR, Chen HN. Effectiveness and safety of bevacizumab for unicell lung cancer: a meta-analysis. Clin Drug Investig 2010;30(4):229-41                                                                                                                                                             | resectable non-small-       |
| Botrel TE, Clark O, Clark L, Paladini L, Faleiros E, Pegoretti B. Efficacy of bevacizumab chemotherapy (CT) compared to CT alone in previously untreated locally advanced or m lung cancer (NSCLC): systematic review and meta-analysis. Lung Cancer 2011 Oct;74(                                                     | etastatic non-small cell    |
| Evidence summary                                                                                                                                                                                                                                                                                                      | LoE                         |
| The addition of the EGFR TKIs gefitinib or erlotinib to a standard chemotherapy regimen does not improve outcomes (OS, RR or time to progression (TTP)) compared with chemotherapy alone.                                                                                                                             | II                          |
| Recommendation                                                                                                                                                                                                                                                                                                        | Grad<br>e                   |
| The first generation EGFR TKIs gefitinib or erlotinib should not be used in unselected patients in combination with standard chemotherapy.                                                                                                                                                                            | A                           |
| Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, et al. Gefitinib in c<br>gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trialINTA<br>Mar 1;22(5):777-84                                                                                                           |                             |
| Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, et al. Gefitinib in paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trialINTA Mar 1;22(5):785-94                                                                                                                  |                             |
| Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, et al. TRIBL                                                                                                                                                                                                                                   | JTE: a phase III trial of   |

|                                                                                                                                                                                                                                                                                                                                | So a deservation of |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy small-cell lung cancer. J Clin Oncol 2005 Sep 1;23(25):5892-9                                                                                                                                                                          | in advanced non-    |
| Gatzemeier U, Pluzanska A, Szczesna A, Kaukel E, Roubec J, De Rosa F, et al. Phase II combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the T Investigation Trial. J Clin Oncol 2007 Apr 20;25(12):1545-52                                                                                    | -                   |
| Evidence summary                                                                                                                                                                                                                                                                                                               | LoE                 |
| In patients with advanced NSCLC (selected by the presence of EGFR-positive tumour as measured by immunohistochemistry), the addition of cetuximab to chemotherapy increases response rate and improves overall survival. This overall benefit was modest and observed only in the phase III trial using cisplatin/vinorelbine. | I                   |
| Recommendation                                                                                                                                                                                                                                                                                                                 | Grad<br>e           |
| In patients with advanced NSCLC whose tumours have been shown<br>to express EGFR by immunohistochemistry, cetuximab may be<br>considered in addition to cisplatin/vinorelbine chemotherapy to<br>improve response rate and overall survival.                                                                                   | В                   |
| Lin H, Jiang J, Liang X, Zhou X, Huang R. Chemotherapy with cetuximab or chemotherap<br>advanced non-small-cell lung cancer: a systematic review and meta-analysis. Lung Canc<br>62                                                                                                                                            |                     |
| Ibrahim EM, Abouelkhair KM, Al-Masri OA, Chaudry NC, Kazkaz GA. Cetuximab-based to<br>chemotherapy-naïve patients with advanced and metastatic non-small-cell lung cancer: a<br>randomized controlled trials. Lung 2011 Jun;189(3):193-8                                                                                       |                     |
| Practice point(s)                                                                                                                                                                                                                                                                                                              |                     |
| As overall quality of life does not seem to differ across the different<br>chemotherapy regimens, the choice of chemotherapy in an individua<br>may involve discussion regarding expected toxicities and the patient<br>preferences.                                                                                           |                     |
| Evidence summary                                                                                                                                                                                                                                                                                                               | LoE                 |
| In <u>previously treated patients</u> with advanced NSCLC, single agent docetaxel 75 mg/m2 improves survival compared with best supportive care or vinorelbine and ifosfamide.                                                                                                                                                 | II                  |
| In previously treated patients with advanced NSCLC, single agent<br>pemetrexed has similar efficacy but fewer side effects than three-<br>weekly docetaxel.                                                                                                                                                                    | II                  |
| In previously treated patients with advanced NSCLC, compared with docetaxel, pemetrexed appears to have greater efficacy in non-squamous cell carcinoma histology, and inferior efficacy in squamous cell carcinoma.                                                                                                           |                     |
| Recommendation                                                                                                                                                                                                                                                                                                                 | Grad<br>e           |
| In unselected patients previously treated for advanced NSCLC,<br>chemotherapy with docetaxel or pemetrexed may be used as<br>second-line therapy. Pemetrexed is preferred in non-squamous cell<br>carcinoma histology, and docetaxel is preferred in squamous cell<br>carcinoma.                                               | В                   |
| Shepherd FA, Dancey J, Ramlau R, Mattson K, Gralla R, O'Rourke M, et al. Prospective docetaxel versus best supportive care in patients with non-small-cell lung cancer previous platinum-based chemotherapy. J Clin Oncol 2000 May;18(10):2095-103                                                                             |                     |
| Fossella FV, DeVore R, Kerr RN, Crawford J, Natale RR, Dunphy F, et al. Randomized p docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung of                                                                                                                                               |                     |

| treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell L<br>Group. J Clin Oncol 2000 Jun;18(12):2354-62                                                                                                                                                                                                    | ung Cancer Study       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, von Pawel J, et al. Rando<br>pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treate<br>J Clin Oncol 2004 May 1;22(9):1589-97                                                                                                           | -                      |
| Standfield L, Weston AR, Barraclough H, Van Kooten M, Pavlakis N. Histology as a treatr advanced non-small cell lung cancer: a systematic review of the evidence. Respirology 20                                                                                                                                                       |                        |
| Evidence summary                                                                                                                                                                                                                                                                                                                       | LoE                    |
| In unselected previously treated patients with advanced NSCLC single agent erlotinib150 mg per day orally as second-line therapy improves survival compared with placebo.                                                                                                                                                              | II                     |
| In unselected previously treated patients with advanced NSCLC, single agent gefitinib 250 mg per day orally does not improve survival compared with placebo.                                                                                                                                                                           | II                     |
| In unselected previously treated patients with advanced NSCLC, gefitinib 250 mg per day orally is equivalent to three-weekly docetaxel chemotherapy.                                                                                                                                                                                   | II                     |
| In unselected patients with advanced NSCLC, progressing after first-<br>line platinum-based chemotherapy, there is no difference in survival<br>between erlotinib 150 mg daily or chemotherapy (either pemetrexed<br>or docetaxel).                                                                                                    | II                     |
|                                                                                                                                                                                                                                                                                                                                        | Grad                   |
| Recommendation                                                                                                                                                                                                                                                                                                                         | е                      |
| In unselected patients previously treated for advanced NSCLC,<br>erlotinib 150 mg per day orally can be used as second-line therapy,<br>instead of chemotherapy.                                                                                                                                                                       | В                      |
| Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, et al. Gefitinib plus supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lat Oct;366(9496):1527-37        |                        |
| Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. E treated non-small-cell lung cancer. N Engl J Med 2005 Jul 14;353(2):123-32                                                                                                                                                                     | rlotinib in previously |
| Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R, Wu YL, et al. Gefitinib versus docetaxel non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 2008 Nov 22                                                                                                                                                       |                        |
| Ciuleanu T, Stelmakh L, Cicenas S, Miliauskas S, Grigorescu AC, Hillenbach C, et al. Efficacy and sa<br>erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung<br>with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study. Lancet Oncol 201<br>Mar;13(3):300-8 |                        |
| Evidence summary                                                                                                                                                                                                                                                                                                                       | LoE                    |
| Doublet therapy as second-line treatment of advanced NSCLC increases response rate and progression free survival, but is more toxic and does not improve overall survival compared with single agent chemotherapy.                                                                                                                     | I                      |
| Recommendation                                                                                                                                                                                                                                                                                                                         | Grad<br>e              |
| Doublet therapy is not recommended as second-line treatment of advanced NSCLC.                                                                                                                                                                                                                                                         | В                      |
| Di Maio M, Chiodini P, Georgoulias V, Hatzidaki D, Takeda K, Wachters FM, et al. Meta-a<br>chemotherapy compared with combination chemotherapy as second-line treatment of adv<br>lung cancer. J Clin Oncol 2009 Apr 10;27(11):1836-43                                                                                                 |                        |
| Qi WX, Tang LN, He AN, Shen Z, Yao Y. Effectiveness and safety of pemetrexed-based of<br>pemetrexed alone as second-line treatment for advanced non-small-cell lung cancer: a sy<br>meta-analysis. J Cancer Res Clin Oncol 2012 Jan 19                                                                                                 |                        |

| Evidence summary                                                                                                                                                                                                                                                                                                                                                           | L                    | oE               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
| In unselected previously treated patients with advanced NSCLC who have received two lines of therapy, single agent erlotinib 150 mg per or orally as third-line therapy improves survival compared with placebo.                                                                                                                                                           | lay <sup>II</sup>    |                  |
| Recommendation                                                                                                                                                                                                                                                                                                                                                             | G<br>e               | irad             |
| In unselected patients having previously received two lines of treatme for advanced NSCLC, erlotinib 150 mg per day orally can be used as third-line therapy.                                                                                                                                                                                                              | nt B                 |                  |
| Shepherd FA, et al. 2005                                                                                                                                                                                                                                                                                                                                                   |                      |                  |
| Evidence summary                                                                                                                                                                                                                                                                                                                                                           | LoE                  |                  |
| In patients with poor performance status (PS 2), first-line<br>monotherapy with 3G chemotherapy (vinorelbine, gemcitabine,<br>paclitaxel or docetaxel) may improve survival and/or quality of life.                                                                                                                                                                        | I, II                |                  |
| Recommendation                                                                                                                                                                                                                                                                                                                                                             | Grad                 |                  |
| First-line monotherapy with 3G chemotherapy could be offered to selected patients with PS2 for symptom improvement and possible survival gain, who are willing to accept treatment toxicity.                                                                                                                                                                               | e<br>B               |                  |
| Baggstrom MQ, et al. 2007                                                                                                                                                                                                                                                                                                                                                  |                      |                  |
| Crawford J, O'Rourke M, Schiller JH, Spiridonidis CH, Yanovich S, Ozer H, et al. Randor<br>compared with fluorouracil plus leucovorin in patients with stage IV non-small-cell lung ca<br>1996 Oct;14(10):2774-84                                                                                                                                                          |                      |                  |
| Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-sm<br>The Elderly Lung Cancer Vinorelbine Italian Study Group. J Natl Cancer Inst 1999 Jan 6;91                                                                                                                                                                               |                      | -                |
| Anderson H, Hopwood P, Stephens RJ, Thatcher N, Cottier B, Nicholson M, et al. Gemci<br>supportive care (BSC) vs BSC in inoperable non-small cell lung cancera randomized tri<br>the primary outcome. UK NSCLC Gemcitabine Group. Non-Small Cell Lung Cancer. Br J<br>Aug;83(4):447-53                                                                                     | al with qu           | ality of life as |
| Anderson H, Hopwood P, Stephens RJ, Thatcher N, Cottier B, Nicholson M, et al. Gemci<br>supportive care (BSC) vs BSC in inoperable non-small cell lung cancera randomized tri<br>the primary outcome. UK NSCLC Gemcitabine Group. Non-Small Cell Lung Cancer. Br J<br>Aug;83(4):447-53                                                                                     | al with qu           | ality of life as |
| Roszkowski K, Pluzanska A, Krzakowski M, Smith AP, Saigi E, Aasebo U, et al. A multice<br>phase III study of docetaxel plus best supportive care versus best supportive care in cher<br>patients with metastatic or non-resectable localized non-small cell lung cancer (NSCLC).<br>Mar;27(3):145-57                                                                       | motherap             | y-naive          |
| Evidence summary                                                                                                                                                                                                                                                                                                                                                           | LoE                  |                  |
| There is evidence for benefit with erlotinib 150 mg daily as second or third-line therapy in unselected poor performance status patients (PS2 or 3).                                                                                                                                                                                                                       | II                   |                  |
| Recommendation                                                                                                                                                                                                                                                                                                                                                             | Grade                |                  |
| Poor performance status patients having received 1 or 2 lines of prior therapy, may be offered erlotinib 150 mg daily.                                                                                                                                                                                                                                                     | В                    |                  |
| Practice point(s)                                                                                                                                                                                                                                                                                                                                                          |                      |                  |
| Decision-making on treatment in poor performance status patients ma<br>weigh up benefits against toxicity and patient preferences. Whilst a sir<br>agent 3G chemotherapy is an option in unselected patients, patients w<br>known activating EGFR MTs should be considered for first line EGFR<br>as the magnitude of benefit is greater and toxicity profile more favoura | ngle<br>vith<br>TKIs |                  |
| Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. I treated non-small-cell lung cancer. N Engl J Med 2005 Jul 14;353(2):123-32                                                                                                                                                                                                         | Erlotinib ii         | n previously     |

| Evidence summary                                                                                                                                                                                                                                                                                                     |              | LoE        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
| First-line single agent vinorelbine (30 mg/m2 on days one and eight, Q3 weekly) in patients over 70 years of age improves survival and reduces disease related symptoms.                                                                                                                                             |              | II         |
| In patients over 70 years of age, first line single agent docetaxel 60 mg/<br>(day one) compared to vinorelbine 25 mg/m2 (days one and eight) ever<br>days, improves response rate, progression free survival and disease re<br>symptoms, but not overall survival and is associated with more G3/4<br>neutropaenia. | y 21         | II         |
| In patients over 65 years of age, gemcitabine doublet chemotherapy im response rate compared with single agent 3G chemotherapy, but does improve survival and is associated with greater thrombocytopaenia.                                                                                                          |              | I          |
| In patients over 70 years of age, first-line carboplatin/weekly paclitaxel combination improves survival compared with 3G monotherapy (weekly vinorelbine or gemcitabine) but, is associated with more neutropaenia.                                                                                                 | /            | II         |
| Recommendation                                                                                                                                                                                                                                                                                                       |              | Grade      |
| Suitably fit patients over 65 years of age, can be offered first-line mono-<br>chemotherapy with a 3G single agent (vinorelbine (25-30 mg/ m2 day o<br>eight Q3 weekly), docetaxel (60 mg/m2 day one, Q3 weekly) or gemcita<br>(1150 mg/m2 days one and eight, Q3 weekly).                                           | ne,          | В          |
| In elderly patients, first-line gemcitabine doublet chemotherapy is not recommended.                                                                                                                                                                                                                                 |              | В          |
| In fit elderly patients, first-line carboplatin/weekly paclitaxel may be offe<br>instead of 3G monotherapy, but at the expense of greater neutropaenia                                                                                                                                                               |              | В          |
| Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-sr<br>The Elderly Lung Cancer Vinorelbine Italian Study Group. J Natl Cancer Inst 1999 Jan 6;9                                                                                                                          |              | ng cancer. |
| Kudoh S, Takeda K, Nakagawa K, Takada M, Katakami N, Matsui K, et al. Phase III study compared with vinorelbine in elderly patients with advanced non-small-cell lung cancer: res Japan Thoracic Oncology Group Trial (WJTOG 9904). J Clin Oncol 2006 Aug 1;24(22):365                                               | sults of the |            |
| Russo A, Rizzo S, Fulfaro F, Adamo V, Santini D, Vincenzi B, et al. Gemcitabine-based do agent therapy for elderly patients with advanced nonsmall cell lung cancer: a Literature-base Cancer 2009 May 1;115(9):1924-31                                                                                              |              | -          |
| Quoix E, Zalcman G, Oster JP, Westeel V, Pichon E, Lavolé A, et al. Carboplatin and weel chemotherapy compared with monotherapy in elderly patients with advanced non-small-ce 0501 randomised, phase 3 trial. Lancet 2011 Sep 17;378(9796):1079-88                                                                  |              |            |
| Evidence summary                                                                                                                                                                                                                                                                                                     | LoE          |            |
| Histology (non-squamous cell carcinoma versus squamous cell carcinoma) is associated with a significant treatment modifying effect for patients treated with pemetrexed based chemotherapy, with                                                                                                                     |              |            |
| superior survival effect of pemetrexed observed in non-squamous<br>cell carcinoma histology and inferior survival effect observed in<br>squamous cell carcinoma histology, compared with other standard<br>regimens when pemetrexed is used first-line, as switch maintenance<br>or as second-line treatment.        | I            |            |
| Recommendation                                                                                                                                                                                                                                                                                                       | Grad         |            |
| Due to the therapeutic implications, it is important to classify the histologic subtype of NSCLC on diagnostic specimens as accurately as possible, particularly to enable accurate distinction between the key histologic subtypes: adenocarcinoma and squamous cell                                                | e<br>A       |            |
| carcinoma.<br>Practice point(s)                                                                                                                                                                                                                                                                                      |              |            |
|                                                                                                                                                                                                                                                                                                                      |              |            |

|                                              | Given the importance of accurate histologic diagnosis and the potent<br>to have sufficient tissue for subsequent molecular testing, it is importa<br>obtain as much tissue as possible at initial diagnosis in patients susp<br>have NSCLC.                                                                                                                                                                                                                                                                               | ant to                             |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                              | A multidisciplinary team discussion may be required in order to decid most appropriate diagnostic method to obtain adequate tissue.                                                                                                                                                                                                                                                                                                                                                                                       | e on the                           |
|                                              | Standfield L, et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |
|                                              | Evidence summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LoE                                |
|                                              | In caucasian patients with advanced NSCLC and known activating<br>EGFR GMs (exon-19 deletions or exon-21 point mutations), first-line<br>therapy with erlotinib significantly prolongs progression free survival<br>and increases overall response rate, compared with standard<br>platinum based chemotherapy.                                                                                                                                                                                                           | II                                 |
|                                              | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grad<br>e                          |
|                                              | Patients with known activating gene mutations (exon-19 deletions or exon-21 point mutations) to EGFR should be treated with an EGFR TKI.                                                                                                                                                                                                                                                                                                                                                                                  | A                                  |
|                                              | on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français<br>Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E,<br>Vergnenegre A, Massuti B, et al. Erlotinib versus standard chemotherapy as first-line tre<br>patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC):<br>label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246                                                                                  | Gervais R,<br>eatment for European |
|                                              | Evidence summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LoE                                |
|                                              | Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients known not to have EGFR mutations.                                                                                                                                                                                                                                                                                                                                       | II                                 |
|                                              | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grade                              |
|                                              | Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy.                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                  |
|                                              | Practice point(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                              | The evidence in support of large treatment benefits with first-line EGF in response rate and progression free survival argues for consideration obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does no appear to be compromised, as long they go on to receive EGFR TKIs chemotherapy. | on of<br>ar<br>enable<br>ot        |
|                                              | Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carbopla<br>pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57                                                                                                                                                                                                                                                                                                                                                                 | tin-paclitaxel in                  |
| Scottish                                     | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
| Intercollegia<br>te<br>Guidelines<br>Network | In patients with NSCLC (locally advanced or metastatic disease most effective <u>first/second line</u> systemic anticancer therapy (che targeted therapy, EGFR Inhibitors)?<br>Outcomes: Overall survival, progression-free survival, toxicity, q                                                                                                                                                                                                                                                                         | emotherapy,                        |
| <mark>(SIGN) 2014</mark>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| [52].                                        | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Management                                   | Grundlage der Leitlinie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| of lung                                      | systematische Recherche und Bewertung der Literatur, Entwick                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lung durch                         |

| cancer | multidisziplinäre Gruppe von praktizierenden klinischen ExpertInnen,                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Expertenreview, öffentliche Konsultation                                                                                                                                                                                                                                                               |
|        | Suchzeitraum:                                                                                                                                                                                                                                                                                          |
|        | 2005 - 2012                                                                                                                                                                                                                                                                                            |
|        | LoE/GoR:                                                                                                                                                                                                                                                                                               |
|        | KEY TO EVIDENCE STATEMENTS AND GRADES OF RECOMMENDATIONS                                                                                                                                                                                                                                               |
|        | LEVELS OF EVIDENCE                                                                                                                                                                                                                                                                                     |
|        | 1+*       High quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias         1+       Well conducted meta-analyses, systematic reviews, or RCTs with a low risk of bias                                                                                              |
|        | Metronadcee inter-analyses, systematic reviews, or ACTs with a low risk of bias     Meta-analyses, systematic reviews, or RCTs with a high risk of bias                                                                                                                                                |
|        | High quality systematic reviews of case control or cohort studies                                                                                                                                                                                                                                      |
|        | 2 <sup>++</sup> High quality case control or cohort studies with a very low risk of confounding or bias and a high probability that the<br>relationship is causal                                                                                                                                      |
|        | 2 <sup>+</sup> Well conducted case control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal                                                                                                                                         |
|        | 2. Case control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal                                                                                                                                                                   |
|        | 3 Non-analytic studies, eg case reports, case series                                                                                                                                                                                                                                                   |
|        | 4 Expert opinion                                                                                                                                                                                                                                                                                       |
|        | GRADES OF RECOMMENDATION Note: The grade of recommendation relates to the strength of the evidence on which the recommendation is based. It does not reflect the                                                                                                                                       |
|        | clinical importance of the recommendation.         At least one meta-analysis, systematic review, or RCT rated as 1**,                                                                                                                                                                                 |
|        | A and directly applicable to the target population; or<br>A body of evidence consisting principally of studies rated as 1 <sup>+</sup> ,                                                                                                                                                               |
|        | directly applicable to the target population, and demonstrating overall consistency of results A body of evidence including studies rated as 2++,                                                                                                                                                      |
|        | B directly applicable to the target population, and demonstrating overall consistency of results; or<br>Extrapolated evidence from studies rated as 1 <sup>++</sup> or 1 <sup>+</sup>                                                                                                                  |
|        | A body of evidence including studies rated as 2 <sup>+</sup> ,<br>directly applicable to the target population and demonstrating overall consistency of results; <i>or</i>                                                                                                                             |
|        | Extrapolated evidence from studies rated as 2 <sup>++</sup>                                                                                                                                                                                                                                            |
|        | D Evidence level 3 or 4; or                                                                                                                                                                                                                                                                            |
|        | Extrapolated evidence from studies rated as 2+ GOOD PRACTICE POINTS                                                                                                                                                                                                                                    |
|        | ✓ Recommended best practice based on the clinical experience of the guideline development group                                                                                                                                                                                                        |
|        | 3. Empfehlungen                                                                                                                                                                                                                                                                                        |
|        | Erstlinientherapie                                                                                                                                                                                                                                                                                     |
|        | ·                                                                                                                                                                                                                                                                                                      |
|        | First line therapy for patients with stage IIIB and IV NSCLC                                                                                                                                                                                                                                           |
|        | Results from a meta-analysis and systematic review demonstrate the benefit of SACT for patients with advanced non-small cell lung cancer (absolute improvement in survival of 9% at 12 months versus control). <b>(LoE 1++)</b>                                                                        |
|        | 220. Burdett S, et al. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: A systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol 2008;26(28):4617-25.                                  |
|        | Four randomised trials of single agent SACT (gemcitabine, paclitaxel, docetaxel and vinorelbine) versus best supportive care (including radiotherapy) in patients with advanced NSCLC reveal a trend to improved quality of life with increased survival in three of the four studies. <b>(LoE 1+)</b> |
|        | 221. Anderson H, et al. Gemcitabine plus best supportive care (BSC) vs BSC in inoperable non-small cell lung cancer - a randomised trial with quality of life as the primary outcome. UK NSCLC Gemcitabine Group. Non-Small Cell Lung Cancer. Br J Cancer 2000;83(4):447-53.                           |
|        | 222. Ranson M, et al. Randomized trial of paclitaxel plus supportive care versus supportive care for patients                                                                                                                                                                                          |

| W                      | vith advanced non-small-cell lung cancer. J Natl Cancer Inst 2000;92(13):1074-80.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ve                     | 23. Roszkowski K, et al. A multicenter, randomized, phase III study of docetaxel plus best supportive care ersus best supportive care in chemotherapynaive patients with metastatic or non-resectable localized non-mall cell lung cancer (NSCLC). Lung Cancer 2000;27(3):145-57.                                                                                                                                                                                                                               |
| pa                     | 24. Gridelli C. The ELVIS trial: a phase III study of single-agent vinorelbine as first-line treatment in elderly<br>atients with advanced non-small cell lung cancer. Elderly Lung Cancer Vinorelbine Italian Study. Oncologist<br>001;6(Suppl 1):4-7.                                                                                                                                                                                                                                                         |
|                        | No particular combination of these agents in regimens with platinum has been shown to be more effective. <b>(LoE 1+)</b>                                                                                                                                                                                                                                                                                                                                                                                        |
| 22<br>E                | 25. Schiller JH, et al. Comparison of four chemotherapy regimens for advanced nonsmall- cell lung cancer. N<br>Engl J Med 2002;346(2):92-8.                                                                                                                                                                                                                                                                                                                                                                     |
| b                      | Standard treatment is in four cycles, and exceptionally six cycles. Continuing beyond four cycles may increase progression-free survival but at the expense of an increase in toxicity and worse quality of life without any significant gain in survival. <b>(LoE 1+/1++)</b>                                                                                                                                                                                                                                  |
|                        | 26. Goffin J, et al. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: A<br>ystematic review. J Thorac Oncol 2010;5(2):260-74.                                                                                                                                                                                                                                                                                                                                          |
|                        | 27. Lima JP, et al. Optimal duration of first-line chemotherapy for advanced non-small cell lung cancer: a<br>ystematic review with meta-analysis. Eur J Cancer 2009;45(4):601-7.                                                                                                                                                                                                                                                                                                                               |
| Ir                     | n patients who have advanced disease and a performance status <2 at the time                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | of diagnosis of NSCLC, first line treatment should be offered according to                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | histology. Patients with non-squamous histology demonstrated a superior survival                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | when treated with cisplatin and pemetrexed compared with cisplatin and                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | gemcitabine (hazard ratio (HR) 0.84, 95% CI 0.74 to 0.96, p=0.011). Patients with                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s                      | equamous histology do not benefit from pemetrexed/platinum combination. <b>(LoE</b>                                                                                                                                                                                                                                                                                                                                                                                                                             |
| cł                     | 28. Scagliotti GV, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in<br>hemotherapynaive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 2008;26(21):3541-<br>1.                                                                                                                                                                                                                                                                              |
| in                     | 29. Scagliotti GV, et al. Survival without toxicity for cisplatin plus pemetrexed versus cisplatin plus gemcitabine<br>o chemonaïve patients with advanced non-small cell lung cancer: a risk-benefit analysis of a large phase III<br>tudy. Eur J Cancer 2009;45(13):2298-303.                                                                                                                                                                                                                                 |
| Ir                     | n patients with adenocarcinoma, overall survival was statistically superior for                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| с                      | cisplatin/pemetrexed versus cisplatin/gemcitabine (n=847; 12.6 v 10.9 months).                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| s                      | Siehe 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a<br>tr<br>p<br>S<br>g | EGFR tyrosine kinase inhibitors (TKIs) are effective as first line treatment of advanced NSCLC in patients with sensitising EGFR mutations. The optimum reatment is orally delivered single agent therapy. TKIs significantly increased progression-free survival (PFS) (HR 0.45, 95% CI 0.36 to 0.58, P<0.0001) over SACT. In a European trial, the median PFS was 9.4 months in the erlotinib (TKI) group and 5.2 months in the doublet SACT group, (HR 0.42, 95% CI 0.27 to 0.64), p<0.0001. <b>(LoE 1+)</b> |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

230. Bria E, et al. Outcome of advanced NSCLC patients harboring sensitizing EGFR mutations randomized to EGFR tyrosine kinase inhibitors or chemotherapy as first-line treatment: a meta-analysis. Ann Oncol 2011;22(10):2277-85.

231. Rosell R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13(3):239-46.

Randomised evidence does not support the use of sACT in combination with a TKI in any patient group. (LoE 1++)

Siehe 231

232. Feld R, et al. Use of the epidermal growth factor receptor inhibitors gefitinib and erlotinib in the treatment of non-small cell lung cancer: A systematic review. J Thorac Oncol 2006;1(4):367-76.

### **Recommendations**

- First line single agent tyrosine kinase inhibitors should be offered to patients with advanced NSCLC who have a sensitising *EGFR* mutation. Adding combination systemic anticancer therapy to a TKI confers no benefit and should not be used. (A)
- Patients who have advanced disease, are performance status 0-1, have predominantly nonsquamous NSCLC and are *EGFR* mutation negative should be offered combination systemic anticancer therapy with cisplatin and pemetrexed. (A)
- All other patients with NSCLC should be offered combination systemic anticancer therapy with cisplatin/carboplatin and a third generation agent (docetaxel, gemcitabine, paclitaxel or vinorelbine). (A)
- Platinum doublet systemic anticancer therapy should be given in four cycles; it is not recommended that treatment extends beyond six cycles.
   (A)

### Zweitlinientherapie

In patients who are  $PS \le 2$  at the time of progression of their advanced NSCLC, second line treatment with single agent docetaxel, erlotinib or PEM improve survival rates compared to BSC. (LoE 1+)

Tassinari D, Scarpi E, Sartori S, Tamburini E, Santelmo C, Tombesi P, et al. Second-line treatments in non-small cell lung cancer. A systematic review of literature and metaanalysis of randomized clinical trials. Chest 2009;135(6):1596-609.

[Anmerkung FB-Med: Review bezieht sich EGRF Inhibitoren aus folgenden Quellen: 1) Zulassungsstudie von Erlotinib vs. Placebo Shepherd 2005 und 2) Thatcher 2005; in der Gefitinib vs. Placebo verglichen wird]

Second line docetaxel improved time to progression, survival and quality of life. Patient's opioid requirements and weight loss were reduced with docetaxel compared to BSC only. This was clearest in the patients who received 100 mg/m2 rather than 75 mg/m2 every three weeks, however the higher dose was associated with more overall toxicity, and is not recommended as standard. **(LoE** 

### 1+)

Shepherd FA, Dancey J, Ramlau R, Mattson K, Gralla R, O'Rourke M, et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 2000;18(10):2095-103.

Fossella FV, DeVore R, Kerr RN, Crawford J, Natale RR, Dunphy F, et al. Randomised phase III trial of docetaxel versus vinorelbine or ifosfamide inpatients with advanced non-small cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol 2000;18(12):2354-62.

Weekly docetaxel is not recommended over three-weekly due to increased

| toxicity. (LoE 1+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tassinari D, Carloni F, Santelmo C, Tamburini E, Agli LL, Tombesi P, et al. Second line treatments in advanced platinum-resistant non small cell lung cancer: A critical review of literature. Rev Recent Clin Trials 2009;4(1):27-33.                                                                                                                                                                                                                                                                                                                                                      |
| Randomised evidence does not support the use of combination SACT as second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| line treatment for patients with advanced NSCLC based on an increase in toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| without any gain in survival. <b>(LoE 1++)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Di Maio M, Chiodini P, Georgoulias V, Hatzidaki D, Takeda K, Wachters FM, et al. Meta-analysis of single-agent chemotherapy compared with combination chemotherapy as second-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 2009;27(11):1836-43.                                                                                                                                                                                                                                                                                                                       |
| Second line erlotinib improves overall survival compared to BSC in patients with NSCLC. Median survival was improved with moderate toxicity. The response rate was 8.9% in the erlotinib group and less than 1% in the placebo group (p<0.001); the median duration of the response was 7.9 months and 3.7 months, respectively. Progression-free survival was 2.2 months and 1.8 months, respectively (HR 0.61, adjusted for stratification categories; p<0.001). Overall survival was 6.7 months and 4.7 months, respectively (HR 0.70; p<0.001) in favour of erlotinib. <b>(LoE 1++)</b> |
| Noble J, Ellis PM, Mackay JA, Evans WK. Second-line or subsequent systemic therapy for recurrent or progressive non-small cell lung cancer: A systematic review and practice guideline. J Thorac Oncol 2006;1(9):1042-58.                                                                                                                                                                                                                                                                                                                                                                   |
| Compared with single agent docetaxel, treatment with PEM resulted in clinically equivalent efficacy outcomes, but with significantly fewer side effects in the second-line treatment of patients with advanced predominantly non-squamous cell NSCLC.                                                                                                                                                                                                                                                                                                                                       |
| Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Second line systemic anticancer therapy with single agent docetaxel or erlotinib should be considered for patients with performance status 0-2 recurrent NSCLC who have been previously treated with first line SACT for advanced disease. (A)</li> <li>Second line systemic anticancer therapy with pemetrexed should be considered for patients with advanced non-squamous cell NSCLC who have been previously treated with first line SACT for advanced disease. (A)</li> </ul>                                                                                                 |
| ROS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [] Other gene rearrangements (ie, gene fusions)have recently been identified (such as ROS1, RET) that are susceptible to targeted therapies.                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                                                                                                                            | SYSTEMIC THERAPY FOR HISTOLOGIC SUBTYPE TESTING RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                            | METASTATIC DISEASE<br>Wetastatic<br>Wetastatic<br>Bisease<br>Wetastatic<br>Curve is studype <sup>a</sup> with<br>adequate tissue for<br>molecular testing<br>index large cell<br>NSCL not<br>specified (NOS)<br>Specified (NOS)<br>Sectified (NOS) |
|                                                                                                                                                                            | N Engl J Med 371:1963-1971, 2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ellis PM et                                                                                                                                                                | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| al., 2014                                                                                                                                                                  | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [14].                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Use of the<br>Epidermal<br>Growth<br>Factor<br>Receptor<br>Inhibitors<br>Gefitinib<br>(Iressa®),<br>Erlotinib<br>(Tarceva®),<br>Afatinib,<br>Dacomitinib<br>or Icotinib in | <ol> <li>In patients with advanced non-small-cell lung cancer (NSCLC) who have not<br/>received any chemotherapy (chemo-naive), is first-line therapy with the epidermal<br/>growth factor receptor (EGFR) inhibitors gefitinib (Iressa®), erlotinib (Tarceva®),<br/>afatinib, dacomitinib or icotinib superior to platinum-based chemotherapy for<br/>clinical meaningful outcomes (overall survival, progression-free survival (PFS),<br/>response rate and quality of life)?</li> <li>In patients with advanced NSCLC who have progressed on platinum-based<br/>chemotherapy, does subsequent therapy with EGFR inhibitors gefitinib (Iressa®),<br/>erlotinib (Tarceva®), afatinib, dacomitinib or icotinib improve overall survival or<br/>PFS? Is there a preferred sequence for second-line therapy with an EGFR<br/>inhibitor or chemotherapy?</li> <li>In patients with advanced stage IIIB or IV NSCLC who have received initial<br/>first-line platinum-based chemotherapy, does maintenance therapy with erlotinib,</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| the<br>Treatment of                                                                                                                                                        | gefitinib, afatinib, dacomitinib or icotinib improve overall survival or PFS?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Non-Small-<br>Cell Lung                                                                                                                                                    | 4. What are the toxicities associated with gefitinib (Iressa®), erlotinib (Tarceva®), afatinib, dacomitinib or icotinib?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cancer: A                                                                                                                                                                  | TARGET POPULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Clinical<br>Practice<br>Guideline                                                                                                                                          | This practice guideline applies to adult patients with advanced (stage IIIB or IV) non-small-cell lung cancer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (Cancer Care                                                                                                                                                               | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ontario;<br>CCO)                                                                                                                                                           | <b>Grundlage der Leitlinie:</b> The PEBC is using the methods of the Practice<br>Guidelines Development Cycle (1,2). The EBS report consists of an evidentiary<br>base (typically a systematic review), an interpretation of and consensus<br>agreement on that evidence by our Groups or Panels, the resulting<br>recommendations, and an external review by Ontario clinicians and other<br>stakeholders in the province for whom the topic is relevant. The PEBC has a<br>formal standardized process to ensure the currency of each document, through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

the periodic review and evaluation of the scientific literature and, where appropriate, the integration of that literature with the original guideline information.

### Suchzeitraum: bis 2014

**LoE und GoR:** Studienqualität geprüft und detailliert in Evidenztabellen dargestellt, Empfehlungsstärken über die Formulierung dargestellt

# 3. Empfehlungen

# **Erstlinientherapie**

# **Recommendation 1a**

First-line therapy with an EGFR tyrosine kinase inhibitor (TKI) is not recommended in unselected (patients who have not undergone mutation testing) or clinically selected populations of patients. Available data would suggest that first-line EGFR TKI is inferior to platinum-based chemotherapy in this group of NSCLC patients.

The use of clinical characteristics such as Asian ethnicity, female sex, adenocarcinoma histology and light/never smoking status is not recommended to select patients for first-line EGFR TKI therapy, as this strategy does not reliably select patients who have mutations.

# Key Evidence

Twenty-six randomized first-line studies in unselected and clinically selected populations were used to formulate this recommendation. The results of these trials showed no benefit for the use of an EGFR inhibitor in unselected and clinically selected patients (1-26).

26 Quellen zitiert

# **Recommendation 1b**

In patients with EGFR mutation-positive NSCLC, first-line therapy with an EGFR TKI such as gefitinib, erlotinib or afatinib is the preferred treatment compared to platinum-based therapies. There is no evidence to support one EGFR TKI over another, so the decision about which EGFR TKI to use should take into consideration the expected toxicity of the drug as well as the cost. EGFR TKI therapy is associated with higher response rates, longer PFS and improved quality of life.

# Qualifying Statement

There is no clear difference in overall survival. Many patients in these trials randomized to platinum-doublet chemotherapy, crossed over to an EGFR TKI as subsequent therapy. The likely effect of this cross-over is to dilute any survival difference between the groups, making comparison of overall survival less informative.

## Key Evidence

Seven randomized trials and two meta-analyses comprised the evidence base.

| The trials and meta-analyses based on data from these trials showed that PFS was prolonged in molecularly selected patients when an EGFR was used as first-line treatment (27-33).                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Six trials were included in the initial meta-analysis that showed a hazard<br/>ratio (HR) of 0.35 (95% confidence interval (CI), 0.28-0.45; p&lt;0.00001) (27-<br/>30,32,33).</li> </ul>                                                                                                                                           |
| <ul> <li>A second meta-analysis done on PFS that included subsets of EGFR-<br/>positive patients from first-line trials had similar results with an HR of 0.38<br/>(95% CI, 0.31-0.44; p&lt;0.00001) (20,21,28-30,32-34).</li> </ul>                                                                                                        |
| <ul> <li>All seven trials showed a decrease in adverse effects with an EGFR inhibitor<br/>compared to chemotherapy (28-34).</li> </ul>                                                                                                                                                                                                      |
| 27. Inoue A, Kobayashi K, Maemondo M, Sugawara S, Oizumi S, Isobe H, et al. Final overall survival results of NEJ002, a phase III trial comparing gefitinib to carboplatin (CBDCA) plus paclitaxel (TXL) as the first-line treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutations. J Clin Oncol. 2011;29(abst 7519). |
| 28. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121-8.                      |
| 29. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239-46.        |
| 30. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-<br>line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer<br>(OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol.<br>2011;12(8):735-42.                        |
| 31. Hirsch FR, Kabbinavar F, Eisen T, Martins R, Schnell FM, Dziadziuszko R, et al. A randomized, phase II, biomarker-selected study comparing erlotinib to erlotinib intercalated with chemotherapy in first-line therapy for advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(26):3567-73.                                      |
| 32. Yang JC-H, Schuler MH, Yamamoto N, O'Byrne J, Hirsch V, Mok TS, et al. LUX-Lung 3: A randomized, open label, phase III study of afatinib versus pemetrexed and cisplatin as first-line treatment for patients with advanced adenocarcinoma of the lung harboring EGFR-activating mutations. J Clin Oncol. 2012;30(abstr LBA7500).       |
| 33. Wu YL, Zhou C, Hu CP, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213-22.                                    |
| 34. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380-8.                                                                                                                                                  |
| Zweitlinientherapie                                                                                                                                                                                                                                                                                                                         |
| Recommendation 2                                                                                                                                                                                                                                                                                                                            |
| In patients well enough to consider second-line chemotherapy, an EGFR TKI can be recommended as second- or third-line therapy.                                                                                                                                                                                                              |
| There is insufficient evidence to recommend the use of a second EGFR TKI,<br>such as afatinib, in patients whose disease has progressed following<br>chemotherapy and gefitinib or erlotinib, as available data does not demonstrate<br>any improvement in overall survival.                                                                |
|                                                                                                                                                                                                                                                                                                                                             |

Qualifying Statements:

There are data to support the use of an EGFR TKI in patients who have progressed on platinum-based chemotherapy. Erlotinib is known to improve overall survival and quality of life when used as second- or third-line therapy, in comparison to best supportive care. However, available data would suggest that second-line therapy with either chemotherapy or an EGFR TKI results in similar PFS and overall survival. Available evidence would support the use of either erlotinib or gefitinib in this situation.

- Data from a randomized phase II trial suggests improved PFS for dacomitinib versus (vs) erlotinib, but these data require confirmation in a phase III trial.
- The Lux Lung 1 study failed to meet its primary outcome of improved overall survival. However, the study showed improved PFS for patients randomized to afatinib and was associated with improvements in lung cancer symptoms.

# Key Evidence

Three studies examined an EGFR inhibitor as a second-line treatment against a placebo and best supportive care. One study reported on the use of erlotinib and showed a significant improvement in PFS (p=0.001) and overall survival (p=0.001). The other two studies evaluated gefitinib, with one study finding significant results for response rate (p<0.0001) and the other for PFS (p=0.002).

- A meta-analysis done on seven second-line studies showed no improvement with EGFR TKIs vs chemotherapy for progression-free survival (HR, 0.99; 95% CI 0.86-1.12, p=0.67) and overall survival (HR, 1.02; 95% CI, 0.95-1.09, p=0.56)
- One phase II study that compared erlotinib to dacomitinib showed significant results for dacomitinib for response rate (p=0.011) and for PFS (p=0.012).
- The Lung Lux 1 study examined the use of afatinib in the third- and fourthline setting against a placebo. This study showed improved PFS (HR, 0.38; 95% CI, 0.31-0.48, p<0.0001) but no difference in overall survival (HR, 1.08; 95% CI, 0.86-1.35, p=0.74)

35. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123-32.

36. Gaafar RM, Surmont VF, Scagliotti GV, Van Klaveren RJ, Papamichael D, Welch JJ, et al. A double-blind, randomised, placebo-controlled phase III intergroup study of gefitinib in patients with advanced NSCLC, non-progressing after first line platinum-based chemotherapy (EORTC 08021/ILCP 01/03). Eur J Cancer. 2011;47 (15):2331-40.

37. Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366(9496):1527-37.

38 Lee DH, Park K, Kim JH, Lee J-S, Shin SW, Kang J-H, et al. Randomized Phase III trial of gefitinib versus docetaxel in non-small cell lung cancer patients who have previously received platinum-based chemotherapy. Clin Cancer Res. 2010 Feb 15;16(4):1307-14.

39. Lee DH, Park K, Kim JH, Lee J-S, Shin SW, Kang J-H, et al. Randomized Phase III trial of gefitinib versus docetaxel in non-small cell lung cancer patients who have previously received platinum-based chemotherapy. Clin Cancer Res. 2010 Feb 15;16(4):1307-14.

40. Maruyama R, Nishiwaki Y, Tamura T, Yamamoto N, Tsuboi M, Nakagawa K, et al. Phase III

| study, V-15-32, of gefitinib versus docetaxel in previously treated Japanese patients with non-small-<br>cell lung cancer. J Clin Oncol. 2008 Sep 10;26(26):4244-52.                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41. Ciuleanu T, Stelmakh L, Cicenas S, Miliauskas S, Grigorescu AC, Hillenbach C, et al. Efficacy and safety of erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study. Lancet Oncol. 2012 Mar;13(3):300-8.                                                                                                                                                     |
| 42. Karampeazis A, Voutsina A, Souglakos J, Kentepozidis N, Giassas S, Christofillakis C, et al. Pemetrexed versus erlotinib in pretreated patients with advanced non-small cell lung cancer: a Hellenic Oncology Research Group (HORG) randomized phase 3 study. Cancer. 2013;119(15):2754-64.                                                                                                                                                                                                        |
| 43. Kelly K, Azzoli CG, Zatloukal P, Albert I, Jiang PYZ, Bodkin D, et al. Randomized phase 2b study of pralatrexate versus erlotinib in patients with stage IIIB/IV non-small-cell lung cancer (NSCLC) after failure of prior platinum-based therapy. J Thorac Oncol. 2012 Jun;7(6):1041-8.                                                                                                                                                                                                           |
| 44. Okano Y, Ando M, Asami K, Fukuda M, Nakagawa H, Ibata H, et al. Randomized phase III trial of erlotinib (E) versus docetaxel (D) as second- or third-line therapy in patients with advanced non-small cell lung cancer (NSCLC) who have wild-type or mutant epidermal growth factor receptor (EGFR): Docetaxel and Erlotinib Lung Cancer Trial (DELTA). J Clin Oncol. 2013;20(abstr 8006).                                                                                                         |
| 45. Ramalingam SS, Blackhall F, Krzakowski M, Barrios CH, Park K, Bover I, et al. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2012;30(27):3337-44.                                                                                                                                                                              |
| 46. Miller VA, Hirsh V, Cadranel J, Chen Y-M, Park K, Kim S-W, et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial.[Erratum appears in Lancet Oncol. 2012 May;13(5):e186]. Lancet Oncol. 2012;13(5):528-38.                                                                                                              |
| Recommendation 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| An EGFR TKI is recommended as an option for maintenance therapy in patients<br>who have not progressed after four cycles of a platinum-doublet chemotherapy.<br>No recommendation can be made with respect to the choice of gefitinib or<br>erlotinib.                                                                                                                                                                                                                                                 |
| Qualifying Statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trials have evaluated both erlotinib and gefitinib, but no trials directly compare<br>these two agents as maintenance therapy. However, the strongest data would<br>support the use of erlotinib in this setting, although the overall survival advantage<br>is modest for both agents.                                                                                                                                                                                                                |
| There are competing strategies of maintenance chemotherapy without an EGFR<br>TKI, such as pemetrexed, that are not addressed in this guideline. The<br>recommendation for TKI above should not be taken as excluding these other<br>strategies as reasonable options; as this evidence was not reviewed, no<br>statement can be made for or against these other strategies. The Lung Disease<br>Site Group (DSG) plans to develop a separate guideline on maintenance therapy<br>as soon as possible. |
| This recommendation applies to both EGFR mutation positive and wild-type patients.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Key Evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Six studies evaluated the use of an EGFR inhibitor in the maintenance setting.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • Two of the trials reported a statistically significant survival benefit with erlotinib: one for response rate (p=0.0006) when compared to placebo (47)                                                                                                                                                                                                                                                                                                                                               |

| · |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <ul> <li>and one for progression-free survival when combined with bevacizumab against bevacizumab alone (p&lt;0.001).</li> <li>One study comparing erlotinib and gemcitabine did not report significance but found a higher response rate with erlotinib (15% vs 7%) and 9.1 months vs 8.3 months for overall survival.</li> <li>Two trials evaluating gefitinib found a statistically significant benefit for PFS in</li> </ul> |
|   | <ul> <li>the maintenance setting, p&lt;0.001 when combined with chemotherapy and against chemotherapy (48) and p&lt;0.0001 compared to a placebo.</li> <li>Another trial evaluated gefitinib and showed a higher response rate, but this</li> </ul>                                                                                                                                                                              |
|   | <ul> <li>was not significant (p=0.369).</li> <li>47. Cappuzzo F, Ciuleanu T, Stelmakh L, Cicenas S, Szczesna A, Juhasz E, et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2010;11(6):521-9.</li> </ul>                                                                                                              |
|   | 48. Takeda K, Hida T, Sato T, Ando M, Seto T, Satouchi M, et al. Randomized phase III trial of platinum-doublet chemotherapy followed by gefitinib compared with continued platinum-doublet chemotherapy in Japanese patients with advanced non-small-cell lung cancer: results of a west Japan thoracic oncology group trial (WJTOG0203). J Clin Oncol. 2010;28(5):753-60.                                                      |
|   | 49. Zhang L, Ma S, Song X, Han B, Cheng Y, Huang C, et al. Gefitinib versus placebo as maintenance therapy in patients with locally advanced or metastatic non-small-cell lung cancer (INFORM; C-TONG 0804): A multicentre, double-blind randomised phase 3 trial. Lancet Oncol. 2012;13(5):466-75.                                                                                                                              |
|   | 50. Bylicki O, Ferlay C, Chouaid C, Lavole A, Barlesi F, Dubos C, et al. Efficacy of pemetrexed as second-line therapy in advanced NSCLC after either treatment-free interval or maintenance therapy with gemcitabine or erlotinib in IFCT-GFPC 05-02 phase III study. Journal of Thoracic Oncology. 2013;8(7):906-14.                                                                                                           |
|   | 51. Johnson BE, Kabbinavar F, Fehrenbacher L, Hainsworth J, Kasubhai S, Kressel B, et al. ATLAS: randomized, double-blind, placebo-controlled, phase IIIB trial comparing bevacizumab therapy with or without erlotinib, after completion of chemotherapy, with bevacizumab for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(31):3926-34.                                                  |
|   | 52. Ahn MJ, Yang JCH, Liang J, Kang JH, Xiu Q, Chen YM, et al. Randomized phase II trial of first-<br>line treatment with pemetrexed-cisplatin, followed sequentially by gefitinib or pemetrexed, in East<br>Asian, never-smoker patients with advanced non-small cell lung cancer. Lung Cancer.<br>2012;77(2):346-52.                                                                                                           |
|   | Recommendation 4                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | The most common toxicities from EGFR inhibitors were diarrhea and rash.<br>Fatigue was also noted to be more prevalent with EGFR inhibitors. Rarer adverse<br>events include interstitial lung disease (ILD). The newer TKIs (icotinib,<br>dacomitinib and afatinib) were noted to have greater incidence of diarrhea,<br>dermatitis and hepatotoxicity.                                                                         |
|   | Key Evidence                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Two randomized phase II trials, each involving more than 200 patients randomized to either 250 mg or 500 mg of gefitinib daily, identified that grade 3 or 4 toxicity was higher with the higher dose gefitinib. Interstitial lung disease-type events occurred in only one of the two trials, and only with 500 mg/day gefitinib (1% of patients).                                                                              |
|   | <ul> <li>One study comparing dacomitinib to erlotinib identified a greater predilection to diarrhea, dermatitis and paronychia with dacomitinib.</li> <li>One study comparing icotinib to gefitinib identified a greater incidence of</li> </ul>                                                                                                                                                                                 |
|                                   | elevated liver transaminases with gefitinib (12.6% vs 8%).                                                                                                                                                                                                                                                                                                  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | 53. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard J-Y, et al. Multi-<br>institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-<br>small-cell lung cancer (The IDEAL 1 Trial) [corrected].[Erratum appears in J Clin Oncol. 2004 Dec<br>1;22(23):4863]. J Clin Oncol. 2003;21(12):2237-46. |
|                                   | 54. Shi Y, Zhang L, Liu X, Zhou C, Zhang L, Zhang S, et al. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): a randomised, double-blind phase 3 non-inferiority trial. Lancet Oncol. 2013;14(10):953-61.                                                                                                       |
| Alberta                           | Fragestellung                                                                                                                                                                                                                                                                                                                                               |
| Provincial                        | When is palliation recommended, and what are the recommended palliative                                                                                                                                                                                                                                                                                     |
| Thoracic                          | treatment options for patients with inoperable stage III non-small cell lung                                                                                                                                                                                                                                                                                |
| Tumour                            | cancer?                                                                                                                                                                                                                                                                                                                                                     |
| Team, 2012                        | What is the recommended <u>first-line</u> therapy for patients with stage IV non-small                                                                                                                                                                                                                                                                      |
| [2].                              | cell lung cancer (NSCLC)?                                                                                                                                                                                                                                                                                                                                   |
| Non-small                         |                                                                                                                                                                                                                                                                                                                                                             |
| cell lung                         | What is the role for <u>EGFR</u> tyrosine kinase inhibitors in first-line treatment of patients with stage IV NSCLC?                                                                                                                                                                                                                                        |
| cancer -<br>stage III.            |                                                                                                                                                                                                                                                                                                                                                             |
| Alberta                           | What is the optimal <u>second-line</u> therapy for patients with stage IV NSCLC?                                                                                                                                                                                                                                                                            |
| Health                            | Methodik                                                                                                                                                                                                                                                                                                                                                    |
| Services                          | Grundlage der Leitlinie:                                                                                                                                                                                                                                                                                                                                    |
| und                               | systematic literature search, evidence tables, AGREE used for retrieved                                                                                                                                                                                                                                                                                     |
| Alberta<br>Provincial<br>Thoracic | guidelines, working group reviewed currency and acceptability of all relevant<br>literature, then circulated a draft of the updated guideline to entire provincial<br>tumour team for final feedback and approval                                                                                                                                           |
| Tumour                            | Suchzeitraum:                                                                                                                                                                                                                                                                                                                                               |
| Team, 2013                        | bis 2013                                                                                                                                                                                                                                                                                                                                                    |
| [3].                              | LoE/GoR:                                                                                                                                                                                                                                                                                                                                                    |
| Non-small                         |                                                                                                                                                                                                                                                                                                                                                             |
| cell lung                         | no use of formal rating schemes for describing the strength of the                                                                                                                                                                                                                                                                                          |
| cancer -                          | recommendations, rather describes, in conventional and explicit language, the type and quality of the research and existing guidelines that were taken into                                                                                                                                                                                                 |
| stage IV.<br>Alberta              | consideration when formulating the recommendations                                                                                                                                                                                                                                                                                                          |
| Health                            | Sonstige methodische Hinweise                                                                                                                                                                                                                                                                                                                               |
| Services                          | direkte Verknüpfung von Literatur mit Empfehlung nicht durchgängig                                                                                                                                                                                                                                                                                          |
|                                   | gegeben                                                                                                                                                                                                                                                                                                                                                     |
|                                   | <ul> <li>kein formaler Konsensusprozess beschrieben</li> </ul>                                                                                                                                                                                                                                                                                              |
|                                   | • no direct industry involvement in the development or dissemination of this                                                                                                                                                                                                                                                                                |
|                                   | guideline                                                                                                                                                                                                                                                                                                                                                   |
|                                   | <ul> <li>authors have not been remunerated for their contributions</li> </ul>                                                                                                                                                                                                                                                                               |
|                                   | Some members of the Alberta Provincial Thoracic Tumour Team are involved in research funded by industry or have other such potential conflicts of interest.<br>However the developers of this guideline are satisfied it was developed in an unbiased manner.                                                                                               |

## Freitext/Empfehlungen

Palliative Treatment for Inoperable Disease

**Recommendations** 

12. In patients where lung reserve precludes radical radiotherapy, palliative chemotherapy and/or palliative radiotherapy are recommended.

13. Palliative chemotherapy options include:

- 1st line: platinum-based doublets
- 2nd line: docetaxel, erlotinib or pemetrexed (For more information, please see the <u>Non-Small Cell Lung Cancer, Stage IV Guideline.</u>)

14. For symptomatic patients with poor performance status (ECOG>2) and/or significant weight loss (usually defined as >10% in previous 3 months), radiotherapy for symptom palliation is recommended. Dose-fractionation schedule options include:

- 20Gy in 5 fractions or 30Gy in 10 fractions
- Single fractions of radiotherapy less than 10Gy may be appropriate in some clinical circumstances such as poor performance status or patient travel distance.
- Split course radiation can also be used in select cases.

30.Rodrigues G, Macbeth F, Burmeister B, Kelly KL, Bezjak A, Langer C, et al. Consensus statement on palliative lung radiotherapy: third international consensus workshop on palliative radiotherapy and symptom control. Clin Lung Cancer 2012 Jan; 13(1):1-5.

31.Lester JF, Macbeth FR, Toy E, Coles B. Palliative radiotherapy regimens for non-small cell lung cancer. Cochrane Database Syst Rev 2006 Oct 18;(4)(4):CD002143.

32.Okawara G, Mackay JA, Evans WK, Ung YC, Lung Cancer Disease Site Group of Cancer Care Ontario's Program in Evidence-based Care. Management of unresected stage III non-small cell lung cancer: a systematic review. J Thorac Oncol 2006 May; 1(4):377-393.

33.Fairchild A, Harris K, Barnes E, Wong R, Lutz S, Bezjak A, et al. Palliative thoracic radiotherapy for lung cancer: a systematic review. J Clin Oncol 2008 Aug 20; 26(24):4001-4011.

## Non-Small Cell Lung Cancer, Stage IV Guideline

**Recommendations** 

. .

3. Combination chemotherapy consisting of a platinum-based doublet is the standard of care for first-line treatment of advanced NSCLC (except for EGFR-positive patients; see recommendation 6 below). The combination of three chemotherapeutic agents for the first-line treatment of advanced NSCLC is not routinely recommended based on current evidence.

**7**. Delbaldo C, Michiels S, Rolland E, et al. Second or third additional chemotherapy drug for nonsmall cell lung cancer in patients with advanced disease. Cochrane Database Syst Rev. 2007;4(CD004569).

**8**. Paccagnella A, Oniga F, Bearz A, et al. Adding gemcitabine to paclitaxel/carboplatin combination increases survival in advanced non-small-cell lung cancer: results of a phase II-III study. J Clin Oncol. Feb 1 2006;24(4):681-687.

**9**. Comella P, Filippelli G, De Cataldis G, et al. Efficacy of the combination of cisplatin with either gemcitabine and vinorelbine or gemcitabine and paclitaxel in the treatment of locally advanced or metastatic non-small-cell lung cancer: a phase III randomised trial of the Southern Italy Cooperative

Oncology Group (SICOG 0101). Ann Oncol. Feb 2007;18(2):324-330. 4. Therapy should be continued for four cycles in most patients, and not more than six cycles in responding patients. 5. Acceptable alternatives to combination chemotherapy include non-platinum doublets or monotherapy: For patients with a borderline performance status (PS=2), single-agent chemotherapy with vinorelbine, gemcitabine, paclitaxel, docetaxel or pemetrexed (for non-squamous cell carcinoma patients only) is recommended over best supportive care alone. For elderly patients who cannot tolerate a platinum-based combination, single-agent chemotherapy with vinorelbine, gemcitabine, docetaxel, or pemetrexed (for non-squamous cell carcinoma patients only) is associated with improved survival and quality of life when compared to best supportive care alone. However, elderly patients with a good performance status (PS=0-1) should receive combination chemotherapy with a platinum-based doublet. etwa 30 Quellen zitiert 6. First-line monotherapy with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib is recommended for patients with EGFR mutation-positive NSCLC. 7. Testing for EGFR mutations should take place for all eligible patients with advanced NSCLC and adenocarcinoma (including adenosquamous) histology who are being considered for first-line therapy with gefitinib, irrespective of their gender, ethnicity, and smoking status. etwa 20 Quellen zitiert 8. Second-line or subsequent chemotherapy options for advanced NSCLC include single-agent docetaxel or erlotinib for patients with squamous cell carcinoma histology, or single agent treatment with a drug that has not been previously used. 65. Kowalski DM, Krzakowski M, Ramlau R, Jaskiewicz P, Janowicz-Zebrowska A. Erlotinib in salvage treatment of patients with advanced non-small cell lung cancer: results of an expanded access programme in Poland. Wspolczesna Onkol. 2012;16(2):170-175.  $\rightarrow$  squamous-cell (n = 23), adenocarcinoma (n = 20), or broncho-alveolar carcinoma (n = 2), keine Infos zu EGFR 100. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-smallcell lung cancer. N Engl J Med. Jul 14 2005;353(2):123-132.  $\rightarrow$  = Zulassungsstudie 101. Florescu M, Hasan B, Seymour L, Ding K, Shepherd FA. A clinical prognostic index for patients treated with erlotinib in National Cancer Institute of Canada Clinical Trials Group study BR.21. J Thorac Oncol. Jun 2008;3(6):590-598. → (gehört zu Sherperd) 102. Ciuleanu T, Stelmakh L, Cicenas S, Esteban E. Erlotinib versus docetaxel or pemetrexed as second-line therapy in patients with advanced non-small-cell lung cancer (NSCLC) and poor prognosis: efficacy and safety results from the phase III TITAN study. . In: Oncol JT, ed. Vol 52010. → EGFR-Expressionsstatus erfasst, keine signifikanten Unterschiede beim OS beobachtet (Gesamtpopulation als auch Subgruppe zum EGFR-Expressionstatus)

|                        | <b>103.</b> LeCaer H, Greillier L, Corre R, et al. A multicenter phase II randomized trial of gemcitabine followed by erlotinib at progression, versus the reverse sequence, in vulnerable elderly patients with advanced non small-cell lung cancer selected with a comprehensive geriatric assessment (the GFPC 0505 study). <i>Lung Cancer.</i> Jul 2012;77(1):97-103. |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | $\rightarrow$ elderly patients with NSCLC not selected for EGFR expression                                                                                                                                                                                                                                                                                                |
|                        | 9. Crizotinib has been approved for second-line treatment of patients who are positive for ALK-rearrangements from the pan-Canadian Oncology Drug Review (pCODR) and has also been approved for provincial coverage in Alberta.                                                                                                                                           |
|                        | 10. Testing for ALK mutations should take place for all eligible patients with advanced NSCLC and adenocarcinoma (including adenosquamous) histology who are being considered for second line therapy with crizotinib.                                                                                                                                                    |
|                        | <b>112</b> . Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. Aug 2 2007;448(7153):561-566.                                                                                                                                                                                              |
|                        | <b>113</b> . Kim DW, Ahn MJ, Shi Y, et al. Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). Paper presented at: 2012 Annual Meeting of the American Society of Clinical Oncology2012.                                                                                                                      |
|                        | <b>114</b> . Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin. Mar-Apr 2011;61(2):91-112.                                                                                                                                                                                                    |
|                        | <b>115</b> . Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. Oct 28 2010;363(18):1693-1703.                                                                                                                                                                                                       |
|                        | <b>116</b> . Lee JK, Park HS, Kim DW, et al. Comparative analyses of overall survival in patients with anaplastic lymphoma kinase-positive and matched wild-type advanced nonsmall cell lung cancer. Cancer. Jul 15 2012;118(14):3579-3586.                                                                                                                               |
|                        | <b>117</b> . Shaw AT, Kim DW, Nakagawa K, et al. Phase III study of crizotinib versus pemetrexed or docetaxel chemotherapy in patients with advanced ALK-positive non-small cell lung cancer (NSCLC) (PROFILE 1007). Paper presented at: Congress of the European Society for Medical Oncology 20122012.                                                                  |
|                        | <b>118</b> . Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. Oct 2012;13(10):1011-1019.                                                                                                                                              |
|                        | <b>119</b> . Kimura H, Nakajima T, Takeuchi K, et al. ALK fusion gene positive lung cancer and 3 cases treated with an inhibitor for ALK kinase activity. Lung Cancer. 2012;75(1):66-72.                                                                                                                                                                                  |
|                        |                                                                                                                                                                                                                                                                                                                                                                           |
| Wauters I et           | Fragestellung                                                                                                                                                                                                                                                                                                                                                             |
| al., 2013<br>[62].     | 4. What are the best treatment options for patients with metastatic and recurrent NSCLC?                                                                                                                                                                                                                                                                                  |
| Belgian<br>Health Care | Methodik                                                                                                                                                                                                                                                                                                                                                                  |
| Knowledge              | Grundlage der Leitlinie:                                                                                                                                                                                                                                                                                                                                                  |
| Centre                 | <ul> <li>developed using a standard methodology based on a systematic review of</li> </ul>                                                                                                                                                                                                                                                                                |
| Non-small              | the evidence (further details: <u>https://kce.fgov.be/content/kce-processes</u> )                                                                                                                                                                                                                                                                                         |
| cell and small         | developed by adapting (inter)national CPGs to the Belgian context (formal                                                                                                                                                                                                                                                                                                 |
| cell lung              | methodology of the ADAPTE group: www.adapte.org)                                                                                                                                                                                                                                                                                                                          |
| cancer:                | • in general, and whenever necessary, included guidelines updated with more                                                                                                                                                                                                                                                                                               |
| diagnosis,             | recent evidence                                                                                                                                                                                                                                                                                                                                                           |
| treatment and          | AGREE II instrument used to evaluate the methodological quality of the                                                                                                                                                                                                                                                                                                    |
| follow-up              | <ul> <li>identified CPGs (<u>www.agreetrust.org</u>)</li> <li>quality of systematic reviews assessed by using the Dutch Cochrane</li> </ul>                                                                                                                                                                                                                               |

| <ul> <li>critic<br/>Risk</li> <li>Whe<br/>case</li> </ul> | al app<br>of Bias<br>n new<br>subgr | s Tool used<br>RCTs were fo                                                                    | mized cont<br>und in addi<br>vas needeo                                                               | itior<br>d for | n to an existing<br>r certain topics                                                                                                                            | rane Collabora<br>g meta-analysis<br>s, meta-analysi | s, or in  |
|-----------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|
| Suchze                                                    | itraum                              | :                                                                                              |                                                                                                       |                |                                                                                                                                                                 |                                                      |           |
| evalı<br>upda<br>. <b>oE, Go</b>                          | uation)<br>ate sea<br><b>R:</b> GR  | ,<br>rches: betwee<br>ADE                                                                      | n April, 201                                                                                          |                |                                                                                                                                                                 | nes retained fo                                      | ∍r full-1 |
|                                                           |                                     | according to the GRADE syste                                                                   | em                                                                                                    |                |                                                                                                                                                                 |                                                      |           |
| Quality level                                             | Definition                          |                                                                                                |                                                                                                       | Metho          | dological Quality of Supportin                                                                                                                                  | ig Evidence                                          |           |
| High                                                      | We are very<br>estimate of th       | confident that the true effect li<br>e effect                                                  | ies close to that of the                                                                              |                | without important limitations or<br>rational studies                                                                                                            | overwhelming evidence from                           |           |
| Moderate                                                  | likely to be clo                    | rately confident in the effect est<br>ose to the estimate of the effect,<br>antially different |                                                                                                       | flaws,         |                                                                                                                                                                 |                                                      |           |
| Low                                                       |                                     | e in the effect estimate is limited different from the estimate of the                         |                                                                                                       | RCTs           | with very important limitations o                                                                                                                               | r observational studies or case                      |           |
| Very low                                                  |                                     | little confidence in the effect esi<br>bstantially different from the esti                     |                                                                                                       | series         |                                                                                                                                                                 |                                                      |           |
| Source of body                                            | y of evidence                       | Initial rating of quality of a body of evidence                                                | Factors that may dec<br>the quality                                                                   | rease          | Factors that may increase the quality                                                                                                                           | Final quality of a body of evidence                  |           |
| Randomized tr                                             | ials                                | High                                                                                           | 1. Risk of bias<br>2. Inconsistency                                                                   |                | 1. Large effect<br>2. Dose-response                                                                                                                             | High (⊕⊕⊕⊕)<br>Moderate (⊕⊕⊕⊝)                       |           |
| Observational                                             | studies                             | Low                                                                                            | <ol> <li>Indirectness</li> <li>Indirectness</li> <li>Imprecision</li> <li>Publication bias</li> </ol> |                | <ol> <li>All plausible residual<br/>confounding would reduce<br/>the demonstrated effect or<br/>would suggest a spurious<br/>effect if no effect was</li> </ol> | Low (⊕⊕⊝⊖)                                           |           |

Treatment of metastatic (stage cIV) and recurrent NSCLC

5.3.2. What is the most effective first-line chemotherapy? - Other considerations:

The guideline development group decided not to make a recommendation on bevacizumab as it is neither registered nor reimbursed in Belgium for this indication.

5.3.3. Second and third line chemotherapy - Other Considerations:

A preliminary meta-analysis shows a pooled effect on progression free survival favoring chemotherapy and no effect on overall survival. This subgroup analysis should be treated with extreme caution, as in most studies only in a minority of patients EGFR status could be determined. However, the claims of the investigators that the effect is similar in EGFR mutated and non mutated patients is not supported by the facts, because the test for interaction used could not



| the<br>the<br>ha | cond-line therapy for patients with advanced NSCLC with adequate PS when<br>e disease has progressed during or after first-line, platinumbased therapy as<br>ere is no evidence that one is superior to another. Erlotinib and gefitinib only<br>we a proven effect in EGFR mutation positive NSCLC.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | ombination second line therapies have a marginal effect on progression free rvival compared to monotherapy but no proven effect on overall survival.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Re               | ecommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                | The use of chemotherapy in patients with stage IV NSCLC with<br>WHO/ECOG/Zubrod performance status (PS) of 0 or 1 and (based on clinical<br>judgement) in some cases PS 2 is recommended. (SoE: strong / LoE: high)<br>Maximal efforts should be made to determine the epidermal growth factor<br>receptor (EGFR) mutation status, using a sensitive and validated method, in<br>all non-squamous NSCLC or <u>in never/very light smokers with mixed</u><br><u>squamous/non-squamous NSCLC</u> . It is recommended to use EGFR - tyrosine<br>kinase inhibitors (EGFR TKI) as first-line treatment of patients with advanced<br>EGFR mutation positive non-squamous NSCLC because of the better<br>tolerance. (SoE: strong / LoE: moderate) |
| •                | If no EGFR TKI is given as first-line treatment in EGFR mutation positive<br>NSCLC, a EGFR TKI should be offered thereafter, either as switch<br>maintenance or at progression as second-line treatment. (SoE: strong / LoE:<br>moderate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                | In the presence of the equipoise in efficacy for proven wild-type EGFR carriers, issues as residual and expected toxicity, patient preference and societal drug cost are of importance in the decision to administer second line treatment. Pending the publication of further data, the use of TKI's in second or third line should be restricted to either those patients in whom <u>an activating EGFR mutation is present</u> but was not yet treated with a TKI, or those patients who are <u>not considered for further chemotherapy and whose EGFR mutational status could not be determined despite maximal efforts</u> . (SoE:                                                                                                    |
|                  | strong / LoE: very low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                | In patients with a WHO performance status of 0 or 1, evidence supports the use of a combination of two cytotoxic drugs for first-line therapy. Platinum combinations are preferred over non-platinum combinations because they are superior in response rate, and marginally superior in overall survival. Non-platinum therapy combinations are reasonable in patients who have contraindications to platinum therapy. (SoE: strong / LoE: high)                                                                                                                                                                                                                                                                                          |
| •                | In these patients, the choice of either cisplatin or carboplatin is acceptable.<br>Drugs that can be combined with platinum include the third generation<br>cytotoxic drugs docetaxel, gemcitabine, irinotecan, paclitaxel, pemetrexed,<br>and vinorelbine. (SoE: weak / LoE: low)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •                | Pemetrexed is preferred to gemcitabine in patients with non-squamous NSCLC. Pemetrexed use should be restricted to non-squamous NSCLC in any line of treatment. (SoE: strong / LoE: low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                | It is recommended to offer second-line chemotherapy for patients with advanced NSCLC with adequate performance status when the disease has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Non-small                   | A writing committee was assembled and approved according to ACCP policies as described in the methodology article of the lung cancer guidelines –                                                                                                                                                                                               |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment of<br>Stage IV    | Grundlage der Leitlinie:                                                                                                                                                                                                                                                                                                                        |
| <b>-</b>                    | 2. Methodik                                                                                                                                                                                                                                                                                                                                     |
| [59].                       | Therapie des NSCLC Stage IV                                                                                                                                                                                                                                                                                                                     |
| Socinski MA<br>et al., 2013 | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                |
|                             | 131. Karampeazis A, Voutsina A, Souglakos J, Kentepozidis N, Giassas S, Christofillakis C, et al. Pemetrexed versus erlotinib in pretreated patients with advanced non-small cell lung cancer: A Hellenic Oncology Research Group (HORG) randomized phase 3 study. Cancer. 2013.                                                                |
|                             | Garassino MC, et al. (TAILOR) 2013                                                                                                                                                                                                                                                                                                              |
|                             | Kawaguchi, et al. 2014 (DELTA)                                                                                                                                                                                                                                                                                                                  |
|                             | 128. Ciuleanu T, Stelmakh L, Cicenas S, Miliauskas S, Grigorescu AC, Hillenbach C, et al. Efficacy and safety of erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study. Lancet Oncol. 2012;13(3):300-8. |
|                             | 127. Jiang J, Huang L, Liang X, Zhou X, Huang R, Chu Z, et al. Gefitinib versus docetaxel in previously treated advanced non small-cell lung cancer: a meta-analysis of randomized controlled trials. Acta Oncol. 2011;50(4):582-8.                                                                                                             |
|                             | 126. Qi W-X, Tang L-N, He A-N, Shen Z, Yao Y. Effectiveness and safety of pemetrexed-based doublet versus pemetrexed alone as second-line treatment for advanced non-small-cell lung cancer: a systematic review and meta-analysis. J Cancer Res Clin Oncol. 2012;138(5):745-51.                                                                |
|                             | 125. Qi WX, Shen Z, Yao Y. Meta-analysis of docetaxel-based doublet versus docetaxel alone as second-line treatment for advanced non-small-cell lung cancer. Cancer Chemotherapy and Pharmacology. 2012;69(1):99-106.                                                                                                                           |
|                             | 124. Niho S, et al. Randomized phase II study of first-line carboplatin-paclitaxel with or without bevacizumab in Japanese patients with advanced nonsquamous non-small-cell lung cancer. Lung Cancer. 2012;76(3):362-7.                                                                                                                        |
|                             | 123. Reck M, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol. 2010;21(9):1804-9.                                                                                                   |
|                             | 122. Lima AB, Macedo LT, Sasse AD. Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a systematic review and meta-analysis. PLoS ONE. 2011;6(8):e22681.                                                                                                                                                           |
|                             | 121. Botrel TE, et al. Efficacy of bevacizumab (Bev) plus chemotherapy (CT) compared to CT alone in previously untreated locally advanced or metastatic non-small cell lung cancer (NSCLC): systematic review and metaanalysis. Lung Cancer. 2011;74(1):89-97.                                                                                  |
|                             | 74. Group NM-aC, et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-<br>small-cell lung cancer: two meta-analyses of individual patient data. Lancet. 2010;375(9722):1267-77.                                                                                                                            |
|                             | 7. Landelijke werkgroep longtumoren IKNL. Niet-kleincellig longcarcinoom - Landelijke richtlijn, Versie 2.0. In. 2.0 ed; 2011.                                                                                                                                                                                                                  |
|                             | 4. Azzoli CG, Temin S, Giaccone G. 2011 Focused Update of 2009 American Society of Clinical Oncology Clinical Practice Guideline Update on Chemotherapy for Stage IV Non-Small-Cell Lung Cancer. J Oncol Pract. 2012;8(1):63-6.                                                                                                                 |
|                             | It is recommended to offer radiotherapy for palliation of local symptoms to patients with NSCLC.                                                                                                                                                                                                                                                |
|                             | Good clinical practice                                                                                                                                                                                                                                                                                                                          |
|                             | <ul> <li>The use of pemetrexed (only in non-squamous NSCLC) or docetaxel is<br/>acceptable as second-line therapy for patients with advanced NSCLC with<br/>adequate performance status when the disease has progressed during or<br/>after first-line, platinum-based therapy. (SoE: weak / LoE: very low)</li> </ul>                          |
|                             | <ul> <li>progressed during or after first-line therapy. (SoE: strong / LoE: moderate)</li> <li>Crizotinib is recommended as second-line therapy in ALK mutation-positive patients. (SoE: strong / LoE: low)</li> </ul>                                                                                                                          |

| systematische Suche und Bewertung der Literatur – Formulierung und<br>Konsentierung der Empfehlung nach standardisierten Verfahren - <u>Update</u> der<br>Versionen aus 2003 und 2007                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Literatursuche:                                                                                                                                                                                                                                                                                                                                         |
| focused primarily on randomized trials, selected metaanalyses, practice guidelines, and reviews. In addition, phase 2 controlled studies that provided relevant information (eg, for toxicity or particular patient subgroups) were included.                                                                                                           |
| Suchzeitraum:                                                                                                                                                                                                                                                                                                                                           |
| bis 12/2011                                                                                                                                                                                                                                                                                                                                             |
| LoE und GoR (siehe Anhang)                                                                                                                                                                                                                                                                                                                              |
| Lewis SZ, Diekemper R, Addrizzo-Harris DJ. Methodology for development of guidelines for lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. <i>Chest</i> . 2013 ; 143 ( 5 )( suppl ): 41S - 50S .                                                          |
| Sonstige methodische Hinweise                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>direkte Verknüpfung von Literatur mit Empfehlung nicht durchgängig<br/>gegeben</li> </ul>                                                                                                                                                                                                                                                      |
| 3. Empfehlungen                                                                                                                                                                                                                                                                                                                                         |
| <b>General Approach</b> (Recommendations adapted From First and Second Editions)                                                                                                                                                                                                                                                                        |
| 2.1.1. In patients with a good performance status (PS) (ie, Eastern Cooperative Oncology Group [ ECOG] level 0 or 1) and stage IV non-small cell lung cancer (NSCLC), a platinum-based chemotherapy regimen is recommended based on the survival advantage and improvement in quality of life (QOL) over best supportive care (BSC). <b>.(Grade 1A)</b> |
| Remark: Patients may be treated with several chemotherapy regimens<br>(carboplatin and cisplatin are acceptable, and can be combined with paclitaxel,<br>docetaxel, gemcitabine, pemetrexed or vinorelbine)                                                                                                                                             |
| 2.2.2. In patients with stage IV NSCLC and a good PS, two-drug combination chemotherapy is recommended. The addition of a third cytotoxic chemotherapeutic agent is not recommended because it provides no survival benefit and may be harmful. <b>(Grade 1A)</b>                                                                                       |
| First Line Treatment                                                                                                                                                                                                                                                                                                                                    |
| 3.1.1.1. In patients receiving palliative chemotherapy for stage IV NSCLC, it is recommended that the choice of chemotherapy is guided by the histologic type of NSCLC (Grade 1B).                                                                                                                                                                      |
| Remark: The use of pemetrexed (either alone or in combination) should be limited to patients with nonsquamous NSCLC.                                                                                                                                                                                                                                    |
| Remark: Squamous histology has not been identified as predictive of better response to any particular chemotherapy agent.                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                         |

|                             | 3.3.1.1. Bevacizumab improves survival combined with carboplatin and paclitaxel<br>in a clinically selected subset of patients with stage IV NSCLC and good PS<br>(nonsquamous histology, lack of brain metastases, and no hemoptysis). In these<br>patients, addition of bevacizumab to carboplatin and paclitaxel is recommended<br>(Grade 1A). |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | 3.3.1.2. In patients with stage IV non-squamous NSCLC and treated, stable brain metastases, who are otherwise candidates for bevacizumab therapy, the addition of bevacizumab to firstline, platinum-based chemotherapy is a safe therapeutic option <b>(Grade 2B)</b> .                                                                          |
|                             | Remark: No recommendation can be given about the use of bevacizumab in patients receiving therapeutic anticoagulation or with an ECOG PS of 2.                                                                                                                                                                                                    |
|                             | Second and Third Line Treatment                                                                                                                                                                                                                                                                                                                   |
|                             | 4.1.1. In patients with stage IV NSCLC who have good PS (ECOG 0-2), second-<br>line treatment with erlotinib or docetaxel (or equivalent single-agent such as<br>pemetrexed) is recommended <b>(Grade 1A)</b> .                                                                                                                                   |
|                             | 4.1.2. In patients with stage IV NSCLC who have good PS (ECOG 0-2), third-line treatment with erlotinib improves survival compared with BSC and is recommended <b>(Grade 1B)</b> .                                                                                                                                                                |
|                             | Remark: No recommendation can be given about the optimal chemotherapeutic strategy in patients with stage IV NSCLC who have received three prior regimens for advanced disease.                                                                                                                                                                   |
|                             | Special Patient Populations and Considerations                                                                                                                                                                                                                                                                                                    |
|                             | 5.1.1. In elderly patients (age > 69–79 years) with stage IV NSCLC who have good PS and limited co-morbidities, treatment with the two drug combination of monthly carboplatin and weekly paclitaxel is recommended <b>(Grade 1A)</b> .                                                                                                           |
|                             | <i>Remark:</i> In patients with stage IV NSCLC who are 80 years or over, the benefit of chemotherapy is unclear and should be decided based on individual circumstances.                                                                                                                                                                          |
|                             | 6.2.1.For patients with stage IV NSCLC with a PS of 2 in whom the PS is caused by the cancer itself, double agent chemotherapy is suggested over single agent chemotherapy (Grade 2B).                                                                                                                                                            |
|                             | 6.2.2. In patients with stage IV NSCLC who are an ECOG PS of 2 or greater, it is suggested not to add bevacizumab to chemotherapy outside of a clinical trial <b>(Grade 2B)</b> .                                                                                                                                                                 |
|                             | 7.1.1. In patients with stage IV NSCLC early initiation of palliative care is suggested to improve both QOL and duration of survival <b>(Grade 2B)</b> .                                                                                                                                                                                          |
| Brodowicz T<br>et al., 2012 | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                  |
| [7].                        | It is the aim of the present consensus to summarize minimal quality-oriented requirements for individual patients with NSCLC in its various stages based upon levels of evidence in the light of a rapidly expanding array of individual                                                                                                          |

| Third<br>CECOG<br>consensus on<br>the systemic<br>treatment of<br>non-small-cell | therapeutic options.                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  | 2. Methodik                                                                                                                                                                                                                                                    |
|                                                                                  | Grundlage der Leitlinie:                                                                                                                                                                                                                                       |
|                                                                                  | evidence-based consensus from experts from Europe and the United States based on systematic literature search                                                                                                                                                  |
| lung cancer.                                                                     | Suchzeitraum:                                                                                                                                                                                                                                                  |
|                                                                                  | bis 12/2009                                                                                                                                                                                                                                                    |
|                                                                                  | LoE/GoR:                                                                                                                                                                                                                                                       |
|                                                                                  | Levels of Evidence [I–V] and Grades of Recommendation [A–D] as used by the American Society of Clinical Oncology                                                                                                                                               |
|                                                                                  | Sonstige methodische Hinweise                                                                                                                                                                                                                                  |
|                                                                                  | <ul> <li>Kein formaler Konsensusprozess beschrieben</li> <li>Bewertung der Literatur nicht beschrieben</li> <li>14 author disclosures given, remaining authors have declared no conflicts of interest</li> </ul>                                               |
|                                                                                  | Freitext/Empfehlungen                                                                                                                                                                                                                                          |
|                                                                                  | systemic therapy for advanced disease                                                                                                                                                                                                                          |
|                                                                                  | first-line therapy                                                                                                                                                                                                                                             |
|                                                                                  | 1 Platin-based doublets containing a third-generation cytotoxic drug is the treatment of choice in patients with advanced NSCLC, unless platinum is contraindicated [I,A].                                                                                     |
|                                                                                  | 2 Cisplatin might be preferred in patients with good PS.                                                                                                                                                                                                       |
|                                                                                  | 3 Nonsquamous histology is a prerequisite for pemetrexed efficacy [I,B].                                                                                                                                                                                       |
|                                                                                  | 4 Cisplatin doses of <75–80 mg/m2 every 3–4 weeks are recommended [I,B].                                                                                                                                                                                       |
|                                                                                  | 5 Chemotherapy should be given for four to six cycles but stopped at disease progression [II,B].                                                                                                                                                               |
|                                                                                  | 15. Azzoli CG, Baker S Jr., Temin S et al. American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Clin Oncol 2009; 27(36): 6251–6266.                                             |
|                                                                                  | 16. Ardizzoni A, Boni L, Tiseo M et al. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J Natl Cancer Inst 2007; 99(11): 847–857.                   |
|                                                                                  | 17. Gandara DR, Crowley J, Livingston RB et al. Evaluation of cisplatin intensity in metastatic non-small-cell lung cancer: a phase III study of the Southwest Oncology Group. J Clin Oncol 1993; 11(5): 873–878.                                              |
|                                                                                  | 18. Scagliotti GV, Parikh P, von Pawel J et al. Phase III study comparing cisplatin plus gemcitabine with<br>cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J<br>Clin Oncol 2008; 26(21): 3543–3551. |
|                                                                                  | 21. Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N<br>Engl J Med 2009; 361(10): 947–957.                                                                                                              |
|                                                                                  | The addition of bevacizumab to first-line chemotherapy (either carboplatin–<br>paclitaxel or cisplatin–gemcitabine) of advanced nonsquamous NSCLC provides                                                                                                     |

| benefit in patients with good PS and age < 70 [I,B]. The dose of bevacizumab                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| may be either 7.5 or 15 mg/kg every 3 weeks depending on the                                                                                                                                                                                                                                    |
| chemotherapeutic backbone.                                                                                                                                                                                                                                                                      |
| 19. Reck M, von Pawel J, Zatloukal P et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol 2009; 27(8): 1227–1234.                                                      |
| 20. Sandler A, Gray R, Perry MC et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355(24): 2542–2550.                                                                                                                                  |
| 23. Johnson DH, Fehrenbacher L, Novotny WF et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-smallcell lung cancer. J Clin Oncol 2004; 22(11): 2184–2191. |
| Despite these results, the US Food and Drug Administration label for cetuximab                                                                                                                                                                                                                  |
| does not yet include NSCLC, and the EMA did not grant its use in this indication                                                                                                                                                                                                                |
| owing to modest benefits and associated toxicity. Nevertheless, addition of                                                                                                                                                                                                                     |
| cetuximab to a platinum-based chemotherapy regimen is a treatment option in                                                                                                                                                                                                                     |
| advanced NSCLC [I,B].                                                                                                                                                                                                                                                                           |
| 22. Pirker R, Pereira JR, Szczesna A et al. Cetuximab plus chemotherapy in patients with advanced non-small-<br>cell lung cancer (FLEX): an open-label randomized phase III trial. Lancet 2009; 373(9674): 1525–1531.                                                                           |
| 24. Gatzemeier U, von Pawel J, Vynnychenko I et al. FLEX: cetuximab in combination with platinum-based chemotherapy (CT) improves survival versus CT alone in the 1st-line treatment of patients with advanced non-small cell lung cancer (NSCLC). J Thorac Oncol 2008; 3(11): 4.               |
| 25. O'Byrne KJ, BI, Barrios C et al. Molecular and clinical predictors of outcome for cetuximab in non-small cell lung cancer (NSCLC): data from the FLEX study. J Clin Oncol 2009; 27: 15s (suppl abstract 8007).                                                                              |
| 26. Lynch TJ, Patel T, Dreisbach L et al. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J Clin Oncol 2010; 28(6): 911–917.                                                     |
| 27. Pujol JL, LT, Rosell R et al. A meta-analysis of four randomized phase II/III trials adding cetuximab to platinum-based chemotherapy as 1st-line treatment in patients with non-small cell lung cancer (NSCLC). Eur J Cancer Suppl 2009; 7: S508; 9009.                                     |
| 1 It is strongly recommended to test for EGFR-activating mutations [I,A].                                                                                                                                                                                                                       |
| 2 In the absence of EGFR-activating mutations, chemotherapy remains the                                                                                                                                                                                                                         |
| treatment of choice [I,A].                                                                                                                                                                                                                                                                      |
| 3 In patients with EGFR-activating mutations, treatment with gefitinib is the                                                                                                                                                                                                                   |
| preferred treatment option [I,A].                                                                                                                                                                                                                                                               |
| 28. Gatzemeier U, Pluzanska A, Szczesna A et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 2007; 25(12): 1545–1552.                                          |
| 29. Giaccone G, Herbst RS, Manegold C et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J Clin Oncol 2004; 22(5): 777–784.                                                                                     |
| 30. Herbst RS, Giaccone G, Schiller JH et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J Clin Oncol 2004; 22(5): 785–794.                                                                                   |
| 31. Herbst RS, Prager D, Hermann R et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005; 23(25): 5892–5899.                                                   |
| Single-agent therapy remains a reasonable option for unfit elderly patients [I,B],                                                                                                                                                                                                              |
| although clinical evidence does not support selection of a specific firstline                                                                                                                                                                                                                   |
| chemotherapy drug or combination based on age alone. However, the need for                                                                                                                                                                                                                      |
| enhanced supportive care should be emphasized in this patient population.                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                 |

| 26. Lynch TJ, Patel T, Dreisbach L et al. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J Clin Oncol 2010; 28(6): 911–917.                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36. Gridelli C, Maione P, Colantuoni G, Rossi A. Chemotherapy of non-small cell lung cancer in elderly patients.<br>Curr Med Chem 2002; 9(16): 1487–1495.                                                                                                                                                                              |
| 37. The Elderly Lung Cancer Viborelbine Italian Study Group. Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small-cell lung cancer. The Elderly Lung Cancer Vinorelbine Italian Study Group. J Natl Cancer Inst 1999; 91: 66–72.                                                         |
| second-line systemic therapy                                                                                                                                                                                                                                                                                                           |
| 1 The data from RCTs on second-line therapy are sufficient to recommend either                                                                                                                                                                                                                                                         |
| a cytotoxic agent (docetaxel for squamous NSCLC [II,B] or PEM for                                                                                                                                                                                                                                                                      |
| nonsquamous NSCLC [II,B]) or the EGFR TKI erlotinib [I,B].                                                                                                                                                                                                                                                                             |
| Shepherd FA, Dancey J, Ramlau R et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 2000; 18(10): 2095–2103.                                                                                    |
| Fossella FV, DeVore R, Kerr RN et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide<br>in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy<br>regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol 2000; 18(12): 2354–2362. |
| Hanna N, Shepherd FA, Fossella FV et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 2004; 22(9): 1589–1597.                                                                                                              |
| 2 An EGFR TKI should be strongly considered in patients with EGFR-activating                                                                                                                                                                                                                                                           |
| mutations in their tumors who have not received it as first-line treatment [II,B].                                                                                                                                                                                                                                                     |
| Sequencing of chemotherapy after EGFR TKIs has not been defined and remains                                                                                                                                                                                                                                                            |
| an important open issue.                                                                                                                                                                                                                                                                                                               |
| Barlesi F, Jacot W, Astoul P, Pujol JL. Second-line treatment for advanced nonsmall cell lung cancer: a systematic review. Lung Cancer 2006;51(2): 159–172.                                                                                                                                                                            |
| Weiss GJ, Rosell R, Fossella F et al. The impact of induction chemotherapy on the outcome of second-line therapy with pemetrexed or docetaxel in patients with advanced non-small-cell lung cancer. Ann Oncol 2007; 18(3): 453–460.                                                                                                    |
| Shepherd FA, Dancey J, Ramlau R et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 2000; 18(10): 2095–2103.                                                                                    |
| Fossella FV, DeVore R, Kerr RN et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol 2000; 18(12): 2354–2362.       |
| Hanna N, Shepherd FA, Fossella FV et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 2004; 22(9): 1589–1597.                                                                                                              |
| Kim ES, Hirsh V, Mok T et al. Gefitinib versus docetaxel in previously treated nonsmall-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 2008;372(9652): 1809–1818.                                                                                                                                                   |
| Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353(2): 123–132.                                                                                                                                                                                    |
| Thatcher N, Chang A, Parikh P et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005; 366(9496): 1527–1537.                          |
| Zhu CQ, da Cunha Santos G, Ding K et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 2008; 26(26): 4268–4275.                                                                                                                  |
| Hirsch FR, Varella-Garcia M, Bunn PA Jr., et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on                                                                                                                                         |

|                                                                                                    | prognosis. J Clin Oncol 2003; 21(20): 3798–3807.                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National                                                                                           | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                        |
| Institute for<br>Health and<br>Care<br>Excellence<br>(NICE). 2011<br>[41].<br>The<br>diagnosis and | It offers evidence-based advice on the care and treatment of people with lung cancer.                                                                                                                                                                                                                                                                                   |
|                                                                                                    | 2. Methodik                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                    | <u>Grundlage der Leitlinie:</u> evidenz- und konsensbasierte Aktualisierung,<br>Entwicklergruppe: "team of health professionals, lay representatives and<br>technical experts", systematische Literatursuche und –bewertung, formaler<br>Konsensprozess, Expertenreview                                                                                                 |
| treatment of<br>lung cancer<br>(CG121)                                                             | Update: erste Version von 2005, "This guideline will shortly be checked to see if it needs updating, Next review date: December 2015"                                                                                                                                                                                                                                   |
| (00121)                                                                                            | Suchzeitraum: July 2010                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                    | <u>LoE/GoR:</u> In den 'qualifying statements' beschrieben: "covering the strength of evidence, the degree of consensus". Bei niedriger Evidenzqualität bzw. fehlender Evidenz informale Konsentierung. "To avoid giving the impression that higher grade recommendations are of higher priority for implementation, NICE no longer assigns grades to recommendations." |
|                                                                                                    | Sonstige Hinweise:                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                    | • At the start of the guideline development process all GDG members'<br>interests were recorded on a standard declaration form that covered<br>consultancies, fee-paid work, share-holdings, fellowships and support<br>from the healthcare industry. At all subsequent GDG meetings, members<br>declared new, arising conflicts of interest which were always recorded |
|                                                                                                    | 3. Freitext/Empfehlungen/Hinweise                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                    | 6 Chemotherapy for NSCLC                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                    | Recommendations                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                    | • Chemotherapy should be offered to patients with stage III or IV NSCLC and good performance status (WHO 0, 1 or a Karnofsky score of 80–100), to improve survival, disease control and quality of life. [2005]                                                                                                                                                         |
|                                                                                                    | • Chemotherapy for advanced NSCLC should be a combination of a single third generation drug (docetaxel, gemcitabine, paclitaxel or vinorelbine) plus a platinum drug. Either carboplatin or cisplatin may be administered, taking account of their toxicities, efficacy and convenience. [2005]                                                                         |
|                                                                                                    | <ul> <li>Patients who are unable to tolerate a platinum combination may be offered<br/>single-agent chemotherapy with a third-generation drug. [2005]</li> </ul>                                                                                                                                                                                                        |
|                                                                                                    | • Docetaxel monotherapy should be considered if second-line treatment is appropriate for patients with locally advanced or metastatic NSCLC in whom relapse has occurred after previous chemotherapy. [2005]                                                                                                                                                            |
|                                                                                                    | <u>Gefitinib</u>                                                                                                                                                                                                                                                                                                                                                        |

|                                                   | • Refer to 'Gefitinib for the first-line treatment of locally advanced or metastatic non-small-cell lung cancer' (NICE technology appraisal guidance 192 [2010]), available at <a href="https://www.nice.org.uk/guidance/TA192">www.nice.org.uk/guidance/TA192</a> <a href="https://www.nice.org.uk/guidance/TA192">Pemetrexed</a>                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | <ul> <li>Refer to 'Pemetrexed for the first-line treatment of non-small-cell lung cancer'<br/>(NICE technology appraisal guidance 181 [2010]), available at<br/>www.nice.org.uk/guidance/TA181</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   | <u>Erlotinib</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   | <ul> <li>Refer to 'Erlotinib for the treatment of non-small-cell lung cancer' (NICE<br/>technology appraisal guidance 162 [2008]), available at<br/>www.nice.org.uk/guidance/TA162</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| de Marinis F                                      | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| et al., 2011<br>[13].                             | Which first-line treatment for fit patients?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIOT (Italian                                     | Cisplatin or carboplatin for first-line treatment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Association<br>of Thoracic                        | What Is the role for EGFR tyrosine-kInase Inhibitors in first-line treatment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Oncology)                                         | Which first-line treatment for elderly patients?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Treatment of                                      | Which first-line treatment for PS 2 patients?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| advanced<br>non-small-                            | Which second-line chemotherapy?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| cell-lung                                         | Chemotherapy or EGFR Inhibitors for second-line treatment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| cancer:                                           | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Italian<br>Association<br>of Thoracic<br>Oncology | Systematische Literatursuche und formaler Konsensusprozess, up-to-date,<br>cllnlcal practice guidellnes, subsequently updated for this manuscrlpt on<br>December 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (AIOT)                                            | <b>Suchzeitraum:</b> 2004 bis 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| clinical practice                                 | LoE, GoR (siehe Anhang)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| guidelines.                                       | Sonstige methodische Hinweise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   | <ul> <li>Methodische Schritte entsprechen Agency for Healthcare Policy Research<br/>(AHCPR) System US Department of Health and Human Services, Public<br/>Health Service, Agency for Health Care Policy and Research.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   | 3. Empfehlungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 3.1.1. Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | Platinum-based (cisplatin orcarboplatin) chemotherapy for4-6 cycles is the standard treatment for patients with advanced non-small-celllung cancer (NSCLC) and performance status (PS)0-1. Patients with squamous tumour are eligible For first-line platinum-based doublets with a third-generation drug, with the exception ofpemetrexed. Patients with advanced non-squamous NSCLC are eligible for tirst-line platinum-based doublets with a third-generation drug, including pemetrexed. Bevacizumab in combination with carboplatin plus pacilitaxel or clsplatin plus gemcitable is a further option for patients considered |

ellgible to this therapy, however carboplatin plus paclitaxel should be considered the chemotherapybackbone for bevacizumab.

## A. Treatment options[or patients with squamous tumour

Patients with advanced squamous NSCLC are eligib/e [or firstline platinumbased doublets with a third-generation drug, with the exception ojpemetrexed.

B. Treatment options[or patients with non-squamous tumours

Patients with advanced non-squamous NSCLC are e/igib/e [or first-line platinumbased doubiets with a third-generation drug, inc/uding pemetrexed. Bevac/zumab in combination with carboplatin plus paclitaxe/ orcisp/atin p/usgemdtabine is a[ilrtheroption [or patients considered eligible to this therapy. Carboplatin plus pac/itaxel should be considered the chemotherapy backhone [or bevac/zumab.

## LoE IA/GoR A

20 Quellen zitiert

3.2.1. Recommendations

Third-generation cisplatin-based reglmens are recommended for the treatment of advanced NSCLC patients, with PS 0-1 and without major co-morbldities. Where the use of cisplatin is contra-indicated third-generation carboplatin-based regimens are a valid therapeutic option.

# LoE IA/GoR A

11 Quellen zitiert

3.3.1. Recommendations

Gefitinib is recommended as first-line therapy of patients with EGFR mutat!on positive NSCLC EGFR analysis is recommended, if adequate tumour sample is available, especially in patients selected on the basis of clinical and/or pathological characteristics known to be assodated w!th higher frequency of EGFR mutation (never or former smokers, adenocardnoma).

# LoE IB/GoR A

(32( Mok 1'5, Wu YL. Thongprasert 5, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatinpaclitaxelln pulmonary adenocarcinoma. N Eng! J Med 2009;361:947-57.

(33)- Lee JS. Park- K. Kim SW, Lee DH, Kim HT, Han JY, et al. A randomized phase 111 study of gefitinlb (JRESSA) versus standard chemotherapy (gemcltablne plus cisplatin) as a first-llne treatment for never.smokers with advanced or metastaUe adenocardnoma of the Jung. J TI10rac Oncol 2009;4 (Suppl. 1):5283-4(abstrPRS.4].

[34) Maemondo M,Inoue A. Kobayashl K, Sugawara 5, Oizumi S,Isobe H,et i.Gefitinib or chemotherapy for non-small-celllung cancer with mutated EGFR. N Englj Med 2010;362:2380-8.

(35) Mitsudami T, Morita s. Yatabe Y, Negoro s, Okamoto I, Tsurutani J, et al. Gefitinibversus clsplatin plus docetaxel in patients with non-small-celllungcancer harbouring mutations of the epidennal growth factor receptor(WJfOG3405): an open label, randomised phase 3 trial. Lancet Oncol2010;1 1:121-8.

(36) Rosell R. Moran T, Queralt C. Porta R. Cardenal F, Camps C, et al. Screening for epidennal growth factor receptor mutations in Jung cancer. N Engl J Med 2009;361:958-67.

[371 Zhou c. wung VI, Chen G, feng J, Uu X, Wang c, et al. Efficacy results from the randomlsed phase 111 OPTIMAL (O"ONG 0802) study comparing first-line erletinib versus carboplatin plus

gemcitabine, in Chinese advanced non-smallcell Jung cancer patients with EGFR activating mutations. In; Presented at European Soclety of Medical Oncology meeting. 2010 (abstr LBA 13), [38) Gridelll c, Ciardlello F, Feld R, Butts CA. Gebbia V, Genestretl G, et al.International multIcenter randomized phase 111 studyoffirst-lineerlotinib (E)followed by second-line cisplatin plusgemcitablne (CG) versus first-Hne CG fol/owed by second-line Ein advanced nen-small celllung cancer (aNSCLC); The TORCH trlal, j Clln Dncoi2010;28(15S):540s (abstr 7508). 3.5.1. Recommendations In elderly patients (older than 70 years) with advanced NSCLC, single-ogent treatment with a third-generation drug Is the recommended option for clinIcal practice. (LoE IA/GoR A) • In elderly patients (older than 70 years) with advanced NSCLC and PS 0-1, without major co-morbldities and with adequate organ function, platinum-based chemotherapy with attenuated doses of clsplatin or carboplatin can be considered. (LoE IB/GoR A) • In elderly patients(older than 70years), with EGFR mutation positive advanced NSCLC, gefitInib Is the recommended treatment. (LoE IA/GoR A) [42] Elderly Lung Cancer VInerelbine Italfan Study Group. Effects of vinorelbine on guality of life and survival of elderly patients with advanced non-smalt-eeil Jung cancer. J Natl Cancer Inst 1991:91:66-72. (43) Kudoh 5, Takeda K, Nakagawa K, Takada M, Katakami N, Matsui K, et al. Phase 111 study of docetaxel compared with vinorelbine in elderly patients with advanced non-small-cel/ Jung Cancer: results of the West Japan Thoraeie Oncology Group trlal (WJTOG 9904). J Clin Oncel 2006:24: 3657-63. (44) Frasei G, Lorusso V, Panza N, Comella P, Nfcolella G, Bianco A, et al. Gemcitablne plus vinorelbfne versus vinorelblne alone in elderly patlents with advanced non-small celllung cancer.J Clin Oncol2000;18:2529-36. (45) Grfdelll C, Perrene F. GalloC, Cigolari S, Rossi A, Piantedosl F, et al. Chemotherapy for elderly patients with advanced non-small cell lung cancer: the Multicenter JtallanLung cancer in the Elderly Study(MJLES) phase 111 randomized trlai.J Natl cancer Jnst 2003;95;362-72. [461 Gridelli C, Aapro M, Ardlzzonl A, Balduccl L. Oe Marinls F, Kelly K, et al. Treatment of advanced non-small-cell Jung cancer in the elderfy: results of an international expert panei.J Clin Oncol2005;23:3125-37. (471 Ross! A. Grldelll c. Chemotherapy of advanced non-small celllung cancer in elderly patients. Ann Oncoi2006;17(Suppl. 2):1158-60. (48) Quoix EA, Oster J, Westeel V, Pichon E, Zalcman G, Baudrin L. et al. Weekiy paclitaxel combined with monthlycarboplatin versus single--agent therapy in patients age 70 to 89: IFCf-0501 randomized phase 111 study in advanced nonsmall celllung cancer(NSCI.C).J Clln oncol 2010;28(15S):5s (abstr 2). 3.6.1. Recommendations · First-line chemotherapy is recommended in patients with advanced NSCLC and ECOG PS 2 because It is associated with a significant benefit in overall survival and quality of life, compared to BSC alone. (LoE IA/GoR A) Single-agent third-generation drug is a reasonable option. Combination chemotherapy with carboplatin or low doses of dsplatln ls a reasonable alternative. (LoE IB/GoR B) In PS 2 patients, with EGFR mutationpositive advanced NSCLC, gefitInib Is the recommended treatment. (LoE IB/GoR A) 10 Quellen zitiert

|                                                                                   | 3.7.1. Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   | In patients with advanced NSCLC, after failure of first-line treatment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                   | <ul> <li>Single-agent treatment with docetaxel or pemetrexed (the latter limited to non-squamous tumours) is recommended. LoE IB, GoR A</li> <li>In patients with advanced NSCLC, progressing after first-line treatment, combination chemotherapy is not recommended. LoE IA, GoR A</li> <li>17 Quellen zitiert</li> </ul>                                                                                                                                                                                                                                                                                                  |
|                                                                                   | 3.8.1. Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                   | <ul> <li>In patients with advanced NSCLC and EGFR mutation negative or unknown status, with progressive disease after first-line treatment chemotherapy (docetaxel or pemetrexed in non-squamous histology) or erlotinlb should be offered. There are no conclusive data to help the choice between chemotherapy and erlotinib. (LoE IB, GoR A)</li> <li>In patients with advanced NSCLC, with progressive disease after second-line treatment erlotinib is the drug of choice, if not administered previously, because is the only approved for use in clinical practice as third-line treatment (LoE IB, GoR A)</li> </ul> |
|                                                                                   | 78. Shepherd FA, Rodrtgues Perelra J, Cluleanu T, Tan EH, HIrsh V, Thongprasert s, et al. ErlotInlb in previously treated non⋅small-celllungcancer. N Engl J Med 2005;353:123-32.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                   | 87. Vamvakas L, Agelaki S, Kentepozidis NK, Karampeazls A, Pallls AG, Christophyllakls c, et al. Pemetrexed (MTA) compared with erlotinlb (ERL) in pretreated patients with advanced non-small cell Jung cancer (NSCIC): Results of a randomized phase III Hellenie Oncology Research Group trial. J Clln Oncol 2010;28(15S):543s (abstr7519).                                                                                                                                                                                                                                                                               |
|                                                                                   | 88. Ci uleanu T, Stelma kh L, Cice nass, Esteban E. Erlotinlb versus docetaxe I o r pemetrexed as second~line therapy in patients with advanced non-small-celllung cancer(NSCLC)and poorprognosis: efficacy and safety results from the phase III TITAN study.In: Presented at Chicago Thoraeie Multidisclplinary Symposium. 2010 fabstr LBOA5).                                                                                                                                                                                                                                                                             |
| Azzoli CG, et al., 2010 [5].                                                      | 1. Fragestellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ai., 2010 [5].                                                                    | To update its recommendations on the use of chemotherapy for advanced stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| American                                                                          | non-small-cell lung cancer (NSCLC), ASCO convened an Update Committee of<br>its Treatment of Unresectable NSCLC Guideline Expert Panel. ASCO first                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Society of                                                                        | published a guideline on this topic in 19971 and updated it in 2003.2 The current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Clinical<br>Oncology<br>(ASCO)                                                    | version covers treatment with chemotherapy and biologic agents and molecular markers for stage IV NSCLC and reviews literature published from 2002 through May 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Clinical                                                                          | 2. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Practice<br>Guideline<br>Update on<br>Chemotherap<br>y for Stage IV<br>Non–Small- | Grundlage der Leitlinie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                   | regelmäßig aktualisierte, evidenz- und konsensbasierte Leitlinie, "NSCLC update<br>committee" hat sich nach Sichtung aktueller relevanter Literatur für systematische<br>Aktualisierung von Empfehlung 6 entschieden und die Aktualität der restlichen<br>Empfehlungen bestätigt.                                                                                                                                                                                                                                                                                                                                            |
| Cell Lung<br>Cancer.                                                              | Suchzeitraum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | 2002 bis 07/2008, bis 2010 für Empfehlung A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                   | GoR, LoE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Keine Angabe in der zusammenfassenden Darstellung (vgl. Anhang)                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sonstige methodische Hinweise                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Kein formaler Konsensusprozess beschrieben</li> <li>The recommendations in this guideline were developed primarily on the basis of statistically significant improvements in overall survival (OS) documented in prospective RCTs. Treatment strategies demonstrated to improve only progression-free survival (PFS) prompted greater scrutiny regarding issues such as toxicity and quality of life.</li> <li>Col dargelegt</li> </ul>                                                |
| 3. Empfehlungen (9 Erstlinienempfehlungen im Anhang)                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Second-Line Chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Recommendation:</b> Docetaxel, erlotinib, gefitinib, or pemetrexed is acceptable as second-line therapy for patients with advanced NSCLC with adequate PS when the disease has progressed during or after first-line, platinum-based therapy.                                                                                                                                                                                                                                                |
| <b>Comment.</b> In addition to considering optimal regimen, the guideline evaluated data on schedules of administration for second- line therapy, which were available only for docetaxel. These data do not show any differences in efficacy of docetaxel based on schedule. A weekly schedule appears less toxic than a schedule of every 3 weeks, especially for hematologic toxicities.                                                                                                     |
| The data on combination biologic therapy as second-line therapy are limited to<br>the combination of bevacizumab and erlotinib. At publication time, there were no<br>published RCTs with positive results for OS using this combination. There are no<br>data available on the optimal duration of second-line therapy. Phase III clinical<br>trials of docetaxel, erlotinib, gefitinib, and pemetrexed allowed patients to<br>continue chemotherapy, as tolerated, until disease progression. |
| <b>Recommendation:</b> The evidence does not support the selection of a specific second-line chemotherapy drug or combination based on age alone.                                                                                                                                                                                                                                                                                                                                               |
| <b>Comment.</b> There is a paucity of research on people considered elderly who are receiving second-line therapy. The available evidence shows that benefits and toxicity do not differ by age.                                                                                                                                                                                                                                                                                                |
| Third-Line Chemotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Recommendation:</b> When disease progresses on or after second-line chemotherapy, treatment with erlotinib may be recommended as third-line therapy for patients with PS of 0 to 3 who have not received prior erlotinib or gefitinib.                                                                                                                                                                                                                                                       |
| <b>Comment.</b> This recommendation is based on the <u>registration trial for erlotinib</u> (Recommendation B1). This trial included participants who had received one or two prior regimens, and an analysis of survival showed no significant difference between prior numbers of regimens.                                                                                                                                                                                                   |
| <br><b>Recommendation:</b> The data are not sufficient to make a recommendation for or against using a cytotoxic drug as thirdline therapy. These patients should                                                                                                                                                                                                                                                                                                                               |

consider experimental treatment, clinical trials, and best supportive care.
 **Comment.** Only a retrospective analysis was available on this issue. It found survival and response rates decreased with each subsequent regimen. Patients receiving third- and fourth fourthline cytotoxic therapy have infrequent responses, the responses are of short duration, and the toxicities are considerable.

# Ergänzende Dokumente anderer Organisationen zu möglichen Komparatoren

| NICE, 2014 [39].                         | 1 Guidance                                                                                                               |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Afatinib for treating                    | 1.1 Afatinib is recommended as an option, within its marketing                                                           |
| epidermal growth                         | authorisation, for treating adults with locally advanced or metastatic                                                   |
| factor receptor                          | non-small-cell lung cancer only if:                                                                                      |
| mutation-positive                        | <ul> <li>the tumour tests positive for the epidermal growth factor</li> </ul>                                            |
| locally advanced or                      | receptor tyrosine kinase (EGFR-TK) mutation and                                                                          |
| metastatic non-small-                    | <ul> <li>the person has not previously had an EGFR-TK inhibitor and</li> </ul>                                           |
| cell lung cancer (TA                     |                                                                                                                          |
| 310)                                     | <ul> <li>the manufacturer provides afatinib with the discount agreed in<br/>the patient access scheme.</li> </ul>        |
| Breuer J, et al., 2013                   | Afatinib (Giotrif®) as monotherapy is indicated for the treatment of                                                     |
|                                          |                                                                                                                          |
| [6].                                     | EGFR TKI-naïve adult patients with locally advanced or metastatic non-                                                   |
| Afatinib (Giotrif®) for                  | small cell lung cancer (NSCLC) with activating EGFR mutations.                                                           |
| the treatment of<br>EGFR TKI-naïve       | Current treatment                                                                                                        |
|                                          | Modalities for the treatment of NSCLC which are generally used are                                                       |
| adult patients with                      | surgery, radiation therapy, chemotherapy and targeted therapy.                                                           |
| locally advanced or metastatic non-small | Depending on disease status, Eastern Cooperative Oncology Group                                                          |
|                                          | (ECOG) performance status and prognostic factors, these treatments                                                       |
| cell lung cancer                         |                                                                                                                          |
| (NSCLC) with                             | can be used either alone or in combination [12].<br>First-line therapy of advanced NSCLC depends on a number of factors, |
| activating EGFR<br>mutation(s)           | such as tumour stage, histo-pathological subtype and performance                                                         |
| Institute for Health                     | status. Current treatment options for the first-line therapy of patients                                                 |
|                                          | with advanced or metastatic lung cancer are:                                                                             |
| Technology<br>Assessment Ludwig          | with advanced of metastatic lung cancer are.                                                                             |
| Boltzmann                                | double-agent chemotherapy regimen based on a platinum compound                                                           |
| Gesellschaft                             | (cisplatin, carboplatin) in addition to one out of numerous other                                                        |
| Gesenschart                              | substances (paclitaxel, gemcitabine, vinorelbine or docetaxel and                                                        |
|                                          | pemetrexed)                                                                                                              |
|                                          | <ul> <li>other chemotherapy regimens: due to the toxicity of platinum-based</li> </ul>                                   |
|                                          | regimens, other drug combinations can be used (gemcitabine +                                                             |
|                                          | docetaxel/paclitaxel/vinorelbine/pemtrexed, paclitaxel + vinorelbine)                                                    |
|                                          |                                                                                                                          |
|                                          | <ul> <li>single-agent chemotherapy as first-line treatment may be used for<br/>alabely action to</li> </ul>              |
|                                          | elderly patients                                                                                                         |
|                                          | targeted therapies: EGFR inhibitors (erlotinib, gefitinib), monoclonal                                                   |
|                                          | antibodies (bevacizumab)                                                                                                 |
|                                          | <ul> <li>a combined modality approach [10, 12, 15].</li> </ul>                                                           |
|                                          |                                                                                                                          |
|                                          | If patients are EGFR mutational status positive, EGFR-TK inhibitors                                                      |
|                                          | (e.g. erlotinib, gefitinib) are increasingly used as standard first-line                                                 |
|                                          | therapy, whereas patients with either unknown EGFR status or without                                                     |
|                                          | EGFR mutation receive chemotherapy doublets, either alone or in                                                          |
|                                          | combination with a monoclonal antibody (bevacizumab). If patients with                                                   |
|                                          | driver mutations have initially been treated with chemotherapy, targeted                                                 |

|                          | therapy with a specific inhibitor is indicated after progression on the                                                                                                                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | initial chemotherapy regimen either alone or in combination with                                                                                                                                                                                                                       |
|                          | chemotherapy [15, 16].                                                                                                                                                                                                                                                                 |
|                          |                                                                                                                                                                                                                                                                                        |
|                          | [10] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in                                                                                                                                                                                                       |
|                          | Oncology: Non-Small Cell Lung Cancer (V 2.2013). 2013 [24.09.2013]; Available                                                                                                                                                                                                          |
|                          | from: http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf.                                                                                                                                                                                                                    |
|                          | [12] Lilenbaum R. Overview of the treatment of advanced non-small cell lung cancer.                                                                                                                                                                                                    |
|                          | 2013 [26.09.2013]; Available from: <a href="http://www.uptodate.com/contents/overview-of-the-treatment-of-advanced-non-small-cell-lung-the-treatment-of-advanced-non-small-cell-lung-">http://www.uptodate.com/contents/overview-of-the-treatment-of-advanced-non-small-cell-lung-</a> |
|                          | <u>cancer?detectedLanguage=en&amp;source=search_result&amp;search=therapy+nsclc&amp;sele</u>                                                                                                                                                                                           |
|                          | ctedTitle=3~150&provider=noProvider.                                                                                                                                                                                                                                                   |
|                          | [15] Lilenbaum R. Systemic therapy for advanced non-small cell lung cancer with an                                                                                                                                                                                                     |
|                          | activating mutation in the epidermal growth factor receptor. 2013 [26.09.2013];                                                                                                                                                                                                        |
|                          | Available from: http://www.uptodate.com/contents/systemic-therapy-for-advanced-                                                                                                                                                                                                        |
|                          | non-small-cell-lung-cancer-with-an-activating-mutation-in-the-epidermal-growth-                                                                                                                                                                                                        |
|                          | factor-<br>receptor?detectedLanguage=en&source=search_result&search=first+line+therapy+                                                                                                                                                                                                |
|                          | nsclc&selectedTitle=8~150&provider=noProvider.                                                                                                                                                                                                                                         |
|                          | [17] Wu YL, Zhou C, Hu CP, Feng JF, Lu S, Huang Y, et al. LUX-Lung 6: A                                                                                                                                                                                                                |
|                          | randomized, open-label, phase III study of afatinib (A) versus gemcitabine/cisplatin                                                                                                                                                                                                   |
|                          | (GC) as first-line treatment for Asian patients (pts) with EGFR mutation-positive                                                                                                                                                                                                      |
|                          | (EGFR M+) advanced adenocarcinoma of the lung. Journal of Clinical Oncology.                                                                                                                                                                                                           |
| Comitoch Totol           | 2013;31(15).                                                                                                                                                                                                                                                                           |
| Semlitsch T et al.,      | Current treatment                                                                                                                                                                                                                                                                      |
| 2013 [53].               | As second line therapy the following treatments are recommended:                                                                                                                                                                                                                       |
| Crizotinib (Xalkori®)    | <ul> <li>single agent chemotherapy (docetaxel or PEM)</li> </ul>                                                                                                                                                                                                                       |
| for the treatment of     | <ul> <li>targeted agent therapy (e.g. erlotinib)</li> </ul>                                                                                                                                                                                                                            |
| anaplastic lymphoma      | <ul> <li>a platinum based combination therapy for patients with EGFR</li> </ul>                                                                                                                                                                                                        |
| kinase (ALK) positive    | mutation and progressive disease after tyrosine kinase inhibitor                                                                                                                                                                                                                       |
| advanced non-small       | treat-ment (e.g. erlotinib)                                                                                                                                                                                                                                                            |
| cell lung cancer         |                                                                                                                                                                                                                                                                                        |
| (NSCLC)                  | For ALK-positive NSCLC patients the targeted agent crizotinib is the                                                                                                                                                                                                                   |
| Institute for Health     | currently recommended treatment option as first or second line therapy.                                                                                                                                                                                                                |
| Technology               | Chemotherapy is an appropriate option for these patients with disease                                                                                                                                                                                                                  |
| Assessment Ludwig        | progression on crizotinib. As patients with the ALK fusion oncogene do                                                                                                                                                                                                                 |
| Boltzmann                | not appear to respond to EGFR tyrosine kinase inhibitors, erlotinib                                                                                                                                                                                                                    |
| Gesellschaft             | therapy is not recommended.                                                                                                                                                                                                                                                            |
| NICE, 2013 [40].         | 1 Guidance                                                                                                                                                                                                                                                                             |
| Crizotinib for           | 1.1 Crizotinib is not recommended within its marketing authorisation,                                                                                                                                                                                                                  |
| previously treated       | that is, for treating adults with previously treated anaplastic-lymphoma-                                                                                                                                                                                                              |
| non- small-cell lung     | kinase-positive advanced non-small-cell lung cancer.                                                                                                                                                                                                                                   |
| cancer associated        | 1.2 People currently receiving crizotinib that is not recommended                                                                                                                                                                                                                      |
| with an anaplastic       | according to 1.1 should be able to continue treatment until they and                                                                                                                                                                                                                   |
| lymphoma kinase          | their clinician consider it appropriate to stop.                                                                                                                                                                                                                                       |
| fusion gene (TA 296)     |                                                                                                                                                                                                                                                                                        |
| NICE, 2012 [42].         | 1 Guidance                                                                                                                                                                                                                                                                             |
|                          |                                                                                                                                                                                                                                                                                        |
| Erlotinib for the first- | 1.1 Erlotinib is recommended as an option for the first-line treatment of                                                                                                                                                                                                              |
| line treatment of        | people with locally advanced or metastatic non-small-cell lung cancer                                                                                                                                                                                                                  |
| locally advanced or      | (NSCLC) if:                                                                                                                                                                                                                                                                            |
| metastatic EGFR-TK       | they test positive for the epidermal growth factor receptor                                                                                                                                                                                                                            |
| mutation-positive        | tyrosine kinase (EGFR-TK) mutation and                                                                                                                                                                                                                                                 |
| non-small-cell lung      | <ul> <li>the manufacturer provides erlotinib at the discounted price</li> </ul>                                                                                                                                                                                                        |
| cancer (TA 258)          | agreed under the patient access scheme (as revised in 2012).                                                                                                                                                                                                                           |
| NICE, 2010 [43].         | 1 Guidance                                                                                                                                                                                                                                                                             |
|                          |                                                                                                                                                                                                                                                                                        |
| Gefitinib for the first- | 1.1 Gefitinib is recommended as an option for the first-line treatment of                                                                                                                                                                                                              |
|                          | 1.1 Gefitinib is recommended as an option for the first-line treatment of people with locally advanced or metastatic non-small-cell lung cancer                                                                                                                                        |
| Gefitinib for the first- |                                                                                                                                                                                                                                                                                        |

| metastatic non-small-<br>cell lung cancer (TA<br>192) | <ul> <li>they test positive for the epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation and</li> <li>the manufacturer provides gefitinib at the fixed price agreed under the patient access scheme.</li> </ul> |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Detaillierte Darstellung der Recherchestrategie:

**Cochrane Library** (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Health Technology Assessment Database) **am 05.06.2015 und 09.09.2016** 

| # | Suchfrage                                                                                               |
|---|---------------------------------------------------------------------------------------------------------|
| 1 | MeSH descriptor: [Carcinoma, Non-Small-Cell Lung] explode all trees                                     |
| 2 | ((non next small) or nonsmall) next cell next lung:ti,ab,kw                                             |
| 3 | tumor* or tumour* or carcinoma* or adenocarcinoma* or neoplasm* or sarcoma* or cancer*:ti,ab,kw         |
| 4 | advanced:ti,ab,kw or metastat*:ti,ab,kw or metastas*:ti,ab,kw or recurren*:ti,ab,kw or relaps*:ti,ab,kw |
| 5 | #2 and #3 and #4                                                                                        |
| 6 | nsclc*:ti,ab,kw                                                                                         |
| 7 | #1 or #5 or #6                                                                                          |
| 8 | #7 from 2010 to 2016                                                                                    |

### SR, HTAs in Medline (PubMed) am 05.06.2015 und am 13.06.2016

| #  | Suchfrage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Carcinoma, Non-Small-Cell Lung[MesH]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2  | (((non[Title/Abstract]) AND small[Title/Abstract]) AND cell[Title/Abstract]) AND<br>lung[Title/Abstract]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3  | ((((((tumor*[Title/Abstract]) OR tumour*[Title/Abstract]) OR carcinoma*[Title/Abstract]) OR adenocarcinoma*[Title/Abstract]) OR neoplasm*[Title/Abstract]) OR sarcoma*[Title/Abstract]) OR cancer*[Title/Abstract]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4  | #2 AND #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5  | #1 OR #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 29 | Receptor Protein-Tyrosine Kinases[MesH] OR Antineoplastic Agents[MesH] OR<br>Antineoplastic Agents[Supplementary Concept]OR ROS1[Title/Abstract]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30 | #5 AND #29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 31 | (#30) AND ((Meta-Analysis[ptyp] OR systematic[sb] OR Technical Report[ptyp]) OR<br>(((((trials[Title/Abstract] OR studies[Title/Abstract] OR database*[Title/Abstract] OR<br>literature[Title/Abstract] OR publication*[Title/Abstract] OR Medline[Title/Abstract] OR<br>Embase[Title/Abstract] OR Cochrane[Title/Abstract] OR Pubmed[Title/Abstract])) AND<br>systematic*[Title/Abstract] AND (search*[Title/Abstract] OR research*[Title/Abstract]))) OR<br>(((((((((((HTA[Title/Abstract]) OR technology assessment*[Title/Abstract]) OR technology<br>report*[Title/Abstract]) OR (systematic*[Title/Abstract] AND review*[Title/Abstract])) OR<br>(systematic*[Title/Abstract] AND overview*[Title/Abstract])) OR meta-analy*[Title/Abstract])<br>OR (meta[Title/Abstract] AND analyz*[Title/Abstract])) OR (meta[Title/Abstract] AND<br>analys*[Title/Abstract]) OR (meta[Title/Abstract]]) OR<br>(((review*[Title/Abstract]) OR overview*[Title/Abstract])) OR<br>(((review*[Title/Abstract]) OR overview*[Title/Abstract]]) AND<br>(((review*[Title/Abstract])) OR overview*[Title/Abstract]]) AND<br>((evidence[Title/Abstract]))))) |
| 32 | (#31) AND ("2010/06/01"[PDAT] : "2016/06/13"[PDAT])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 35 | (#5) AND ((((((drug[Title/Abstract]) OR (drug therap*)[Title/Abstract]) OR<br>therapy[Title/Abstract]) OR therapies[Title/Abstract]) OR treat[Title/Abstract]) OR<br>treatment*[Title/Abstract])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 36 | (#35) AND ((Meta-Analysis[ptyp] OR systematic[sb] OR Technical Report[ptyp]) OR<br>(((((trials[Title/Abstract] OR studies[Title/Abstract] OR database*[Title/Abstract] OR<br>literature[Title/Abstract] OR publication*[Title/Abstract] OR Medline[Title/Abstract] OR<br>Embase[Title/Abstract] OR Cochrane[Title/Abstract] OR Pubmed[Title/Abstract])) AND<br>systematic*[Title/Abstract] AND (search*[Title/Abstract] OR research*[Title/Abstract]))) OR<br>(((((((((((HTA[Title/Abstract]) OR technology assessment*[Title/Abstract]) OR technology<br>report*[Title/Abstract]) OR (systematic*[Title/Abstract] AND review*[Title/Abstract])) OR<br>(systematic*[Title/Abstract] AND overview*[Title/Abstract])) OR meta-analy*[Title/Abstract])                                                                                                                                                                                                                                                                                                                                                                                           |

|    | OR (meta[Title/Abstract] AND analyz*[Title/Abstract])) OR (meta[Title/Abstract] AND analys*[Title/Abstract])) OR (meta[Title/Abstract] AND analyt*[Title/Abstract]))) OR (((review*[Title/Abstract]) OR overview*[Title/Abstract]) AND ((evidence[Title/Abstract])))))<br>AND based[Title/Abstract]))))) |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37 | (#36) AND ("2010/06/01"[PDAT] : "2016/06/13"[PDAT])                                                                                                                                                                                                                                                      |
|    |                                                                                                                                                                                                                                                                                                          |
| 40 | #39 NOT #34                                                                                                                                                                                                                                                                                              |
| 41 | #39 OR #34                                                                                                                                                                                                                                                                                               |

# Leitlinien in Medline (PubMed) am 05.06.2015 und am 13.06.2016

| # | Suchfrage                                                                                   |
|---|---------------------------------------------------------------------------------------------|
| 1 | Carcinoma, Non-Small-Cell Lung[MeSH]                                                        |
| 2 | (((non[Title/Abstract]) AND small[Title/Abstract]) AND cell[Title/Abstract]) AND            |
|   | lung[Title/Abstract]                                                                        |
| 3 | ((((((tumor*[Title/Abstract]) OR tumour*[Title/Abstract]) OR carcinoma*[Title/Abstract]) OR |
|   | adenocarcinoma*[Title/Abstract]) OR neoplasm*[Title/Abstract]) OR                           |
|   | sarcoma*[Title/Abstract]) OR cancer*[Title/Abstract]                                        |
| 4 | #2 AND #3                                                                                   |
| 5 | #1 OR #4                                                                                    |
| 6 | (#5) AND (Guideline[ptyp] OR Practice Guideline[ptyp] or guideline*[Title] OR Consensus     |
|   | Development Conference[ptyp] OR recommendation*[Title/Abstract])                            |
| 7 | (#6) AND ("2010/06/01"[PDAT] : "2016/06/13"[PDAT])                                          |

## Literatur

- 1. **AI-Saleh K, Quinton C, Ellis PM.** Role of pemetrexed in advanced non-small-cell lung cancer: meta-analysis of randomized controlled trials, with histology subgroup analysis. Curr Oncol 2012;19(1):e9-e15.
- 2. Alberta Provincial Thoracic Tumour Team. Non-small cell lung cancer stage III [online]. Edmonton (CAN): Alberta Health Services (AHS); 2012. [Zugriff: 13.06.2016]. (Clinical practice guideline; Band LU-003). URL: <u>http://www.albertahealthservices.ca/assets/info/hp/cancer/if-hp-cancer-guide-lu003-nlscs-stage3.pdf</u>.
- 3. Alberta Provincial Thoracic Tumour Team. Non-small cell lung cancer stage IV [online]. Edmonton (CAN): Alberta Health Services (AHS); 2013. [Zugriff: 13.06.2016]. (Clinical practice guideline; Band LU-004, vers. 06). URL: <u>http://www.albertahealthservices.ca/assets/info/hp/cancer/if-hp-cancer-guide-lu004-nsclc-stage4.pdf</u>.
- 4. Australian Government Cancer Council Australia. Clinical practice guidelines for the treatment of lung cancer [online]. 04.2015. Sydney (AUS): Cancer Council Australia; 2015. [Zugriff: 13.06.2016]. URL: <a href="http://wiki.cancer.org.au/australiawiki/index.php?title=Guidelines:Lung\_cancer/Treatment">http://wiki.cancer.org.au/australiawiki/index.php?title=Guidelines:Lung\_cancer/Treatment</a> /Non small-cell/Summary of recommendations&printable=yes.
- 5. **Azzoli CG, Temin S, Aliff T, Baker S, Jr., Brahmer J, Johnson DH, et al.** 2011 Focused Update of 2009 American Society of Clinical Oncology Clinical Practice Guideline Update on Chemotherapy for Stage IV Non-Small-Cell Lung Cancer. J Clin.Oncol. 2011;29(28):3825-3831.
- 6. **Breuer J, Nachtnebel A.** Afatinib (Giotrif) for the treatment of EGFR TKI-na<ve adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with activating EGFR mutation(s) [online]. Wien (AUT): Ludwig Boltzmann Institut für Health Technology Assessment (LBIHTA); 2013. [Zugriff: 13.06..2016]. (DSD Horizon Scanning in Oncology; Band 41). URL: http://eprints.hta.lbg.ac.at/1020/1/DSD\_HSO\_Nr.41.pdf
- 7. Brodowicz T, Ciuleanu T, Crawford J, Filipits M, Fischer JR, Georgoulias V, et al. Third CECOG consensus on the systemic treatment of non-small-cell lung cancer. Ann Oncol 2012;23(5):1223-1229.
- 8. **Brown T, Pilkington G, Boland A, Oyee J, Tudur Smith C, Dundar Y, et al.** Clinical effectiveness of first-line chemoradiation for adult patients with locally advanced non-small cell lung cancer: a systematic review. Health Technol Assess 2013;17(6):1-99.
- 9. **Burotto M, Manasanch EE, Wilkerson J, Fojo T.** Gefitinib and erlotinib in metastatic non-small cell lung cancer: a meta-analysis of toxicity and efficacy of randomized clinical trials. Oncologist 2015;20(4):400-410.
- 10. **Chen P, Wang L, Liu B, Zhang HZ, Liu HC, Zou Z.** EGFR-targeted therapies combined with chemotherapy for treating advanced non-small-cell lung cancer: a meta-analysis. Eur J Clin Pharmacol 2011;67(3):235-243.
- 11. **Cui J, Cai X, Zhu M, Liu T, Zhao N.** The efficacy of bevacizumab compared with other targeted drugs for patients with advanced NSCLC: a meta-analysis from 30 randomized controlled clinical trials. PLoS One 2013;8(4):e62038.
- 12. **de Castria TB, Mk dSE, Gois AF, Riera R.** Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database of Systematic Reviews [online]. 2013; (8):Cd009256. URL: <u>http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD009256.pub2/abstract;</u> <u>http://onlinelibrary.wiley.com/store/10.1002/14651858.CD009256.pub2/asset/CD009256.pdf?v=1&t=ips5msni&s=832a39b468bfa149b6875395b515db6d8396b761</u>.
- 13. **de Marinis F, Rossi A, Di Maio M, Ricciardi S, Gridelli C.** Treatment of advanced nonsmall-cell lung cancer: Italian Association of Thoracic Oncology (AIOT) clinical practice guidelines. Lung Cancer 2011;73(1):1-10.

 Ellis PM, Coakley N, Feld R, Kuruvilla S, Ung YC, Group LDS. Use of the Epidermal Growth Factor Receptor Inhibitors Gefitinib (Iressa), Erlotinib (Tarceva), Afatinib, Dacomitinib or Icotinib in the treatment of Non-Small-Cell Lung Cancer: A Clinical Practice Guideline [online]. 7-9, Vers. 2. Toronto (CAN): Cancer Care Ontario (CCO); 2014. [Zugriff: 13.06.2016]. (Evidence-Based Series. URL: https://www.cancercare.on.ca/common/pages/UsorFile.aspx2fileId=24252

https://www.cancercare.on.ca/common/pages/UserFile.aspx?fileId=34353.

- 15. **Ganguli A, Wiegand P, Gao X, Carter JA, Botteman MF, Ray S.** The impact of second-line agents on patients' health-related quality of life in the treatment for non-small cell lung cancer: a systematic review. Qual Life Res 2013;22(5):1015-1026.
- 16. **Gao G, Ren S, Li A, Xu J, Xu Q, Su C, et al.** Epidermal growth factor receptor-tyrosine kinase inhibitor therapy is effective as first-line treatment of advanced non-small-cell lung cancer with mutated EGFR: A meta-analysis from six phase III randomized controlled trials. Int J Cancer 2012;131(5):E822-829.
- 17. Gao H, Ding X, Wei D, Cheng P, Su X, Liu H, et al. Efficacy of erlotinib in patients with advanced non-small cell lung cancer: a pooled analysis of randomized trials. Anticancer Drugs 2011;22(9):842-852.
- Gemeinsamer Bundesausschuss (G-BA). Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage VI - Off-Label-Use, Teil A, Ziffer III: Carboplatin-haltige Arzneimittel bei fortgeschrittenem nicht-kleinzelligem Bronchialkarzinom (NSCLC) - Kombinationstherapie, Zustimmung eines pharmazeutischen Unternehmers vom 17. Juli 2014 [online]. Berlin (GER): G-BA; 2014. [Zugriff: 13.06.2016]. URL: <u>https://www.g-ba.de/downloads/39-261-2035/2014-07-17\_AM-RL-VI\_Carboplatin-haltige%20AM\_BAnz.pdf</u>.
- Gemeinsamer Bundesausschuss (G-BA). Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII

   Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V – Crizotinib (neues Anwendungsgebiet) vom 16.06.2016 [online]. Berlin (GER): G-BA; 2016. [Zugriff: 13.06.2016]. URL: <u>https://www.g-ba.de/downloads/39-261-2491/2016-02-04\_AM-RL-XII\_Nivolumab\_2015-07-15-D-184\_BAnz.pdf</u>.
- Gemeinsamer Bundesausschuss (G-BA). Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V – Nivolumab (neues Anwendungsgebiet) vom 04.02.2016 [online]. Berlin (GER): CrizotinibG-BA; 2016. [Zugriff: 13.06.2016]. URL: <u>https://www.gba.de/downloads/39-261-2491/2016-02-04\_AM-RL-XII\_Nivolumab\_2015-07-15-D-184\_BAnz.pdf</u>.
- 21. **Gemeinsamer Bundesausschuss (G-BA).** Beschluss über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V - Afatinib vom 5. November 2015 [online]. Berlin (GER): G-BA; 2015. [Zugriff: 13.06.2016]. URL: <u>https://www.gba.de/downloads/39-261-2375/2015-11-05\_AM-TL-XII\_Afatinib\_2015-05-15-D-163.pdf</u>.
- Gemeinsamer Bundesausschuss (G-BA). Beschluss über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V - Crizotinib vom 2. Mai 2013 [online]. Berlin (GER): G-BA; 2013. [Zugriff: 13.06.2016]. URL: <u>http://www.gba.de/downloads/39-261-1704/2013-05-02\_AM-RL-XII\_Crizotinib\_BAnz.pdf</u>.
- Gemeinsamer Bundesausschuss (G-BA). Beschluss über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V - Nintedanib vom 03.09.2015 [online]. Berlin (GER): G-BA; 2015. [Zugriff: 13.06.2016]. URL: <u>https://www.gba.de/downloads/39-261-2262/2015-06-18\_AM-RL-XII\_Nintedanib\_2015-01-01-D-147\_BAnz.pdf</u>
- 24. **Gemeinsamer Bundesausschuss (G-BA).** Protonentherapie beim Nichtkleinzelligen Lungenkarzinom (NSCLC). Abschlussbericht. Beratungsverfahren nach § 137c SGB V (Krankenhausbehandlung) vom 13. Januar 2011 [online]. Berlin (GER): G-BA; 2011.

[Zugriff: 13.06.2016]. URL: <u>http://www.g-ba.de/downloads/40-268-1527/2010-10-21\_RL-KH\_QS-Ma%C3%9Fnahmen\_Protonen\_NSCLC\_ZD.pdf</u>.

- 25. **Greenhalgh J, Bagust A, Boland A, Dwan K, Beale S, Hockenhull J, et al.** Erlotinib and gefitinib for treating non-small cell lung cancer that has progressed following prior chemotherapy (review of NICE technology appraisals 162 and 175): a systematic review and economic evaluation. Health Technol Assess 2015;19(47):1-134.
- 26. **Guetz GD, Landre T, Uzzan B, Chouahnia K, Nicolas P, Morere JF.** Is There a Survival Benefit of First-Line Epidermal Growth Factor Receptor Tyrosine-Kinase Inhibitor Monotherapy Versus Chemotherapy in Patients with Advanced Non-Small-Cell Lung Cancer?: A Meta-Analysis. Target Oncol 2016;11(1):41-47.
- 27. Haspinger ER, Agustoni F, Torri V, Gelsomino F, Platania M, Zilembo N, et al. Is there evidence for different effects among EGFR-TKIs? Systematic review and metaanalysis of EGFR tyrosine kinase inhibitors (TKIs) versus chemotherapy as first-line treatment for patients harboring EGFR mutations. Crit Rev Oncol Hematol 2015;94(2):213-227.
- 28. **He X, Wang J, Li Y.** Efficacy and safety of docetaxel for advanced non-small-cell lung cancer: a meta-analysis of Phase III randomized controlled trials. Onco Targets Ther 2015;8:2023-2031.
- 29. **Jiang J, Huang L, Liang X, Zhou X, Huang R, Chu Z, et al.** Gefitinib versus docetaxel in previously treated advanced non-small-cell lung cancer: a meta-analysis of randomized controlled trials. Acta Oncol 2011;50(4):582-588.
- 30. **Jiang J, Liang X, Zhou X, Huang R, Chu Z, Zhan Q.** Non-platinum doublets were as effective as platinum-based doublets for chemotherapy-naive advanced non-small-cell lung cancer in the era of third-generation agents. J Cancer Res Clin Oncol 2013;139(1):25-38.
- 31. **Jiang J, Liang X, Zhou X, Huang R, Chu Z, Zhan Q.** Paclitaxel plus platinum or gemcitabine plus platinum in first-line treatment of advanced non-small-cell lung cancer: results from 6 randomized controlled trials. Int J Clin Oncol 2013;18(6):1005-1013.
- 32. Lee JK, Hahn S, Kim DW, Suh KJ, Keam B, Kim TM, et al. Epidermal growth factor receptor tyrosine kinase inhibitors vs conventional chemotherapy in non-small cell lung cancer harboring wild-type epidermal growth factor receptor: a meta-analysis. JAMA 2014;311(14):1430-1437.
- 33. Li G, Gao S, Sheng Z, Li B. The Efficacy of Single-Agent Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy in Biologically Selected Patients with Non-Small-Cell Lung Cancer: A Meta-Analysis of 19 Randomized Controlled Trials. Chemotherapy 2016;61(4):179-189.
- 34. Li M, Zhang Q, Fu P, Li P, Peng A, Zhang G, et al. Pemetrexed plus platinum as the first-line treatment option for advanced non-small cell lung cancer: a meta-analysis of randomized controlled trials. PLoS One 2012;7(5):e37229.
- 35. **Luo L, Hu Q, Jiang JX, Yang X, Dinglin XX, Lin X, et al.** Comparing single-agent with doublet chemotherapy in first-line treatment of advanced non-small cell lung cancer with performance status 2: a meta-analysis. Asia Pac J Clin Oncol 2015;11(3):253-261.
- 36. **Masters GA, Temin S, Azzoli CG, Giaccone G, Baker S, Jr., Brahmer JR, et al.** Systemic Therapy for Stage IV Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 2015;33(30):3488-3515.
- 37. Mörth C, Valachis A. Single-agent versus combination chemotherapy as first-line treatment for patients with advanced non-small cell lung cancer and performance status 2: a literature-based meta-analysis of randomized studies. Lung Cancer 2014;84(3):209-214.
- 38. **National Comprehensive Cancer Network.** Non-Small Cell Lung Cancer [online]. 04.2016. Fort Washington (USA): NCCN; 2016. [Zugriff: 13.06.2016]. URL: <u>http://www.nccn.org/professionals/physician\_gls/pdf/nscl.pdf</u>
- 39. **National Institute for Health and Care Excellence (NICE).** Afatinib for treating epidermal growth factor receptor mutation-positive locally advanced or metastatic non-

small-cell lung cancer [online]. London (GBR): NICE; 2014. [Zugriff: 13.06.2016]. (NICE technology appraisal guidance Band 310). URL: <u>http://www.nice.org.uk/guidance/ta310</u>

- 40. **National Institute for Health and Care Excellence (NICE).** Crizotinib for previously treated non- small-cell lung cancer associated with an anaplastic lymphoma kinase fusion gene [online]. London (GBR): NICE; 2013. [Zugriff: 13.06.2016]. (NICE technology appraisal guidance.; Band 296). URL: http://www.nice.org.uk/guidance/ta296.
- 41. **National Institute for Health and Care Excellence (NICE).** The diagnosis and treatment of lung cancer [online]. London (GBR): NICE; 2011. [Zugriff: 13.06.2016]. (Clinical Guidelines; Band 121). URL: <u>http://www.nice.org.uk/guidance/cg121</u>.
- 42. **National Institute for Health and Care Excellence (NICE).** Erlotinib for the first-line treatment of locally advanced or metastatic EGFR-TK mutation-positive non-small-cell lung cancer [online]. London (GBR): NICE; 2012. [Zugriff: 13.06.2016]. (NICE technology appraisal guidance Band 258). URL: https://www.nice.org.uk/guidance/ta258.
- 43. **National Institute for Health and Care Excellence (NICE).** Gefitinib for the first-line treatment of locally advanced or metastatic non-small-cell lung cancer [online]. London (GBR): NICE; 2010. [Zugriff: 07.07.2016]. (NICE technology appraisal guidance Band TA192). URL: <u>http://www.nice.org.uk/guidance/ta192</u>.
- 44. **OuYang PY, Su Z, Mao YP, Deng W, Xie FY.** Combination of EGFR-TKIs and chemotherapy as first-line therapy for advanced NSCLC: a meta-analysis. PLoS One 2013;8(11):e79000.
- 45. Perez-Moreno MA, Galvan-Banqueri M, Flores-Moreno S, Villalba-Moreno A, Cotrina-Luque J, Bautista-Paloma FJ. Systematic review of efficacy and safety of pemetrexed in non-small-cell-lung cancer. Int J Clin Pharm 2014;36(3):476-487.
- 46. **Petrelli F, Coinu A, Cabiddu M, Borgonovo K, Ghilardi M, Lonati V, et al.** Efficacy of fourth-line chemotherapy in advanced non-small-cell lung cancer: a systematic review and pooled analysis of published studies. Anticancer Drugs 2015;26(8):807-812.
- 47. **Pilkington G, Boland A, Brown T, Oyee J, Bagust A, Dickson R.** A systematic review of the clinical effectiveness of first-line chemotherapy for adult patients with locally advanced or metastatic non-small cell lung cancer. Thorax 2015;70(4):359-367.
- 48. **Popat S, Mellemgaard A, Fahrbach K, Martin A, Rizzo M, Kaiser R, et al.** Nintedanib plus docetaxel as second-line therapy in patients with non-small-cell lung cancer: a network meta-analysis. Future Oncol 2015;11(3):409-420.
- 49. **Qi WX, Fu S, Zhang Q, Guo XM.** Anti-epidermal-growth-factor-receptor agents and complete responses in the treatment of advanced non-small-cell lung cancer: a meta-analysis of 17 phase III randomized controlled trials. Curr Med Res Opin 2015;31(1):25-33.
- 50. Qi WX, Tang LN, He AN, Shen Z, Lin F, Yao Y. Doublet versus single cytotoxic agent as first-line treatment for elderly patients with advanced non-small-cell lung cancer: a systematic review and meta-analysis. Lung 2012;190(5):477-485.
- 51. Qi WX, Tang LN, He AN, Yao Y, Shen Z. Incidence and risk of treatment-related mortality in cancer patients treated with EGFR-TKIs: a meta-analysis of 22 phase III randomized controlled trials. Respir Med 2013;107(8):1280-1283.
- 52. Scottish Intercollegiate Guidelines Network (SIGN). Management of lung cancer. A national clinical guideline [online]. 02.2014. Edinburgh (GBR): SIGN; 2014. [Zugriff: 13.06.2016]. (SIGN publication; Band 137). URL: <a href="http://www.sign.ac.uk/pdf/SIGN137.pdf">http://www.sign.ac.uk/pdf/SIGN137.pdf</a>.
- 53. **Semlitsch T, Jeitler K.** Crizotinib (Xalkori) for the treatment of anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC) [online]. Wien (AUT): Ludwig Boltzmann Institut für Health Technology Assessment (LBIHTA); 2013. [Zugriff: 13.06.2016]. (DSD: Horizon Scanning in Oncology; Band 35). URL: <a href="http://eprints.hta.lbg.ac.at/993/1/DSD\_HSO\_Nr.35\_Revised.pdf">http://eprints.hta.lbg.ac.at/993/1/DSD\_HSO\_Nr.35\_Revised.pdf</a>.
- 54. Sheng J, Yang Y, Ma Y, Yang B, Zhang Y, Kang S, et al. The efficacy of combining antiangiogenic agents with chemotherapy for patients with advanced non-small cell lung

cancer who failed first-line chemotherapy: a systematic review and meta-analysis. PLoS One 2015;10(6):e0127306.

- 55. **Sheng J, Yang YP, Zhao YY, Qin T, Hu ZH, Zhou T, et al.** The Efficacy of Combining EGFR Monoclonal Antibody With Chemotherapy for Patients With Advanced Nonsmall Cell Lung Cancer: A Meta-Analysis From 9 Randomized Controlled Trials. Medicine (Baltimore) 2015;94(34):e1400.
- 56. **Sheng Z, Zhang Y.** The Efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer Harboring Wild-type Epidermal Growth Factor Receptor: A Meta-analysis of 25 RCTs. Am J Clin Oncol 2015.
- 57. **Sheng Z, Zhang Y.** EGFR-TKIs combined with chemotherapy versus EGFR-TKIs single agent as first-line treatment for molecularly selected patients with non-small cell lung cancer. Med Oncol 2015;32(1):420.
- 58. **Shi L, Tang J, Tong L, Liu Z.** Risk of interstitial lung disease with gefitinib and erlotinib in advanced non-small cell lung cancer: a systematic review and meta-analysis of clinical trials. Lung Cancer 2014;83(2):231-239.
- 59. Socinski MA, Evans T, Gettinger S, Hensing TA, Sequist LV, Ireland B, et al. Treatment of stage IV non-small cell lung cancer: Diagnosis and management of lung cancer. 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143(5 Suppl):e341S-e368S.
- 60. **Vale CL, Burdett S, Fisher DJ, Navani N, Parmar MK, Copas AJ, et al.** Should Tyrosine Kinase Inhibitors Be Considered for Advanced Non-Small-Cell Lung Cancer Patients With Wild Type EGFR? Two Systematic Reviews and Meta-Analyses of Randomized Trials. Clin Lung Cancer 2015;16(3):173-182 e174.
- 61. **Wang F, Wang LD, Li B, Sheng ZX.** Gefitinib compared with systemic chemotherapy as first-line treatment for chemotherapy-naive patients with advanced non-small cell lung cancer: a meta-analysis of randomised controlled trials. Clin Oncol (R Coll Radiol) 2012;24(6):396-401.
- 62. Wauters I, Robays J, Verleye L, Holdt Henningsen K, Hulstaert F, Berghmans T, et al. Non-small cell and small cell lung cancer: diagnosis, treatment and follow-up [online]. Brüssel (BEL): Belgian Health Care Knowledge Centre; 2013. [Zugriff: 13.06.2016]. (KCE Report; Band 206). URL:

https://kce.fgov.be/sites/default/files/page\_documents/KCE\_206\_lung\_cancer.pdf.

- 63. Xu JL, Jin B, Ren ZH, Lou YQ, Zhou ZR, Yang QZ, et al. Chemotherapy plus Erlotinib versus Chemotherapy Alone for Treating Advanced Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS One 2015;10(7):e0131278.
- 64. Yang XQ, Li CY, Xu MF, Zhao H, Wang D. Comparison of first-line chemotherapy based on irinotecan or other drugs to treat non-small cell lung cancer in stage IIIB/IV: a systematic review and meta-analysis. BMC Cancer 2015;15:949.
- 65. **Zhang X, Lu J, Xu J, Li H, Wang J, Qin Y, et al.** Pemetrexed plus platinum or gemcitabine plus platinum for advanced non-small cell lung cancer: final survival analysis from a multicentre randomized phase II trial in the East Asia region and a ometa-analysis. Respirology 2013;18(1):131-139.
- 66. **Zhao N, Zhang XC, Yan HH, Yang JJ, Wu YL.** Efficacy of epidermal growth factor receptor inhibitors versus chemotherapy as second-line treatment in advanced non-small-cell lung cancer with wild-type EGFR: a meta-analysis of randomized controlled clinical trials. Lung Cancer 2014;85(1):66-73.
- 67. **Zhong A, Xiong X, Shi M, Xu H.** The efficacy and safety of pemetrexed-based doublet therapy compared to pemetrexed alone for the second-line treatment of advanced non-small-cell lung cancer: an updated meta-analysis. Drug Des Devel Ther 2015;9:3685-3693.
- 68. **Zhou H, Zeng C, Wang LY, Xie H, Zhou J, Diao P, et al.** Chemotherapy with or without gefitinib in patients with advanced non-small-cell lung cancer: a meta-analysis of 6,844 patients. Chin Med J (Engl) 2013;126(17):3348-3355.
- 69. **Zhou JG, Tian X, Wang X, Tian JH, Wang Y, Wang F, et al.** Treatment on advanced NSCLC: platinum-based chemotherapy plus erlotinib or platinum-based chemotherapy

alone? A systematic review and meta-analysis of randomised controlled trials. Med Oncol 2015;32(2):471.

### Anhang:



#### Abbildung 1: aus NCCN 2015

SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE (1 OF 3)

- ADVANCED DISEASE:
- The drug regimen with the highest likelihood of benefit with toxicity deemed acceptable to both the physician and the patient should be given as initial therapy for advanced lung cancer.
- Stage, weight loss, performance status, and gender predict survival.
- Platinum-based chemotherapy prolongs survival, improves symptom control, and yields superior quality of life compared to best supportive care.
- · Histology of NSCLC is important in the selection of systemic therapy.
- New agent/platinum combinations have generated a plateau in overall response rate (≈ 25%–35%), time to progression (4–6 mo), median survival (8–10 mo), 1-year survival rate (30%–40%), and 2-year survival rate (10%–15%) in fit patients.
- Unfit patients of any age (performance status 3-4) do not benefit from cytotoxic treatment, except erlotinib for EGFR mutation-positive patients.

#### First-line Therapy

- Bevacizumab + chemotherapy or chemotherapy alone is indicated in PS 0-1 patients with advanced or recurrent NSCLC. Bevacizumab should be given until disease progression.
- Erlotinib is recommended as a first-line therapy in patients with sensitizing EGFR mutations and should not be given as first-line therapy to patients negative for these EGFR mutations or with unknown EGFR status.
- Afatinib is indicated for patients with sensitizing EGFR mutations.
- Crizotinib is indicated for patients with ALK rearrangements.
- There is superior efficacy and reduced toxicity for cisplatin/pemetrexed in patients with nonsquamous histology, in comparison to cisplatin/gemcitabine.
- There is superior efficacy for cisplatin/gemcitabine in patients with squamous histology, in comparison to cisplatin/pemetrexed.
- Two drug regimens are preferred; a third cytotoxic drug increases response rate but not survival. Single-agent therapy may be appropriate in select patients.
- Cisplatin or carboplatin have been proven effective in combination with any of the following agents: paclitaxel, docetaxel, gemcitabine,
- etoposide, vinblastine, vinorelbine, pemetrexed, or albumin-bound paclitaxel. • New agent/non-platinum combinations are reasonable alternatives if available data show activity and tolerable toxicity (eg,
- gemcitabine/docetaxel, gemcitabine/vinorelbine).
- Response assessment after 1-2 cycles, then every 2-4 cycles.

### Abbildung 2: aus NCCN 2015

#### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE (2 OF 3)

#### Maintenance Therapy

Continuation maintenance refers to the use of at least one of the agents given in first line, beyond 4–6 cycles, in the absence of disease progression. Switch maintenance refers to the initiation of a different agent, not included as part of the first-line regimen, in the absence of disease progression, after 4–6 cycles of initial therapy. • Continuation Maintenance: Bevacizumab given in combination with chemotherapy should be continued until evidence of disease

- progression or unacceptable toxicity, as per the design of the clinical trials supporting their use.
- Continuation of bevacizumab after 4–6 cycles of platinum-doublet chemotherapy and bevacizumab (category 1).
   Continuation of pemetrexed after 4–6 cycles of cisplatin and pemetrexed chemotherapy, for patients with histologies other than squamous cell carcinoma (category 1).
- Continuation of bevacizumab + pemetrexed after 4 to 6 cycles of bevacizumab, pemetrexed, cisplatin/carboplatin, for patients with histologies other than squamous cell carcinoma.
- Continuation of gemcitabine after 4–6 cycles of platinum-doublet chemotherapy (category 2B).
- Switch Maintenance: Two studies have shown a benefit in progression-free and overall survival with the initiation of pemetrexed or erlotinib
- after first-line chemotherapy, in patients without disease progression after 4-6 cycles of therapy. > Initiation of pemetrexed after 4-6 cycles of first-line platinum-doublet chemotherapy, for patients with histologies other than squamous cell
- carcinoma (category 2B). Initiation of erlotinib after 4–6 cycles of first-line platinum-doublet chemotherapy (category 2B).
- > Initiation of docetaxel after 4-6 cycles of first-line platinum-doublet chemotherapy in patients with squamous cell carcinoma (category 2B). Close surveillance of patients without therapy is a reasonable alternative to maintenance.
- Subsequent Therapy

• In patients who have experienced disease progression either during or after first-line therapy, the following are established second-line agents.

- Nivolumab improves survival when compared with docetaxel.
- Docetaxel is superior to vinorelbine or ifosfamide.
- > Pemetrexed is considered equivalent to docetaxel with less toxicity in patients with adenocarcinoma and large cell carcinoma. Ramucirumab + docetaxel improves survival when compared to docetaxel alone.
- Erlotinib is superior to best supportive care.
- Afatinib is indicated for patients with sensitizing EGFR mutations.

> Ceritinib is indicated for patients with ALK rearrangements who have disease progression on or are intolerant to crizotinib.

- Continuation After Disease Progression With the exception of targeted agents (erlotinib, gefitinib, afatinib, crizotinib, ceritinib) in patients with EGFR-sensitizing mutations or ALK has been documented except in selected situations. (refer to discussion section)

### Abbildung 3: aus NCCN 2015

### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE (3 OF 3) Agents listed below are used in the treatment of patients with NSCLC. Most are used in combination, while others are used as monotherapy (eg, maintenance or second-line/subsequent therapy).

- Cisplatin<sup>1-9</sup>
- Carboplatin<sup>4,6-11</sup>
- Paclitaxel<sup>1,4,6,8-11</sup>
- Docetaxel<sup>5,7,8,12,13</sup>
- Vinorelbine<sup>7,9,10</sup>
- Gemcitabine<sup>3,5,6,8,9,13</sup>
- Ifosfamide<sup>12</sup> Pemetrexed<sup>14,15</sup>

Mitomycin

- <sup>1</sup>Bonomi P. Kim K. Fairclough D. et al. Comparison of survival and guality of life in advanced non-small cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin:results of an Eastern Cooperative Oncology Group trial. J Clin Oncol 2000:18:623-631.
- <sup>2</sup>Wozniak AJ, Crowley JJ, Balcerzak SP, et al. Randomized trial comparing cisplatin with cisplatin plus vinorelbine in the treatment of advanced non-small cell lung cancer. A Southwest Oncology Group Study. J Clin Oncol 1998;16:2459-2465.
- <sup>3</sup>Cardénal F, Lopez-Cabrerizo MP, Anton A, et al. Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small cell lung cancer. J Clin Oncol 1999:17:12-18.
- <sup>4</sup>Belani CP, Lee JS, Socinski MA, et al. Randomized phase III trial comparing cisplatin-etoposide to carboplatin-paclitaxel in advanced or metastatic non-small cell lung cancer. Ann Oncol 2005;16:1069-1075.
- <sup>5</sup>Sandler AB, Nemunaitis J, Denham C, et al. Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small cell lung cancer. J Clin Oncol 2000:18:122-130.
- <sup>6</sup>Smit EF, van Meerbeeck JP, Lianes P, et al. Three-arm randomized study of two cisplatin-based regimens and paclitaxel plus gemcitabine in advanced non-small-cell lung cancer; a phase III trial of the European Organization for Research and Treatment of Cancer Lung Cancer Group-EORTC 08975. J Clin Oncol 2003;21:3909-3917.
- <sup>7</sup>Fossella F, Periera JR, von Pawel J, et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group, J Clin Oncol 2003;21(16);3016-3024.
- <sup>8</sup>Schiller JH. Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small cell lung cancer. N Engl J Med 2002;346:92-98.
- <sup>9</sup>Ohe Y. Ohashi Y. Kubota K, et al. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced nonsmall-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann Oncol 2007;18:317-323.
- <sup>10</sup>Kellv K, Crowley J, Bunn PA, et al. Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small cell lung cancer: A Southwest Oncology Group trial. J Clin Oncol 2001;19:3210-3218.
- <sup>11</sup>Belani CP, Ramalingam S, Perry MC, et al. Randomized, phase III study of weekly paclitaxel in combination with carboplatin versus standard every-3-weeks administration of carboplatin and paclitaxel for patients with previously untreated advanced non-small-cell lung cancer. J Clin Oncol 2008;26:468-473. <sup>12</sup>Fossella FV, DeVore R, Kerr RN, et al. Randomized phase III trial of docetaxel versus vinorelbine
- or ifosfamide in patients with advanced non-small cell lung cancer previously treated with platinumcontaining chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol 2000:18:2354-2362.
- <sup>13</sup>Pujol JL, Breton JL, Gervais R, et al. Gemcitabine-docetaxel versus cisplatin-vinorelbine in advanced or metastatic non-small-cell lung cancer, a phase III study addressing the case for cisplatin. Ann Oncol 2005:16:602-610.

#### Abbildung 4: aus NCCN 2015

- Erlotinib<sup>16</sup> Bevacizumab<sup>17</sup>
  - Albumin-bound paclitaxel<sup>18-20</sup>
     †
- Crizotinib<sup>21</sup>
- Afatinib<sup>22</sup>
- Ceritinib<sup>23</sup>

<sup>14</sup>Hanna NH, Sheperd FA, Fossella FV, et al. Randomized phase III study of pemetrexed versus docetaxel in patients with non-small cell lung cancer previously treated with chemotherapy. J Clin Oncol 2004;22:1589-1597.

15 Scaoliotti GV. Parikh P. von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage NSCLC. J Clin Oncol 2008;26:3543-3551. <sup>16</sup>Shepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer.

• Ramucirumab<sup>24</sup>

Nivolumab<sup>25,26</sup>

N Engl J Med 2005;353:123-32. <sup>17</sup>Sandler AB, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small cell

Jung cancer. N Engl J Med 2006;355:2542-2550. <sup>18</sup>Green M, Manikhas G, Orlov S, et al. Abraxane®, a novel Cremophor® -free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 2006;17:1263-

1268. <sup>19</sup>Rizvi N, Riely G, Azzoli, C, et al. Phase I/II Trial of Weekly Intravenous 130-nm Albumin-Bound Rizvi N, Riely G, Azzoli, C, et al. Phase I/II Trial of Weekly Intravenous 130-nm Albumin-Bound Paclitaxel As Initial Chemotherapy in Patients With Stage IV Non-Small-Cell Lung Cancer, J Clin

Oncol 2008;26:639-643. <sup>20</sup>Socinski MA, Bondarenko I, Karaseva NA, et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small cell lung cancer. final results of a phase III trial. J Clin Oncol 2012:30:2055-2062.

<sup>21</sup>Shaw AT, Yeap BY, Solomon BJ, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 2011;12:1004-1012. <sup>22</sup>Seguist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in

patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013;31:3327-3334. <sup>23</sup>Shaw AT, Kim D-W, Mehra R, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 2014:370:1189-1197.

<sup>24</sup>Garon EB, CiuleanuTE, Arrieta O, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL); a multicentre, double-blind, randomised phase 3 trial, Lancet 2014;384:665-673. <sup>25</sup>Brahmer J. Reckamp KL. Baas P. et al. Nivolumab versus docetaxel in advanced squamous-cell

non-small-cell lung cancer. N Engl J Med. 2015 May 31. [Epub ahead of print] <sup>26</sup>Paz-Ares L, Horn L, Borghaei H, et al. Phase III, randomized trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol 2015;33(suppl): Abstract LBA109.

Albumin-bound pacitaxel may be substituted for either pacitaxel or docetaxel in patients who have experienced hypersensitivity reactions after receiving paclitaxel or docetaxel despite premedication. or for patients where the standard premedications (ie. dexamethasone, H2 blockers, H1 blockers) are contraindicated.

 Etoposide<sup>4</sup> Irinotecan<sup>9</sup> Vinblastine



#### <sup>a</sup>See Principles of Pathologic Review (NSCL-A).

<sup>c</sup>Temel JS, Greer JA, Muzikansky A, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 2010;363:733-742.

hhThe NCCN NSCLC Guidelines Panel strongly endorses broader molecular profiling with the goal of identifying rare driver mutations for which effective drugs may already be available, or to appropriately counsel patients regarding the availability of clinical trials. Broad molecular profiling is a key component of the improvement of care of patients with NSCLC. <u>See Emerging Targeted Agents for Patients With Genetic Alterations (NSCL-H)</u>.

<sup>ii</sup>In patients with squamous cell carcinoma, the observed incidence of *EGFR* mutations is 2.7% with a confidence that the true incidence of mutations is less than 3.6%. This frequency of *EGFR* mutations does not justify routine testing of all tumor specimens. Forbes SA, Bharma G, Bamford S, et al. The catalogue of somatic mutations in cancer (COSMIS). Curr Protoc Hum Genet 2008;chapter 10:unit 10.11.

<sup>jj</sup>Paik PK, Varghese AM, Sima CS, et al. Response to erlotinib in patients with EGFR mutant advanced non-small cell lung cancers with a squamous or squamous-like component. Mol Cancer Ther 2012;11:2535-2540.

kkConsider ROS1 testing; if positive, may treat with crizotinib. Shaw AT, Ou S-HI, Bang Y-J, et al. Crizotinib in ROS1-rearranged non-small cell lung cancer. N Engl J Med 2014;371:1963-1971.

Abbildung 5: aus NCCN 2015 (Anmerkung FB Med: NSCL-17, -18, -19 verweisen wieder auf die Abbildungen 2 bis 4)

SQUAMOUS CELL CARCINOMAVV



#### eeSee Systemic Therapy for Advanced or Metastatic Disease (NSCL-F).

mmIn areas of the world where gefitinib is available, it may be used in place of erlotinib.

<sup>W</sup>Consider additional mutational testing if only EGFR and ALK were performed. <u>See Emerging Targeted Agents for Patients With Genetic Alterations (NSCL-H)</u>.
 <sup>W</sup>Chemotherapy preferred in this setting. Grassino M, Martelli O, Broggini M, et al. Erlotinib versus docetaxel as second lin-line treatment of patients with advanced NSCLC and widi type EGFR tumors (TAILOR): a randomized trial. Lancet Oncol 2013; 14:981-988.

<sup>22</sup>Recommend proteomic testing for patients with NSCLC and wild-type EGFR or with unknown EGFR status. A patient with a "poor" classification should not be offered erlotinib in the second-line setting. Gregorc V, Novello S, Lazzari C, et al. Predictive value of a proteomic signature in patients with non-small-cell lung cancer treated with second-line erlotinib or chemotherapy (PROSE): a biomarker stratified, randomised phase 3 trial. Lancet Oncol 2014; 15:713-21.

bbbErlotinib may be considered for PS 3 and 4 patients with sensitizing EGFR mutations.

dddIf not already given, options for PS 0-2 include erlotinib, nivolumab, docetaxel (category 2B), gemcitabine (category 2B), or ramucirumab + docetaxel (category 2B); options for PS 3-4 include erlotinib or best supportive care. Options for further progression are best supportive care or clinical trial.

Abbildung 6: aus NCCN 2015 (Anmerkung FB Med: Seite NSCL-20 der Leitlinie)



|                                                             | -                                                                                                                          |                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                    |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grade of Recommendation                                     | Benefit vs Risk<br>and Burdens                                                                                             | Methodologic Strength of<br>Supporting Evidence                                                                                                                                                            | Implications                                                                                                                                                                                                                         |
| Strong recommendation,<br>high-quality<br>evidence (1A)     | Benefits clearly outweigh<br>risk and burdens or<br>vice versa                                                             | Consistent evidence from randomized<br>controlled trials without important<br>limitations or exceptionally strong<br>evidence from observational studies                                                   | Recommendation can apply to most<br>patients in most circumstances. Further<br>research is very unlikely to change our<br>confidence in the estimate of effect.                                                                      |
| Strong recommendation,<br>moderate-quality<br>evidence (1B) | Benefits clearly outweigh<br>risk and burdens or<br>vice versa                                                             | Evidence from randomized controlled<br>trials with important limitations<br>(inconsistent results, methodologic<br>flaws, indirect or imprecise), or<br>very strong evidence from<br>observational studies | Recommendation can apply to most<br>patients in most circumstances.<br>Higher-quality research may well<br>have an important impact on our<br>confidence in the estimate of effect<br>and may change the estimate.                   |
| Strong recommendation,<br>low-quality<br>evidence (1C)      | Benefits clearly outweigh<br>risk and burdens or<br>vice versa                                                             | Evidence for at least one critical outcome<br>from observational studies, case series,<br>or from randomized controlled trials<br>with serious flaws or indirect evidence                                  | Recommendation can apply to most<br>patients in many circumstances.<br>Higher-quality research is likely to<br>have an important impact on our<br>confidence in the estimate of effect<br>and may well change the estimate.          |
| Weak recommendation,<br>high-quality<br>evidence (2A)       | Benefits closely balanced<br>with risks and burden                                                                         | Consistent evidence from randomized<br>controlled trials without important<br>limitations or exceptionally strong<br>evidence from observational studies                                                   | The best action may differ depending<br>on circumstances or patients' or<br>societal values. Further research is<br>very unlikely to change our confidence<br>in the estimate of effect.                                             |
| Weak recommendation,<br>moderate-quality<br>evidence (2B)   | Benefits closely balanced<br>with risks and burden                                                                         | Evidence from randomized controlled<br>trials with important limitations<br>(inconsistent results, methodologic<br>flaws, indirect or imprecise), or<br>very strong evidence from<br>observational studies | Best action may differ depending on<br>circumstances or patients' or societal<br>values. Higher-quality research may<br>well have an important impact on our<br>confidence in the estimate of effect and<br>may change the estimate. |
| Weak recommendation,<br>low-quality<br>evidence (2C)        | Uncertainty in the<br>estimates of benefits,<br>risks, and burden;<br>benefits, risk and burden<br>may be closely balanced | Evidence for at least one critical outcome<br>from observational studies, case series,<br>or from randomized controlled trials<br>with serious flaws or indirect evidence                                  | Other alternatives may be equally<br>reasonable. Higher-quality research is<br>likely to have an important impact on<br>our confidence in the estimate of effect<br>and may well change the estimate.                                |

### Table 1—Strength of the Recommendations Grading System

### Abbildung 7: aus Socinski MA et al., 2013.

### Table 1

Level of evidence and strength of recommendation.

| Level of evidence |                                                                                    | Strength of recommendation |
|-------------------|------------------------------------------------------------------------------------|----------------------------|
| la                | Evidence from systematic reviews and meta-analysis of randomized controlled trials | λ                          |
| lb                | Evidence from at least one randomized controlled trial                             |                            |
| lla               | Evidence from at least one controlled study without randomization                  | B                          |
| lib               | Evidence from at least one other type of quasi-experimental study                  |                            |
| 181               | Evidence from observational studies                                                |                            |
| IV                | Evidence from expert committee reports or experts                                  | c                          |

Abbildung 8: aus de Marinis F et al., 2011



ig. 3. Suggested algorithm for second- and third-line treatment of advanced non-small-cell lung cancer (NOS: not otherwise specified; EGFR: epidermal growth factor receptor; WT: wild type; and UNK: unknown).

Abbildung 9: aus de Marinis F et al., 2011.

|                                                                                                                                                  | Table 1. Summary of Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recommendation                                                                                                                                   | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A. First-line chemotherap                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A1<br>A2                                                                                                                                         | Evidence supports use of chemotherapy in patients with stage IV* NSCLC with ECOG/Zubrod performance status of 0, 1, possibly<br>In patients with performance status of 0 or 1, evidence supports using combination of two cytotoxic drugs for first-line therapy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AZ                                                                                                                                               | In patients with performance status of 0 or 1, evidence supports using combination of two cytotoxic drugs for instelline therapy,<br>platinum combinations are preferred over nonplatinum combinations because they are superior in response rate and marginally<br>superior in OS; nonplatinum therapy combinations are reasonable in patients who have contraindications to platinum therapy;<br>recommendations A8 and A9 address whether to add bevacizumab or cetuximab to first-line cytotoxic therapy                                                                                                                                                                                                                                                                                                                                                                          |
| A3                                                                                                                                               | Available data support use of single-agent chemotherapy in patients with performance status of 2; data are insufficient to make<br>recommendation for or against using combination of two cytotoxic drugs in patients with performance status of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A4                                                                                                                                               | Evidence does not support selection of specific first-line chemotherapy drug or combination based on age alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A5                                                                                                                                               | Choice of either cisplatin or carboplatin is acceptable; drugs that may be combined with platinum include third-generation cytotoxic<br>drugs docetaxel, gemcitabline, irinotecan, pacifiaxel, pemetrexed, and vinorelbine; evidence suggests cisplatin combinations resul<br>in higher response rates than carboplatin and may improve survival when combined with third-generation agents; carboplatin is<br>less likely to cause nausea, nephrotoxicity, and neurotoxicity than cisplatin but more likely to cause thrombocytopenia                                                                                                                                                                                                                                                                                                                                                |
| A6                                                                                                                                               | In patients with stage IV NSCLC, first-line cytotoxic chemotherapy should be stopped at disease progression or after four cycles in<br>patients whose disease is <b>stable but</b> not responding to treatment; two-drug cytotoxic combinations should be administered for<br>no more than six cycles; for patients with stable disease or response after four cycles, immediate treatment with<br>alternative, single-agent chemotherapy such as pemetrexed in patients with nonsquamous histology, docetaxel in<br>unselected patients, or erlotinib in unselected patients may be considered; limitations of this data are such that break<br>from cytotoxic chemotherapy after fixed course is also acceptable, with initiation of second-line chemotherapy at<br>disease progression                                                                                             |
| Α7                                                                                                                                               | In unselected patients, erlotinib or gefitinib should not be used in combination with cytotoxic chemotherapy as first-line therapy; in unselected patients, evidence is insufficient to recommend single-agent erlotinib or gefitinib as first-line therapy; first-line use of gefitinib may be recommended for patients with activating <i>EGFR</i> mutations; if <i>EGFR</i> mutation status is negative or unknown, cytotoxic chemotherapy is preferred (see A2)                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A8                                                                                                                                               | On basis of results of one large phase III RCT, update committee recommends addition of bevacizumab (15 mg/kg every 3 weeks) to<br>carboplatin/pacitaxel, except for patients with squamous cell carcinoma histologic type, brain metastases, dinically significant hemoptysis,<br>inadequate organ function, ECOG performance status > 1, therapeutic anticoagulation, dinically significant cardiovascular disease, or medical<br>uncontrolled hypertension; bevacizumab may be continued as tolerated until disease progression                                                                                                                                                                                                                                                                                                                                                    |
| A9                                                                                                                                               | On basis of results of one large phase III RCT, clinicians may consider addition of cetuximab to cisplatin/vinorelbine in first-line<br>therapy in patients with EGFR-positive tumor as measured by immunohistochemistry; cetuximab may be continued as tolerated<br>until disease progression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B. Second-line<br>chernotherapy                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| B1                                                                                                                                               | Docetaxel, erlotinib, gefitinib, or pemetrexed is acceptable as second-line therapy for patients with advanced NSCLC with adequate<br>performance status when disease has progressed during or after first-line platinum-based therapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B2                                                                                                                                               | Evidence does not support selection of specific second-line chemotherapy drug or combination based on age alone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C. Third-line<br>chemotherapy                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C1                                                                                                                                               | When disease progresses on or after second-line chemotherapy, treatment with erlotinib may be recommended as third-line therap<br>for patients with performance status of 0 to 3 who have not received prior erlotinib or gefitinib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C2                                                                                                                                               | Data are not sufficient to make recommendation for or against using cytotoxic drug as third-line therapy; these patients should<br>consider experimental treatment, clinical trials, and best supportive care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D. Molecular analysis                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D1                                                                                                                                               | Evidence is insufficient to recommend routine use of molecular markers† to select systemic treatment in patients with metastatic NSCLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D2                                                                                                                                               | To obtain tissue for more accurate histologic classification or investigational purposes, update committee supports reasonable<br>efforts to obtain more tissue than that contained in routine cytology specimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Abbreviations: ASCO, Ar<br>ion-small-cell lung cancel<br>*As defined by the Interr<br>†In April 2011, ASCO issue<br>ive phase III RCTs, patients | s 2011 focused update changes.<br>merican Society of Clinical Oncology; ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; NSCL(<br>r; OS, overall survival; RCT, randomized clinical trial; TKI, tyrosine kinase inhibitor.<br>national Association for the Study of Lung Cancer Staging Project, for the 7th edition of the TNM Classification of Malignant tumors. <sup>10</sup><br>d a Provisional Clinical Opinion regarding EGFR testing; it will be incorporated into future updates of NSCLC guideline: On the basis of the results or<br>with NSCLC who are being considered for first-line therapy with an EGFR TKI (patients who have not previously received chemotherapy or an EGF<br>tested for <i>EGFR</i> mutations to determine whether an EGFR TKI or chemotherapy is appropriate first-line therapy (http://www.asco.org/pco/egfr). |

# Abbildung 10: aus Azzoli CG et al., 2010.

| Table 1         Trial and Patient Characteristics (Based on All Randomized Patients) |                        |                         |           |                                                   |                                       |                   |               |           |                                 |                                 |                                                                     |                                                             |                                                              |
|--------------------------------------------------------------------------------------|------------------------|-------------------------|-----------|---------------------------------------------------|---------------------------------------|-------------------|---------------|-----------|---------------------------------|---------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Trial                                                                                | Accrual<br>Period      | Patient n               | ткі       | Control                                           | Median<br>Age<br>(Range)              | Sex (%<br>Female) | PS<br>(% 0/1) | Ethnicity | Smoking<br>History (%<br>Never) | Histology (%<br>Adenocarinoma)  | Patients With<br>Known EGFR<br>Status<br>(% of Total<br>Randomized) | EGFR<br>Mutation, n<br>(% of Total<br>With Known<br>Status) | EGFR Wild<br>Type, n (%<br>of Total With<br>Known<br>Status) |
| Trials of Second-<br>Line Treatment                                                  |                        |                         |           |                                                   |                                       |                   |               |           |                                 |                                 |                                                                     |                                                             |                                                              |
| SIGN <sup>26</sup>                                                                   | 2003-2004              | 141                     | Gefitinib | Docetaxel                                         | 61 (29-85)                            | 30                | 67            | Western   | 25                              | Unknown                         | NR                                                                  | NR                                                          | NR                                                           |
| V-15-32 <sup>27</sup>                                                                | 2003-2006              | 489 (387 <sup>°</sup> ) | Gefitinib | Docetaxel                                         | Unknown                               | 38                | 96            | Asian     | 32                              | 78                              | 57 (12)                                                             | 31 (55)                                                     | 26 (45)                                                      |
| Herbst et al <sup>28</sup>                                                           | 2004-2005              | 79                      | Erlotinīb | Docetaxel or<br>pemetrexed<br>with<br>bevacizumab | 65.5 (40-88)                          | 49                | 100           | Western   | 13                              | 78                              | 30 (38)                                                             | 1 (3)                                                       | 29 (97)                                                      |
| INTEREST <sup>29</sup>                                                               | 2004-2006              | 1466 (1316)             | Gefitinib | Docetaxel                                         | 60.5 (20-84)                          | 35                | 88            | Western   | 20                              | 54                              | 267 (18)                                                            | 38 (14)                                                     | 229 (86)                                                     |
| ISTANA <sup>30</sup>                                                                 | 2005-2006              | 161                     | Gefitinib | Docetaxel                                         | 57.5 (20-74)                          | 38                | 93            | Asian     | 41                              | 68                              | NR                                                                  | NR                                                          | NR                                                           |
| Li et al <sup>36</sup>                                                               | 2006-2008              | 98                      | Gefitinib | Docetaxel                                         | Unknown                               | Unknown           | Unknown       | Asian     | Unknown                         | Unknown                         | NR                                                                  | NR                                                          | NR                                                           |
| TITAN <sup>31</sup>                                                                  | 2006-2010              | 424                     | Erlotinib | Docetaxel or<br>pemetrexed                        | 59 (22-79)                            | 24                | 80            | Western   | 17                              | 50                              | 160 (38)                                                            | 11 (7)                                                      | 149 (93)                                                     |
| HORG <sup>32</sup>                                                                   | 2006-2010              | 332                     | Erlotinib | Pernetrexed                                       | 65.5 (37-86)                          | 18                | 85            | Western   | 16                              | 77 (non-sq)                     | NR                                                                  | NR                                                          | NR                                                           |
| CTONG 0806 <sup>9,b</sup>                                                            | 200 <del>9-</del> 2012 | 157                     | Gefitinib | Pernetrexed                                       | 56.5 (24-78)                          | 36                | 100           | Asian     | 49                              | 96                              | 157 (100)                                                           | Only WT<br>patients                                         | 157 (100)                                                    |
| TAILOR <sup>8,b</sup>                                                                | 2007-2012              | 219                     | Erlotinīb | Docetaxel                                         | 66.5 (35-83)                          | 31                | 91            | Western   | 22                              | 68<br>(greater % in<br>TKI arm) | 219 (100)                                                           | Only WT<br>patients                                         | 219 (100)                                                    |
| KCSG-LU08-0133                                                                       | 2008-2010              | 135                     | Gefitinib | Pernetrexed                                       | 61 (30-78)<br>(younger in<br>TKI arm) | 85                | 91            | Western   | 100                             | 100                             | 71 (53)                                                             | 33 (46)                                                     | 38 (54)                                                      |
| PROSE <sup>34</sup>                                                                  | 2008-2012              | 263                     | Erlotinib | Docetaxel or<br>pemetrexed                        | 65 (33-85)                            | 27                | 94            | Western   | 14                              | 88 (non-sq)                     | 177 (67)                                                            | 14 (8)                                                      | 163 (92)                                                     |
| DELTA <sup>35</sup>                                                                  | 2009-2012              | 301                     | Erlotinib | Docetaxel                                         | 67.5 (31-85)                          | 29                | 96            | Asian     | 25                              | 69                              | 255                                                                 | 51 (20)                                                     | 199 (78)                                                     |
| Li et al <sup>37,b</sup>                                                             | 2008-2014              | 123                     | Erlotinib | Pernetrexed                                       | 54.5 (30-75)                          | 36                | 94            | Asian     | 26                              | 100                             | 123 (100)                                                           | Only WT<br>patients                                         | 123 (100)                                                    |
| Total                                                                                |                        | 4388 (4136)             |           |                                                   |                                       |                   |               |           |                                 |                                 | 1516 (35)                                                           | 179 (12)                                                    | 1332 (88)                                                    |
| Trials of<br>Maintenance<br>Treatment                                                |                        |                         |           |                                                   |                                       |                   |               |           |                                 |                                 |                                                                     |                                                             |                                                              |
| SATURN <sup>38</sup>                                                                 | 2005-2008              | 889                     | Erlotinib | Placebo                                           | 60 (30-83)                            | 26                | 100%          | Western   | 17                              | 45                              | 368 (41)                                                            | 40 (11)                                                     | 328 (89)                                                     |
| IFCT-GFPC 0502<br>(NCT00300586) <sup>39</sup>                                        | 2006-2009              | 310°                    | Erlotinib | Observation                                       | 58 (36-72)                            | 27                | 100%          | Western   | 9                               | 65                              | 114 (37)                                                            | 8 (7)                                                       | 106 (93)                                                     |
| EORTC 0802140                                                                        | 2004-2009              | 173                     | Gefitinib | Placebo                                           | 61 (28-80)                            | 23                | 94%           | Western   | 22                              | 51                              | NR                                                                  | NR                                                          | NR                                                           |

### Abbildung 11: Studiencharakteristika nach Vale CL, et al. 2015

| Table 1 Continued     |                   |           |           |         |                          |                   |               |           |                                 |                                |                                                                     |                                                             |                                                              |
|-----------------------|-------------------|-----------|-----------|---------|--------------------------|-------------------|---------------|-----------|---------------------------------|--------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Trial                 | Accrual<br>Period | Patient n | ткі       | Control | Median<br>Age<br>(Range) | Sex (%<br>Female) | PS<br>(% 0/1) | Ethnicity | Smoking<br>History (%<br>Never) | Histology (%<br>Adenocarinoma) | Patients With<br>Known EGFR<br>Status<br>(% of Total<br>Randomized) | EGFR<br>Mutation, n<br>(% of Total<br>With Known<br>Status) | EGFR Wild<br>Type, n (%<br>of Total With<br>Known<br>Status) |
| NFORM <sup>11</sup>   | 2008-2009         | 296       | Gefitinib | Placebo | 55 (20-75)               | 41                | 98%           | Asian     | 54                              | 71                             | 79 (27)                                                             | 30 (38)                                                     | 49 (62)                                                      |
| SW0G S002342          | 2001-2005         | 261       | Gefitinib | Placebo | 61 (24-81)               | 37                | 96%           | Western   | Unknown                         | 31                             | NR                                                                  | NR                                                          | NR                                                           |
| ATLAS <sup>43,d</sup> | 2005-2008         | 768       | Eriotinib | Placebo | 64 (range<br>unknown)    | 48                | 100%          | Western   | 16                              | 81                             | 347 (45) <sup>e</sup>                                               | 52 (15)                                                     | 295 (85)                                                     |
| Total                 |                   | 2697      |           |         |                          |                   |               |           |                                 |                                | 908 (34)                                                            | 130 (14)                                                    | 778 (86)                                                     |

Abbreviations: ATLAS — Avadin Taxowa Lung Adenocarchiona Study; CTONG — Chinese Thoracic Oncology Group; DELTA — Docebasel and Erfolinib Lung Cancer Trial; EGFR — epidermai growth factor receptor; ECRTC — European Oganisation for Pasearch and Treatment of Cancer MORG — Hiteric Oncology Research Group; FCT-GFPC — Partenaital Integroups Francephone de Cancérologie Thoracicus-Groups Francis de Preumo-Cancérologie, NFORM — Ireas in NSQL: FCR Maintenance; NTEREST — PESSA Non-small-oril lung cancer Trial; EGFR — epidermai growth factor receptor; ECRTC — European Oganisation for Pasearch and Treatment of Cancerologie Thoracicus-Groups Francis de Preumo-Cancérologie, NFORM — Ireas in NSQL: FCR Maintenance; NTEREST — PESSA Non-small-oril lung cancer Trial; EdFR — epidermai growth factor receptor; ECRTC — European Oganisation for Pasearch and Treatment of Integroups Francis de Preumo-Cancérologie, NFORM — Ireas in NSQL: FCR Maintenance; NTEREST — PESSA Non-small-oril lung cancer Trial; EdFR — Second-Line Therapy Using Erforting Pasearch Integroups Frances; SAUEN — Second-Line Therapy Using Erforting Pasearch Integroups Frances; SAUEN — Second-Line Integroups (SAUEN — Second-Line Therapy Using Erforting Integroups Cancerol Study Group; TALOR — Taxewa in Lung Optimization Trial; TTAM — Taxowa in Treatment of Advanced NSQL; TXI — yrosine kinase inhibitor; WT — Wid type. "Progression-free survival analyses for patient number in parentheses, but patient characteristics reported for all patients. "Origin antionation patients with wild type EER. "Draw and trial; Inderdine def Advancement Marching Integrite Therapy Using Efforts (Trial) = Second-Line Therapy Using Efforts (Trial) = Second-Line Therapy Using Efforts (Trial) = Second-Line Therapy Integrite Therapy Using Efforts (Trial) = Second-Line Therapy Using Efforts (Trial) = Second-Line Therapy Using Efforts (Trial) = Second-Line Therapy Using E

There am train including 46 and/mixed patients but only 2 ams included here. Includes beeadournab in both ams. "Total for progression-free survival, total for overall survival is 345.

Abbildung 12: Studiencharakteristika nach Vale CL, et al. 2015