

Kriterien zur Bestimmung der zweckmäßigen Vergleichstherapie

und

Recherche und Synopse der Evidenz zur Bestimmung der zweckmäßigen Vergleichstherapie nach § 35a SGB V

Vorgang: 2015-B-188 Osimertinib

Stand: Januar 2016

I. Zweckmäßige Vergleichstherapie: Kriterien gemäß 5. Kapitel § 6 VerfO G-BA

Osimertinib

zur Behandlung des lokal fortgeschrittenen oder metastasierten, nicht-kleinzelligem Lungenkarzinom (NSCLC) mit T790M-Mutation des EGFR

Kriterien gemäß 5. Kapitel § 6 VerfO

Sofern als Vergleichstherapie eine Arzneimittelanwendung in Betracht kommt, muss das Arzneimittel grundsätzlich eine Zulassung für das Anwendungsgebiet haben.	Siehe Übersicht "II. Zugelassene Arzneimittel im Anwendungsgebiet"
Sofern als Vergleichstherapie eine nicht-medikamentöse Behandlung in Betracht kommt, muss diese im Rahmen der GKV erbringbar sein.	Nicht angezeigt
Beschlüsse/Bewertungen/Empfehlungen des Gemeinsamen Bundesausschusses zu im Anwendungsgebiet zugelassenen	 Afatinib: Beschluss vom 5. November 2015 über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V
Arzneimitteln/nicht-medikamentösen Behandlungen	 Ceritinib: Beschluss vom 17. Dezember 2015 über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V
	 Crizotinib: Beschluss vom 2. Mai 2013 über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V
	 Nintedanib : Beschluss vom 18. Juni 2015 über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V
	 Nivolumab (nicht-kleinzelliges Lungenkarzinom): Beschluss vom 4. Februar 2016 über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V
	 Carboplatin: Anlage VI zum Abschnitt K der Arzneimittel-Richtlinie - Verordnungsfähigkeit von zugelassenen Arzneimitteln in nicht zugelassenen Anwendungsgebieten - (Stand: 30. Juni 2014): Arzneimittel, die unter Beachtung der dazu gegebenen Hinweise in nicht zugelassenen Anwendungsgebieten (Off-Label-Use) verordnungsfähig sind: Carboplatin-haltige Arzneimittel bei fortgeschrittenem nicht-kleinzelligem Bronchialkarzinom (NSCL) – Kombinationstherapie
Die Vergleichstherapie soll nach dem allgemein anerkannten Stand der medizinischen Erkenntnisse zur zweckmäßigen Therapie im Anwendungsgebiet gehören.	Siehe systematische Literaturrecherche

	II. Zugelassene Arzneimittel im Anwendungsgebiet
Wirkstoff ATC-Code Handelsname	Anwendungsgebiet (Text aus Beratungsanforderung/Fachinformation)
Zu prüfendes A	zneimittel:
Osimertinib L01XE35 TAGRISSO™	Osimertinib ist angezeigt zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem oder metastasiertem, nicht-kleinzelligem Lungenkarzinom (NSCLC) und einer positiven T790M-Mutation des epidermalen Wachstumsfaktor-Rezeptors (Epidermal Growth Factor Receptor, EGFR).
Chemotherapi	۶n:
Carboplatin L01XA02 (generisch)	Off-Label-Indikation für Carboplatin: Kombinationstherapie des fortgeschrittenen NSCLC (palliativ)
Cisplatin L01XA01 (generisch)	Cisplatin wird angewendet zur Behandlung des: fortgeschrittenen oder metastasierten nichtkleinzelligen Bronchialkarzinoms.
Docetaxel L01CD02 (generisch)	Nicht-kleinzelliges Bronchialkarzinom: Docetaxel ist zur Behandlung von Patienten mit lokal fortgeschrittenem oder metastasiertem, nicht-kleinzelligem Bronchialkarzinom nach Versagen einer vorausgegangenen Chemotherapie angezeigt.
	Docetaxel ist in Kombination mit Cisplatin zur Behandlung von Patienten mit nicht resezierbarem, lokal fortgeschrittenem oder metastasiertem, nicht-kleinzelligem Bronchialkarzinom ohne vorausgegangene Chemotherapie angezeigt.
Etoposid L01CB01 (generisch)	Kombinationstherapie folgender Malignome: Palliative Therapie des fortgeschrittenen NSCLC bei Patienten mit gutem Allgemeinzustand (Karnofsky-Index >80%).
Gemcitabin L01BC05 (generisch)	Gemcitabin ist in Kombination mit Cisplatin als Erstlinientherapie von Patienten mit lokal fortgeschrittenem oder metastasiertem nichtkleinzelligen Bronchialkarzinom (NSCLC) angezeigt. Eine Gemcitabin-Monotherapie kann bei älteren Patienten oder solchen mit einem Performance Status 2 in Betracht gezogen werden.
lfosfamid L01AA06 Holoxan [®]	Nicht-kleinzellige Bronchialkarzinome: Zur Einzel- oder Kombinationschemotherapie von Patienten mit inoperablen oder metastasierten Tumoren.
Mitomycin L01DC03 (generisch)	Mitomycin wird in der palliativen Tumortherapie eingesetzt. Bei intravenöser Gabe ist es in der Monochemotherapie oder in kombinierter zytostatischer Chemotherapie bei folgenden metastasierenden Tumoren wirksam: [] nicht-kleinzelliges Bronchialkarzinom [].
Paclitaxel L01CD01 (generisch)	Fortgeschrittenes nicht-kleinzelliges Bronchialkarzinom (NSCLC): Paclitaxel ist, in Kombination mit Cisplatin, zur Behandlung des nicht-kleinzelligen Bronchialkarzinoms bei Patienten angezeigt, für die potentiell kurative chirurgische Maßnahmen und/oder eine Strahlentherapie nicht in Frage kommen.

Paclitaxel L01CD01 Abraxane [®]	Abraxane ist in Kombination mit Carboplatin indiziert für die Erstlinienbehandlung des nicht-kleinzelligen Bronchialkarzinoms bei erwachsenen Patienten, bei denen keine potentiell kurative Operation und/oder Strahlentherapie möglich ist.
Pemetrexed L01BA04	ALIMTA ist in Kombination mit Cisplatin angezeigt zur first-line Therapie von Patienten mit lokal fortgeschrittenem oder metastasiertem nicht- kleinzelligen Lungenkarzinom außer bei überwiegender plattenepithelialer Histologie.
Alimta®	ALIMTA in Monotherapie ist angezeigt für die Erhaltungstherapie bei lokal fortgeschrittenem oder metastasiertem nicht-kleinzelligen Lungenkarzinom außer bei überwiegender plattenepithelialer Histologie bei Patienten, deren Erkrankung nach einer platinbasierten Chemotherapie nicht unmittelbar fortgeschritten ist.
	ALIMTA in Monotherapie ist angezeigt zur Behandlung in Zweitlinientherapie von Patienten mit lokal fortgeschrittenem oder metastasiertem nicht-kleinzelligen Lungenkarzinom außer bei überwiegender plattenepithelialer Histologie.
Vindesin L01CA03 Eldesine [®]	Kombinationschemotherapie: Lokal fortgeschrittenes oder metastasiertes nicht-kleinzelliges Bronchialkarzinom (Stadium IIIB, IV).
Vinorelbin L01CA04 (generisch)	Vinorelbin ist angezeigt zur Behandlung: des nicht kleinzelligen Bronchialkarzinoms (Stadium 3 oder 4).
Proteinkinase	-Inhibitoren:
Afatinib L01XE13 Giotrif [®]	Giotrif® als Monotherapie wird angewendet zur Behandlung von EGFR-TKI-naiven erwachsenen Patienten mit lokal fortgeschrittenem und/oder metastasiertem nicht-kleinzelligen Lungenkarzinom (NSCLC) mit aktivierenden EGFR-Mutationen.
Ceritinib L01XE28 Zykadia®	Zykadia wird angewendet bei erwachsenen Patienten zur Behandlung des fortgeschrittenen, Anaplastische-Lymphomkinase(ALK)-positiven, nicht-kleinzelligen Bronchialkarzinoms (NSCLC), die mit Crizotinib vorbehandelt wurden.
Crizotinib L01XE16	XALKORI wird angewendet bei Erwachsenen zur Erstlinienbehandlung des Anaplastische-Lymphom-Kinase(ALK)-positiven, fortgeschrittenen nicht kleinzelligen Lungenkarzinoms (non small cell lung cancer, NSCLC).
Xalkori [®]	XALKORI wird angewendet bei Erwachsenen zur Behandlung des vorbehandelten Anaplastische-Lymphom-Kinase(ALK)-positiven, fortgeschrittenen nicht kleinzelligen Lungenkarzinoms (non small cell lung cancer, NSCLC).
Erlotinib L01XE03 Tarceva [®]	Nicht-kleinzelliges Lungenkarzinom (NSCLC): Tarceva ist zur First-Line-Behandlung bei Patienten mit lokal fortgeschrittenem oder metastasiertem nicht-kleinzelligen Lungenkarzinom (NSCLC) mit aktivierenden EGFR-Mutationen angezeigt. Tarceva ist auch als Monotherapie zur Erhaltungsbehandlung bei Patienten mit lokal fortgeschrittenem oder metastasiertem NSCLC angezeigt, deren Krankheitszustand nach 4 Behandlungszyklen einer platinbasierten First-Line-Standardchemotherapie unverändert ist. Tarceva ist auch zur Behandlung von Patienten mit lokal fortgeschrittenem oder metastasiertem NSCLC angezeigt, bei denen mindestens eine
	vorausgegangene Chemotherapie versagt hat. Beim Verschreiben von Tarceva sollten Faktoren, die im Zusammenhang mit einer verlängerten Überlebenszeit stehen, berücksichtigt werden.

	Bei Patienten mit epidermalen Wachstumsfaktor-Rezeptor-(EGFR)-IHC-negativen Tumoren konnten weder ein Überlebensvorteil noch andere klinisch relevante Wirkungen durch die Behandlung gezeigt werden (siehe Abschnitt 5.1).
Gefitinib L01XE02 Iressa [®]	Iressa [®] ist angezeigt zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem oder metastasiertem, nicht-kleinzelligem Lungenkarzinom (NSCLC) mit aktivierenden Mutationen der EGFR-TK. (FI Iressa [®] , 04-2014)
Nintedanib L01XE31 Vargatef [®]	Vargatef wird angewendet in Kombination mit Docetaxel zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem, metastasiertem oder lokal rezidiviertem nicht-kleinzelligen Lungenkarzinom (NSCLC) mit Adenokarzinom-Histologie nach Erstlinienchemotherapie.
Antikörper	
Bevacizumab L01XC07 Avastin [®]	Bevacizumab wird zusätzlich zu einer platinhaltigen Chemotherapie zur First-Line-Behandlung von erwachsenen Patienten mit inoperablem fortgeschrittenem, metastasiertem oder rezidivierendem nicht kleinzelligem Bronchialkarzinom, außer bei vorwiegender Plattenepithel-Histologie, angewendet. (FI Avastin [®] , 07-2014)
Nivolumab L01XC17 Opdivo [®]	OPDIVO ist zur Behandlung des lokal fortgeschrittenen oder metastasierten nichtkleinzelligen Lungenkarzinoms (NSCLC) mit plattenepithelialer Histologie nach vorheriger Chemotherapie bei Erwachsenen indiziert.

Quellen: AMIS-Datenbank, Fachinformationen

Abteilung Fachberatung Medizin

Recherche und Synopse der Evidenz zur Bestimmung der zweckmäßigen Vergleichstherapie nach § 35a SGB V

Vorgang: 2015-B-188 Osimertinib

Datum: 26.01.2016

Recherche und Synopse der Evidenz zur Bestimmung der zVT:

Indikation für die Recherche:	2
Berücksichtigte Wirkstoffe/Therapien:	2
Systematische Recherche:	3
Abkürzungen	4
IQWiG Berichte/G-BA Beschlüsse	7
Cochrane Reviews	10
a) TKI-nicht-vorbehandelte Patienten	10
b) TKI-vorbehandelte Patienten	10
Systematische Reviews	11
a) TKI-nicht-vorbehandelte Patienten	11
b) TKI-vorbehandelte Patienten	83
Recherchestrategien	128
Anlagen	130
Literatur:	

Indikation für die Recherche:

Osimertinib ist angezeigt zur Behandlung von erwachsenen Patienten mit lokal fortgeschrittenem oder metastasiertem, nicht-kleinzelligem Lungenkarzinom (NSCLC) und einer positiven T790M-Mutation des epidermalen Wachstumsfaktor-Rezeptors (Epidermal Growth Factor Receptor, EGFR).

Berücksichtigte Wirkstoffe/Therapien:

Für das Anwendungsgebiet zugelassenen Arzneimittel siehe Tabelle "II. Zugelassene Arzneimittel im Anwendungsgebiet"

 Es wurden nur Publikationen eingeschlossen, die eine Aussage zu Patienten mit EGFR M+ Status beinhalten.

- Systematische Reviews wurden nur dann berücksichtigt, wenn die Ergebnisse mindestens einer quantitativen Subgruppenanalyse für EGFR M+ Patienten dargelegt sind.
- Es wurden abweichend vom üblichen Vorgehen besonders aktuelle Systematische Reviews (Publikationsjahr 2015 und 2014) auch dann aufgenommen, wennn in ihnen keine Qualitätsbewertung der Primärstudien ausgewiesen ist. Dies jeweils verwemerkt.
- Variationen in den Therapieregimen (z.B. Therapiedauern und zeitliche Abfolgen, Therapiezyklen, Therapiewechsel und ihre Bedingungen, …) wurden nicht berücksichtigt.
- Publikationen zur Radiochemotherapie wurden nicht eingeschlossen. Ebenso hier nicht berücksichtigt ist die Protonentherapie ist (vgl. G-BA, 2011: Protonentherapie beim Nichtkleinzelligen Lungenkarzinom (NSCLC). Abschlussbericht. Beratungsverfahren nach § 137c SGB V (Krankenhausbehandlung 13. Januar 2011. Protokollnotiz: Beratungen hierzu sollen 2015 wieder aufgenommen werden).

Systematische Recherche:

Es wurde eine systematische Literaturrecherche nach systematischen Reviews, Meta-Analysen, HTA-Berichten und Evidenz-basierten systematischen Leitlinien zur Indikation "Nichtkleinzelligen Lungenkarzinom (NSCLC)" durchgeführt. Der Suchzeitraum wurde auf die letzten 5 Jahre eingeschränkt und die Recherche am 05.01.2016 abgeschlossen. Die Suche erfolgte in folgenden Datenbanken bzw. Internetseiten folgender Organisationen: The Cochrane Library (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Health Technology Assessment Database), MEDLINE (PubMed), AWMF, DAHTA, G-BA, GIN, IQWiG, NGC, TRIP, WHO. Aufgrund der onkologischen Indikation wurde zusätzlich in folgenden Datenbanken bzw. Internetseiten folgende Organisationen gesucht: CCO, DGHO, ESMO, NCCN, NCI. Ergänzend erfolgte eine freie Internetsuche nach aktuellen deutschen und europäischen Leitlinien (z.B. NICE, SIGN). Die detaillierte Darstellung der Suchstrategie ist am Ende der Synopse aufgeführt.

Die Recherche ergab **731** Quellen, die anschließend in einem zweistufigen Screening Verfahren nach Themenrelevanz und methodischer Qualität gesichtet wurden. Zudem wurde eine Sprachrestriktion auf deutsche und englische Quellen vorgenommen. Insgesamt ergab dies **41** Quellen, die in die synoptische Evidenz-Übersicht aufgenommen wurden.

Abkürzungen

Note Protection ADK adenocarcinoma AE Unerwünschte Ereignisse (adverse events) Aff affibercept AIOT Italian Association of Thoracic Oncology ALK Anaplasic Lymphoma Kinase AM Arzneimittel ANITA Adjuvant Navelbine International Trialist Association AP permetrexed + cisplatin ASCO American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften AZQ Arztliches Zentrum für Qualität in der Medizin Bev Betwaizumab BSC Best supportive care CARB Carboplatin CCT controlled clinical trial CDDP cliplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CI Chemotherapie CT Chemotherapie CT Chemotherapie <	ACCP	American College of Chest Physicians
AE Unerwünschte Ereignisse (adverse events) Afl afilbercept AIOT Italian Association of Thoracic Oncology ALK Anaplastic Lymphoma Kinase AM Arzneimittel ANITA Adjuvant Navelbine International Trialist Association AP pemetrexed + cisplatin ASCI Antigen Specific Cancer Immunotherapeutic ASCO American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften AZQ Arztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG Clinical gudeline CI Konfidenzintervall CIS Cisplatin CRX Chemotherapie CTX Chemotherapie CTX Chemotherapie CTX Chemotagudatin für Health Technology Assessment DART Documentation and Appraisal Review Tool		
Aff affibiercept AIOT Italian Association of Thoracic Oncology AIX Anaplastic Lymphoma Kinase AM Arzneimittel ANITA Adjuvant Navelbine International Trialist Association AP pemetrexed + cisplatin ASCO American Society of Clinical Oncology AWWF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften AZQ ÁZQ Arztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemoradiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGP Gesellschaft für Pneumologie und Beatmungsmedizin <td< td=""><td></td><td></td></td<>		
AIOT Italian Association of Thoracic Oncology ALK Anaplastic Lymphoma Kinase AM Arzneimittel ANITA Adjuvant Navelbine International Trialist Association AP pemetrexed + cisplatin ASCI Antigen Specific Cancer Immunotherapeutic ASCO American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften AZQ Arztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CT Chemotherapie CT Chemotherapie CT Chemotherapie CBAR Decutsche Gesellschaft für Hämatologie und Medizinische Onkologie DART		
ALK Anaplastic Lymphoma Kinase AM Arzneimittel ANITA Adjuzant Navelbine International Trialist Association AP pemetrexed + cisplatin ASCI Antigen Specific Cancer Immunotherapeutic ASCO American Society of Clinical Oncology AWWF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften Azz AZQ Arztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBCCA carboplatin CCT controlled clinical trial CDDP cisplatin CG clinical gudeline CI Konfidenzintervall CI Konfidenzintervall CI Konfidenzintervall CI Chemotherapie CTX Chemotherapie CTX Chemotherapie CTX Chemotherapie DRHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DGF Gesellschaft für Phamatologie un		
AM Arzneimittel ANITA Adjuvant Navelbine International Trialist Association AP pemetrexed + cisplatin ASCI Antigen Specific Cancer Immunotherapeutic ASCO American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften ÄZQ Arztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie DART Documentation and Appraisal Review Tool DART Documentation and Appraisal Review Tool DCR Gesellschaft für Pneumologie und Beatmungsmedizin DBGP Gesellschaft für Pneumologie und Beatmungsmedizin <td></td> <td></td>		
ANITA Adjuvant Navelbine International Trialist Association AP pemetrexed + cisplatin ASCI Antiger Specific Cacer Immunotherapeutic ASCO American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften AZQ Arztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie DART Documentation and Appraisal Review Tool DART Documentation and Appraisal Review Tool DCR disease control rate DGP Gesellschaft für Phaumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DQC Docetaxel <td< td=""><td></td><td></td></td<>		
AP permetrexed + cisplatin ASC1 Antigen Specific Cancer Immunotherapeutic ASC0 American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften ÄZQ Arztitches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet ceturimab CG clinical gudeline CI Konfidenzintervall CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie CTX Chemotherapie CTX Chemotherapie CTX Chemotherapie DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Kresgesellschaft DG Gesellschaft für Pneumologie und Beatmungsmedizin DKG <td< td=""><td></td><td></td></td<>		
ASCI Antigen Specific Cancer Immunotherapeutic ASCO American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften ÄZQ Arztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CEDDP cisplatin CECOG Central European Cooperative Oncology Group CEC Cettuimab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemoradiation DART Deutsche Agentur für Health Technology Assessment DART Deutsche Gesellschaft für Phaeumologie und Medizinische Onkologie Onkopedia Deutsche Kresgesellschaft DP docetaxel DQC Docetaxel DP docetaxel DGHO- Degesellschaft für Phaeumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC		
ASCO American Society of Clinical Oncology AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften Fachgesellschaften ÄZQ Ärztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemoradiation DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Agentur für Haath Technology Assessment DART Documentation and Appraisal Review Tool DC Docetaxel esellschaft für Hämatologie und Medizinische Onkologie DRG Deutsche Kresgesellschaft DC Docetaxel DC Docetaxel DP doc		
AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften ÁZQ Árztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO Deutsche Kresgesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Kresgesellschaft DC Docetaxel DQC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG-PS Eastern cooperative onco		
Fachgesellschaften ÄZQ Ärztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemoreadiation DART Decursche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Decetaxel DC Docetaxel DC Docetaxel DC Docetaxel DC Docetaxel DC Docetaxel DP doceetaxel +		
ÂZQ Ârztliches Zentrum für Qualität in der Medizin Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CCT controlled clinical trial CDP cisplatin CECG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie DART Documentation and Appraisal Review Tool DART Documentation and Appraisal Review Tool DCR disease control rate DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia D DC Docetaxel DC Docetaxel DC Docetaxel DC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group	AVVIVIE	
Bev Bevacizumab BSC Best supportive care CARB Carboplatin CBDCA carboplatin CCT controlled clinical trial CCDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotharapie DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Agentur für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern Cooperative Oncology Group Performance Status ECOG-PS Eastern Cooperative Oncology Group	ÄZO.	
BSC Best supportive care CARB Carboplatin CBDCA carboplatin CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie DART Documentation and Appraisal Review Tool DRAT Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology group ECOG-PS Eastern Cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EFR Epidermal Growth Factor Receptor EGFR M+ EGFR-posity (Vorliegen einer Mutatation)		
CARB Carboplatin CBDCA carboplatin CCT controlled clinical trial CDDP cisplatin CECG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie CTX Chemoradiation DART Deutsche Agentur für Health Technology Assessment DART Deutsche Agentur für Haimatologie und Medizinische Onkologie Onkopedia Onkopedia DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative Oncology Group Performance Status EORTC European Organisation for CLQ Research and Treatment of Cancer Quality of Life Questionnaire	-	
CBDCA carboplatin CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemoradiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Kresgesellschaft DC Docetaxel DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire GFR Epidermal Growth Factor Receptor EGFR M+ EGFR-		
CCT controlled clinical trial CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemoradiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia De DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin ErI / ERL erlotinib		
CDDP cisplatin CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie CTX Chemotherapie DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Okopedia DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin		
CECOG Central European Cooperative Oncology Group Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotadiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Outsche Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DOC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen		
Cet cetuximab CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotadiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Dectesche Kresgesellschaft DC Docetaxel DOC Docetaxel DOC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin EI/ ERL erlotinib ESMO European Society for Medical Oncology		
CG clinical gudeline CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemotherapie CTX Chemotherapie DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Kresgesellschaft DC Docetaxel DC Docetaxel DC Docetaxel DOC Docetaxel DOC Docetaxel DOC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern Cooperative oncology group ECOG-PS Eastern Cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin		
CI Konfidenzintervall CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemoradiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Ocetaxel DC Docetaxel DC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology group ECOG-PS Eastern Cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin EI' / ERL erlotinib ESMO European Society for Medical Oncology FACT-L Functional assessment of cancer-lung (questionnaire) FEM Fixed effects model Ga		
CIS Cisplatin CR Complete response CT Chemotherapie CTX Chemoradiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin EI/ ERL erlotinib ESMO European Society for Medical Oncology FACT-L Functional assessment of cancer-lung (questionnaire) FEM Fixed effects model Gan		~
CR Complete response CT Chemotherapie CTX Chemoradiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie DKG Deutsche Kresgesellschaft DC Docetaxel DC Docetaxel DC Docetaxel DC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology group ECOG-PS Eastern Cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin ET/ ERL erlotinib ESMO European Society for Medical Oncology FACT-L Functional assessment of cancer-lung (q		
CT Chemotherapie CTX Chemoradiation DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin ESMO European Society for Medical Oncology FACT-L Functional assessment of cancer-lung (questionnaire) FEM Fixed effects model Gan ganetespib G-BA Gemeinsamer Bundesausschuss GEF/GFT Gefin		
CTXChemoradiationDAHTADeutsche Agentur für Health Technology AssessmentDARTDocumentation and Appraisal Review ToolDCRdisease control rateDGHO-Deutsche Gesellschaft für Hämatologie und Medizinische OnkologieOnkopediaDGPDGPGesellschaft für Pneumologie und BeatmungsmedizinDKGDeutsche KresgesellschaftDCDocetaxelDOCDocetaxelDCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
DAHTA Deutsche Agentur für Health Technology Assessment DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia DGP DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC Docetaxel DOC Docetaxel DP docetaxel + cisplatin DSG Disease Site Group fNECOG Eastern cooperative oncology group ECOG-PS Eastern Cooperative Oncology Group Performance Status EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin ErI / ERL erlotinib ESMO European Society for Medical Oncology FACT-L Functional assessment of cancer-lung (questionnaire) FEM Fixed effects model Gan ganetespib G-BA		
DART Documentation and Appraisal Review Tool DCR disease control rate DGHO- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie Onkopedia DGP Gesellschaft für Pneumologie und Beatmungsmedizin DKG Deutsche Kresgesellschaft DC DC Docetaxel DOC DOC Docetaxel DO DP docetaxel + cisplatin DSG DSG Disease Site Group fNECOG FCOG-PS Eastern cooperative oncology group ECOG-PS EORTC European Organisation for QLQ Research and Treatment of Cancer Quality of Life Questionnaire EGFR Epidermal Growth Factor Receptor EGFR M+ EGFR-positiv (Vorliegen einer Mutatation) Enz enzastaurin Erl / ERL erlotinib ESMO European Society for Medical Oncology FACT-L Functional assessment of cancer-lung (questionnaire) FEM Fixed effects model Gan ganetespib G-BA Gemeinsamer Bundesausschuss GEF/GFT Gefintinib		
DCRdisease control rateDGHO- DROPDeutsche Gesellschaft für Hämatologie und Medizinische OnkologieDGPGesellschaft für Pneumologie und BeatmungsmedizinDKGDeutsche KresgesellschaftDCDocetaxelDOCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		
DGHO- OnkopediaDeutsche Gesellschaft für Hämatologie und Medizinische OnkologieDGPGesellschaft für Pneumologie und BeatmungsmedizinDKGDeutsche KresgesellschaftDCDocetaxelDOCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotnibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
OnkopediaOnkopediaDGPGesellschaft für Pneumologie und BeatmungsmedizinDKGDeutsche KresgesellschaftDCDocetaxelDOCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
DGPGesellschaft für Pneumologie und BeatmungsmedizinDKGDeutsche KresgesellschaftDCDocetaxelDOCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie
DKGDeutsche KresgesellschaftDCDocetaxelDOCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		
DCDocetaxelDOCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
DOCDocetaxelDPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin	-	
DPdocetaxel + cisplatinDSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinib		
DSGDisease Site GroupfNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
fNECOGEastern cooperative oncology groupECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinETI / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
ECOG-PSEastern Cooperative Oncology Group Performance StatusEORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibGEF/GFTGefintinibGEMGemcitabin		
EORTCEuropean Organisation for QLQ Research and Treatment of Cancer Quality of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		
of Life QuestionnaireEGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
EGFREpidermal Growth Factor ReceptorEGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin	EORTC	
EGFR M+EGFR-positiv (Vorliegen einer Mutatation)EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
EnzenzastaurinErl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
Erl / ERLerlotinibESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		
ESMOEuropean Society for Medical OncologyFACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
FACT-LFunctional assessment of cancer-lung (questionnaire)FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		
FEMFixed effects modelGanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		
GanganetespibG-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemeitabin		
G-BAGemeinsamer BundesausschussGEF/GFTGefintinibGEMGemcitabin		
GEF/GFT Gefintinib GEM Gemcitabin		
GEM Gemcitabin		
GIN Guidelines International Network		
	GIN	Guidelines International Network

GN	gemcitabine + vinorelbine
GoR	Grade of Recommendation
GP	gemcitabine + cisplatin
GRADE	Grading of Recommendations Assessment, Development and Evaluation
HR	Hazard ratio
HRQoL	Gesundheitsbezogene Lebensqualität (health related quality of life)
HSP	heat shock protein
ILD	interstitial lung disease
IQWiG	Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen
k.A.	keine Angabe
KPS	Karnofsky Performance Status scale
KRAS	Kirsten rat sarcoma viral oncogene homolog
LACE	Lung Adjuvant Cisplatinum Evaluation
LoE	Level of Evidence
Mat	matuzumab
mut	Mutation
M+	mutation positive (EGFR)
	number
n N.A	not available
NCCN	
NGC	National Comprehensive Cancer Network
NHS CRD	National Guideline Clearinghouse National Health Services Center for Reviews and Dissemination
NICE	National Institute for Health and Care Excellence
NIHR	
	National Institute for Health Research
NIHR HSC	National Institute for Health Research Horizon Scanning Centre
Nin	nintedanib
NNT	Number needed to treat
NP	vinorelbine + cisplatin
NR	not reported
NSCLC	non-small cell lung cancer (nichtkleinzelliges Bronchialkarzinom)
OR	Odds ratio
ORR	Gesamtansprechen (overall response)
OS	Gesamtüberleben (Overall survival)
PAX	Paclitaxel
PBC	platinum-based doublet chemotherapy
PD	Progressive disease
PD-L1	Programmed death-ligand 1
PDGFR	platelet-derived growth factor receptor
PEM	Pemetrexed
Pem	pemetrexed
PFS	Progressionsfreies Überleben (progression free survival)
PKB	protein kinase B
PKC	protein kinase C
Pla	placebo
PLAT	Platinhaltige Chemotherapeutika
PORT	Post-operative Radiotherapie
PR	Partial response
PS	Performance status
PSA	probabilistic sensitivity analysis
Pts.	patients
QOL	Quality of life
QoL	Lebensqualität (quality of life)
QUADAS	Quality assessment tool for diagnostic studies
RCT	Randomized controlled trial
Ref.	reference
REM	Random effects model
RET	rearranged during transfection
RR	Risk ratio

RR	Relatives Risiko
RT	Radiotherapie
SACT	systemic anticancer therapy
SD	Stable disease; oder: standard deviation
Sel	selumetinib
SR	Systematisches Review
TA	Technology Assessment
TAX	Docetaxel
TC	paclitaxel + carboplatin
TKI	Tyrosinkinsaseinhibitor
TNM	Tumor-Node-Metastasis (Klassifikationssystem)
TOI	Trial outcome index
TRIP	Turn Research into Practice Database
TTP	Time to Progression
UFT	Tegafur/Uracil
UICC	Union for International Cancer Control
Van	vandetanib
VEGF	vascular endothelial growth factor
VEGFR	vascular endothelial growth factor receptor
VNB	Vinorelbin
VS.	versus
W	weeks
WJTOG	Western Japan Thoracic Oncology Group
WHO	World Health Organisation
WT	Wild type

IQWiG Berichte/G-BA Beschlüsse

G-BA, 2015 [14].	1. Zusatznutzen des Arzneimittels im Verhältnis zur zweckmäßigen
	Vergleichstherapie
Beschluss des	
Gemeinsamen	1) Nicht vorbehandelte Patienten mit ECOG-Performance-Status 0 oder 1
Bundesausschuss	Zweckmäßige Vergleichstherapie: – Gefitinib oder Erlotinib
es über eine	
Anderung der	oder
Arzneimittel-	- Cisplatin in Kombination mit einem Drittgenerationszytostatikum
Richtlinie (AM-RL):	(Vinorelbin oder Gemcitabin oder Docetaxel oder Paclitaxel oder
Anlage XII -	Pemetrexed) unter Beachtung des Zulassungsstatus
Beschlüsse über	oder
die	- Carboplatin in Kombination mit einem Drittgenerationszytostatikum
Nutzenbewertung	
von Arzneimitteln	(nur für Patienten mit erhöhtem Risiko für Cisplatin-induzierte
mit neuen	Nebenwirkungen im Rahmen einer Kombinationstherapie; vgl. Anlage VI
Wirkstoffen nach §	zum Abschnitt K der Arzneimittel-Richtlinie)
35a SGB V –	Average und Webrecheinlichkeit des Zusetznutzens gegenüber
Afatinib	Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber Cisplatin in Kom-bination mit Pemetrexed:
Vom 5.11.2015	a) Patientengruppe mit EGFR-Mutation Del19:
1011101112010	Hinweis auf einen erheblichen Zusatznutzen.
	b) Patientengruppe mit EGFR-Mutation L858R:
	Ein Zusatznutzen ist nicht belegt.
	c) Patientengruppe mit anderen EGFR-Mutationen:
	Ein Zusatznutzen ist nicht belegt.
	2) Nicht vorbehandelte Patienten mit ECOG-Performance-Status 2
	Zweckmäßige Vergleichstherapie:
	- Gefitinib oder Erlotinib
	oder
	 alternativ zu den unter 1) angegebenen platinbasierten
	Kombinationsbehandlungen: Monotherapie mit Gemcitabin oder
	Vinorelbin
	Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber der
	zweckmäßigen Vergleichstherapie:
	Ein Zusatznutzen ist nicht belegt.
	3) Patienten nach Vorbehandlung mit einer Platin-basierten
	Chemotherapie
	Zweckmäßige Vergleichstherapie:
	- Gefitinib oder Erlotinib
	oder

	- Docetaxel o	der Pemetrex	ed		
	Ausmaß und zweckmäßige Ein Zusatznutz	n Vergleich:		atznutzens g	gegenüber der
IQWiG, 2015 [17].	Patientengruppen, zweckmäßige Vergleichstherapien und Ausmaß				
Afatinib –	und Wahrscheinlichkeit des Zusatznutzens von Afatinib für TKI-naive erwachsene Patienten mit lokal fortgeschrittenem und / oder				
Nutzenbewertung gemäß § 35a SGB V	metastasierte EGFR-Mutatio		zelligem Lungenl	karzinom mi	t aktivierenden
v IQWiG-Berichte	Therapielinie	Patientengruppe	Zweckmäßige Vergleichstherapie ^a	Subgruppe	Ausmaß und Wahrscheinlichkeit des Zusatznutzens
Nr. 206	nicht vorbehandelte Patienten	ECOG-PS 0-1	Gefitinib oder Erlotinib <u>oder</u> Cisplatin +	EGFR-Mutation Del19	Hinweis auf erheblichen Zusatznutzen
			(Vinorelbin, Gemcitabin, Docetaxel, Paclitaxel oder Pemetrexed)	EGFR-Mutation L858R, Alter ≤ 65 Alter ≥ 65	Anhaltspunkt für geringen Zusatznutzen Zusatznutzen nicht beleet
				andere ^b EGFR- Mutationen	belegt Hinweis auf geringeren Nutzen
		ECOG-PS 2	Gefitinib oder Erlotinib <u>oder</u> Gemcitabin	Zusatznutzen nich	
	mit einer oder mehreren Chemotherapie(n) vorbehandelte Patienten		Erlotinib oder Gefitinib	Zusatznutzen nicht belegt	
	a: Dargestellt ist jeweils die vom G-BA festgelegte zweckmäßige Vergleichstherapie. In den Fällen, in denen der pU aufgrund der Festlegung der zweckmäßigen Vergleichstherapie durch den G-BA aus mehreren Alternativen eine Vergleichstherapie auswählen kann, ist die entsprechende Auswahl des pU fett markiert. b: nicht L858R, nicht Del19-Mutation ECOG-PS: Eastern Cooperative Oncology Group Performance Status Für Patienten mit Del19-Mutation gibt es einen Hinweis auf einen erheblichen Zusatznutzen für den Endpunkt Gesamtüberleben; eine Altersabhängigkeit wurde nicht gezeigt. Hin-sichtlich der Symptomatik und der gesundheitsbezogenen Lebensqualität zeigen sich für diese Subgruppe mehrheitlich Anhaltspunkte für positive Effekte von Afatinib. Diese sind teilweise altersabhängig. Negative Effekte von Afatinib treten nur vereinzelt auf. In der Zusammen-schau der Effekte ergibt sich für die Subgruppe der Patienten mit einer Del19-Mutation ein Hinweis auf einen erheblichen Zusatznutzen von Afatinib gegenüber Cisplatin + Pemetrexed.				
	hinsichtlich de Anhaltspunkte positive Effekt In der Gesamt Anhaltspunkt f	r Sympto-ma für positive u e überwieger schau ergibt ür einen geri	nten mit L858R-N tik und gesundhe und negative Effe n. Diese Effekte s sich für Patienter ngen Zusatznutze Beleg für einen Z	itsbezogene kte von Afati ind teilweise n < 65 Jahrer en von Afatin	n Lebensqualität nib, wobei alters-abhängig. n ein ib. Für Patienten

Für Patienten mit anderen EGFR-Mutationen als Del19 oder L858R gibt
es einen Hinweis auf einen geringeren Nutzen von Afatinib für den
Endpunkt Gesamtüberleben. Dieser Effekt ist nicht altersabhängig.
Hinsichtlich der Symptomatik und der gesundheitsbezogenen Lebens-
qualität zeigen sich Anhaltspunkte für positive und negative Effekte von
Afatinib. Diese sind teilweise altersabhängig, ohne eindeutige Vorteile
von Afatinib gegenüber der zweckmäßigen Vergleichstherapie zu zeigen.
Die altersabhängigen Effekte beeinflussen in diesem Fall die
Gesamtaussage nicht wesentlich, und führen somit nicht zu einer
unterschiedlichen Ein-schätzung des Zusatznutzens für die betrachteten
Altersgruppen. Insgesamt ergibt sich für die Subgruppe der Patienten mit
anderen EGFR-Mutationen als Del19 oder L828R ein Hinweis auf einen
geringeren Nutzen von Afatinib gegenüber Cisplatin in Kombination mit
Pemetrexed.

Cochrane Reviews

a) TKI-nicht-vorbehandelte Patienten

Es wurden keine Cochrane-Reviews gefunden.

b) TKI-vorbehandelte Patienten

Es wurden keine Cochrane-Reviews gefunden.

Systematische Reviews

a) TKI-nicht-vorbehandelte Patienten

Xu JG et al., 2015 [39]. Chemotherapy plus Erlotinib versus Chemotherapy Alone for	 Fragestellung Whether a combination of chemotherapy and erlotinib is beneficial for advanced non-small cell lung cancer (NSCLC) remains controversial. This study aimed to summarize the currently available evidence and compare the efficacy and safety of chemotherapy plus erlotinib versus chemotherapy alone for treating advanced NSCLC.
Treating Advanced Non-Small Cell Lung Cancer: A Meta- Analysis	 2. Methodik Population: advanced NSCLC, Intervention: erlotinib plus standard chemotherapy Komparator: standard chemotherapy alone Endpunkte: PFS, OS, AE Suchzeitraum: bis 10/2014 Anzahl eingeschlossene Studien/Ptienten (Gesamt): 9 (3599) Qualitätsbewertung der Studien: Cochrane Handbook for Systematic Reviews of Interventions Heterogenitätsuntersuchungen:
	3. Ergebnisdarstellung Although all nine eligible trials reported that the participants were randomized into different treatment arms, three of them did not provide details about random sequence generation . Only one trial showed concealment procedures . Five trials were open-label, they did not mask either participants or personnel. Five trials had independent persons who performed the outcome assessment, and one trial did not show details about the blinding of outcome assessment. Six eligible trials conducted efficacy analysis on an intention-to-treat basis; one trial missed two cases in both arms; and one trial missed three patients who were still in treatment. We believe that the outcomes were unlikely to have been affected in these instances. Six trials did not selectively report data , while the protocols of three trials were not available .

Study	Number of points	Dominant ethnicity	Female	Age (range)	Drug delivery	Treatment comparison	Non- smoker	EGFR- mutant	EGFR- wild-typ
Herbst, 2005	1079	Caucasian/ 934	424	24-84	Continuous	E+Carb+Pac vs. Carb+Pac +Placebo	116	29	198
Gatzemeier, 2007	1159	Caucasian/ 1064	267	26-84	Continuous	E+Gem+Cisp vs. Gem +Cisp+Placebo	NA	NA	NA
Mok, 2009	154	Asian/145	46	27–79	Intercalated	E+Gem+Cisp or Carb vs. Gem+Cisp or Carb +Placebo	52	NA	NA
Thomas, 2013	146	NA	73	69-90	Continuous	E+Gem vs. E vs. Gem	240	24	19
Lee, 2013	240	Asian/240	157	NA	Intercalated	E+Pem vs. E vs. Pem	219	97	136
Wu, 2013	451	Asian/451	179	31–96	Intercalated	E+Gem+Cisp or Carb vs. Gem+Cisp or Carb +Placebo	219	97	136
Dittrich, 2014	165	Caucasian/ 157	64	31–84	Continuous	E+Pem vs. E vs Pem	24	NA	NA
Auliac, 2014	151	NA	115	NA	Intercalated	E+docetaxel vs. E vs. docetaxel	11	NA	98
						uocetakei			
Michael, 2014	54	Caucasian/49	22	38-86	Intercalated	E+Gem vs. Gem	8	NA	NA
	54	Caucasian/49	22	38-86		E+Gem vs. Gem			NA
PFS					Hazard Ratio	E+Gem vs. Gem	Hazard Rat	io	NA
PFS Study or St	ubgroup I	og[Hazard Ratio]	SE	Weight	Hazard Rati	E+Gem vs. Gem 5% Cl IV.		io	NA
PFS <u>Study or Si</u> Auliac 2014	ubgroup	og[Hazard Ratio] -0.0408	<u>SE</u> 0.1612	Weight 11.5%	Hazard Rati IV. Random. 9 0.96 [0.70,	E+Gem vs. Gem 5% Cl IV. 1.32]	Hazard Rat	io	NA
PFS Study or Si Auliac 2014 Dittrich 2014	ubgroup l	og[Hazard Ratio] -0.0408 -0.462	<u>SE</u> 0.1612 0.1831	<u>Weight</u> 11.5% 10.6%	Hazard Ratii I <u>V. Random. 9</u> 0.96 [0.70, 0.63 [0.44,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90]	Hazard Rat	io	NA
PFS <u>Study or Si</u> Auliac 2014 Dittrich 201- Gatzemeier	ubgroup 4 2007	og[Hazard Ratio] -0.0408 -0.462 -0.0243	<u>SE</u> 0.1612 0.1831 0.0646	<u>Weight</u> 11.5% 10.6% 15.4%	Hazard Rati IV. Random. 9 0.96 (0.70, 0.63 (0.44, 0.98 (0.86,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11]	Hazard Rat	io	NA
PFS <u>Study or Si</u> Auliac 2014 Dittrich 2014 Gatzemeier Herbst 2005	ubgroup 4 2007	og[Hazard Ratio] -0.0408 -0.462 -0.0243 -0.0243 -0.0576	SE 0.1612 0.1831 0.0646 0.062	Weight 11.5% 10.6% 15.4% 15.5%	Hazard Ration 9 0.96 (0.70, 0.63 (0.44, 0.98 (0.86, 0.94 (0.84,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11] 1.07]	Hazard Rat	io	NA
PFS Auliac 2014 Dittrich 201- Gatzemeier Herbsi 2005 Lee 2013	ubgroup 4 2007 5	og[Hazard Ratio] -0.0408 -0.462 -0.0243 -0.0576 -0.5516	SE 0.1612 0.1831 0.0646 0.062 0.1985	Weight 11.5% 10.6% 15.4% 15.5% 10.0%	Hazard Ratii IV. Random. 9 0.96 [0.70, 0.63 [0.44, 0.94 [0.84, 0.94 [0.84, 0.58 [0.39,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11] 1.07] 0.85]	Hazard Rat	io	NA
PFS Auliac 2014 Dittrich 2014 Gatzemeier Herbst 2005 Lee 2013 Michael 201	ubgroup 4 2007 5	og[Hazard Ratio] -0.0408 -0.462 -0.0243 -0.0576 -0.5516 0.2624	SE 0.1612 0.1831 0.0646 0.062 0.1985 0.3696	Weight 11.5% 10.6% 15.4% 15.5% 10.0% 5.1%	Hazard Ratii IV. Random 9 0.96 (0.70, 0.63 (0.44, 0.98 (0.86, 0.94 (0.84, 0.58 (0.39, 1.30 (0.63,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11] 1.07] 0.85] 2.68]	Hazard Rat	io	NA
PFS Study or Si Auliac 2014 Dittrich 2014 Gatzemeier Herbst 2005 Lee 2013 Michael 201 Mok 2009	ubgroup 4 2007 5	og[Hazard Ratio] -0.0408 -0.462 -0.0243 -0.0576 -0.5516 0.2624 -0.7465	SE 0.1612 0.1831 0.0646 0.062 0.1985 0.3696 0.3696 0.3696	Weight 11.5% 10.6% 15.4% 15.5% 10.0% 5.1% 10.5%	Hazard Rati IV. Random. 9 0.96 (0.70, 0.63 (0.44, 0.98 (0.86, 0.94 (0.84, 0.58 (0.39, 1.30 (0.63, 0.47 (0.33,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11] 1.07] 0.85] 2.68] 0.68]	Hazard Rat	io	NA
PFS Auliac 2014 Dittrich 2014 Gatzemeier Herbst 2005 Lee 2013 Michael 201	ubgroup 4 2007 5	og[Hazard Ratio] -0.0408 -0.462 -0.0243 -0.0576 -0.5516 0.2624 -0.7465 -0.1462	SE 0.1612 0.1831 0.0646 0.062 0.1985 0.3696	Weight 11.5% 10.6% 15.4% 15.5% 10.0% 5.1%	Hazard Ratii IV. Random 9 0.96 (0.70, 0.63 (0.44, 0.98 (0.86, 0.94 (0.84, 0.58 (0.39, 1.30 (0.63,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11] 1.10] 0.85] 2.68] 0.68] 1.49]	Hazard Rat	io	NA
PFS Auliac 2014 Dittrich 2011 Gatzemeier Herbsi 2005 Lee 2013 Michael 201 Mok 2009 Thomas 20	ubgroup 4 2007 5 4 13	og[Hazard Ratio] -0.0408 -0.462 -0.0243 -0.0576 -0.5516 0.2624 -0.7465 -0.1462	SE 0.1612 0.1831 0.0646 0.062 0.1985 0.3696 0.3696 0.3696 0.3696	Weight 11.5% 10.6% 15.4% 15.5% 10.0% 5.1% 10.5% 7.2%	Hazard Ratii IV. Random. 9 0.96 [0.70, 0.63 [0.44, 0.98 [0.86, 0.94 [0.84, 0.58 [0.39, 1.30 [0.63, 0.47 [0.33, 0.46 [0.50,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11] 1.07] 0.85] 2.68] 0.68] 1.49] 0.69]	Hazard Rat	io	NA
Study or Si Auliac 2014 Ditrich 2014 Gatzemeier Herbst 2005 Lee 2013 Michael 201 Mok 2009 Thomas 20 WU 2013 Total (95%	ubgroup 4 2007 5 13 Cl)	og[Hazard Ratio] -0.0408 -0.462 -0.0243 -0.0576 -0.5516 0.2624 -0.7465 -0.1462	SE 0.1612 0.1831 0.0646 0.062 0.1985 0.3696 0.3696 0.3696 0.3698 0.3698	Weight 11.5% 10.6% 15.4% 15.5% 10.0% 5.1% 10.5% 7.2% 14.2% 100.0%	Hazard Rati IV. Random. 9 0.96 (0.70, 0.63 (0.44, 0.98 (0.86, 0.94 (0.84, 0.58 (0.39, 1.30 (0.63, 0.47 (0.33, 0.86 (0.50, 0.57 (0.47, 0.76 (0.62,	E+Gem vs. Gem 5% Cl IV. 1.32] 0.90] 1.11] 1.07] 0.85] 2.68] 0.68] 1.49] 0.69]	Hazard Rat	io	NA 10

	zard Ratio]	SF	Weight	IV, Random, 95% CI	IV, Random, 9
Study or Subgroup log[Ha 1.1.1 Asian-dominant		02	mangin		T¥, IXanuOIII, 3
Lee 2013	-0.5516	0.1985	16.1%	0.58 [0.39, 0.85]	_ _
Mok 2009	-0.7465		18.5%	0.47 [0.33, 0.68]	_ _ _
WU 2013	-0.5621		65.4%	0.57 [0.47, 0.69]	
Subtotal (95% CI)	-0.0021	0.0004	100.0%	0.55 [0.47, 0.69]	
Heterogeneity: $Tau^2 = 0.00$; Chi Test for overall effect: $Z = 7.47$					•
1.1.2 Caucasian-dominant	• • •				
Auliac 2014	-0.0408	0.1612	9.2%	0.96 [0.70, 1.32]	
Dittrich 2014	-0.462	0.1831	7.2%	0.63 [0.44, 0.90]	
Gatzemeier 2007	-0.0243	0.0646	38.3%	0.98 [0.86, 1.11]	
Herbst 2005	-0.0576		40.2%	0.94 [0.84, 1.07]	
Michael 2014	0.2624		1.9%	1.30 [0.63, 2.68]	
Thomas 2013 Subtotal (95% CI)	-0.1462	0.2791	3.3% 100.0%	0.86 [0.50, 1.49] 0.93 [0.84, 1.03]	
Heterogeneity: $Tau^2 = 0.00$; Chi Test for overall effect: $Z = 1.36$		5 (P = 0			Ì
1.1.3 Intercalated therapy	(P = 0.17)				
Auliac 2014	-0.0408	0 1612	22.3%	0.96 [0.70, 1.32]	_ _
Lee 2013	-0.5516		22.3 <i>%</i> 19.7%	0.58 [0.39, 0.85]	_
Michael 2014	0.2624		10.7%	1.30 [0.63, 2.68]	
Michael 2014 Mok 2009					[_]
	-0.7465		20.7%	0.47 [0.33, 0.68]	-
WU 2013 Subtotal (95% CI)	-0.5621	0.0984	26.6% 100.0%	0.57 [0.47, 0.69] 0.67 [0.50, 0.91]	
Heterogeneity: Tau ² = 0.08; Chi	2 = 14.00 df	= 4 (P -			•
Test for overall effect: $Z = 2.62$		- 4 (1- =	0.000 <i>)</i> ; I*	- 1270	
1.1.4 Continuous therapy	0.400	0 4004	44 40/	0.62 (0.44, 0.00)	
Dittrich 2014	-0.462		11.4%	0.63 [0.44, 0.90]	
Gatzemeier 2007	-0.0243		41.0%	0.98 [0.86, 1.11]	
Herbst 2005	-0.0576		42.2%	0.94 [0.84, 1.07]	
Thomas 2013	-0.1462	0.2791	5.4%	0.86 [0.50, 1.49]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0.01; Chi			100.0%	0.91 [0.80, 1.04]	•
Test for overall effect: Z = 1.39	(P = 0.16)				
1.1.5 EGFR-wild Herbst 2005	-0.2216	0.1476	58.1%	0.80 [0.60, 1.07]	
WU 2013	-0.0305			0.97 [0.69, 1.36]	
Subtotal (95% CI)	5.0000		100.0%	0.87 [0.70, 1.08]	•
Heterogeneity: Tau ² = 0.00; Chi Test for overall effect: $Z = 1.26$		1 (P = 0			
1.1.6 EGFR-mut					
Herbst 2005	-0.7136	0.4571	32.6%	0.49 [0.20, 1.20]	
WU 2013	-1.3863			0.25 [0.16, 0.39]	-
Subtotal (95% CI)			100.0%	0.31 [0.17, 0.58]	
Heterogeneity: $Tau^2 = 0.10$; Chi Test for overall effect: $Z = 3.70$		1 (P = 0).19); l ² = 4	42%	
1.1.7 Never smoking					
Herbst 2005	-0.6972			0.50 [0.31, 0.80]	
Lee 2013	-0.5516		26.5%	0.58 [0.39, 0.85]	
Mok 2009	-0.9835		9.6%	0.37 [0.20, 0.71]	
WU 2013	-0.9088	0.1506	46.0%	0.40 [0.30, 0.54]	
Subtotal (95% CI)			100.0%	0.46 [0.37, 0.56]	▼
Heterogeneity: Tau ² = 0.00; Chi Test for overall effect: Z = 7.67).47); l² = (0%	
1.1.8 Smoking(current or prev	rious)				
Mok 2009	-0.5798	0.2114	40.4%	0.56 [0.37, 0.85]	
WU 2013	-0.2107		59.6%	0.81 [0.62, 1.06]	
Subtotal (95% CI)			100.0%	0.70 [0.49, 1.00]	\bullet
Heterogeneity: Tau ² = 0.04; Chi		1 (P = 0			
Test for overall effect: Z = 1.99	(P = 0.05)				
					0.05 0.0 1
					0.05 0.2 1 Favours [experimental] Fav
DS					

			Hazard Ratio	Hazard Ratio
	Study or Subgroup log[Hazard Ratio]	SE Weight	IV. Fixed, 95% CI	IV. Fixed, 95% CI
	Dittrich 2014 -0.393 0.7 Gatzemeier 2007 0.0545 0.0		0.68 [0.46, 0.98]	
	Gatzemeier 2007 0.0545 0.0 Herbst 2005 -0.0051 0.0		1.06 [0.90, 1.23] 0.99 [0.86, 1.16]	
	Lee 2013 -0.293 0.2		0.75 [0.49, 1.13]	
	Michael 2014 -0.2307 0		0.79 [0.38, 1.66]	
	Mok 2009 0.0843 0		1.09 [0.70, 1.69]	
	Thomas 2013 -0.2718 0.2 WU 2013 -0.2307 0.1		0.76 [0.43, 1.35] 0.79 [0.64, 0.99]	-
	-0.2007 0.	100 10.070	0.70 [0.04, 0.00]	
	Total (95% CI)	100.0%	0.94 [0.86, 1.03]	
	Heterogeneity: Chi ² = 10.36, df = 7 (P = 0.17); I	² = 32%		0.01 0.1 1 10 100
	Test for overall effect: Z = 1.40 (P = 0.16)			Favours [experimental] Favours [control]
		SF Weight	Hazard Ratio	Hazard Ratio IV. Fixed, 95% Cl
	1.2.1 Intercalated therapy	<u>JE weight</u>	IV, FIXED, 95% C	
		2124 17.0%	0.75 [0.49, 1.13]	• -+
	Michael 2014 -0.2307 0	0.376 5.4%	0.79 [0.38, 1.66]	
	Mok 2009 0.0843 0			
	WU 2013 -0.2307 0. Subtotal (95% CI)	1108 62.4% 100.0%	0.79 [0.64, 0.99] 0.82 [0.69, 0.98]	-
	Heterogeneity: Chi ² = 1.87, df = 3 (P = 0.60); l ²		0.02 [0.03, 0.30]	•
	Test for overall effect: $Z = 2.21$ (P = 0.03)	070		
	1.2.2 Continuous therapy			
	Dittrich 2014 -0.393 0.		0.68 [0.46, 0.98]	
	Gatzemeier 2007 0.0545 0.1		1.06 [0.90, 1.23]	Ŧ
	Herbst 2005 -0.0051 0.			_
	Thomas 2013 -0.2718 0.3 Subtotal (95% CI)	100.0%		
	Heterogeneity: $Chi^2 = 5.47$, $df = 3$ (P = 0.14); I^2 Test for overall effect: Z = 0.32 (P = 0.75)			
	1.2.3 EGFR-wild			
		1998 47.1% 1886 52.9%	0.78 [0.53, 1.16]	
	Subtotal (95% CI)	1000 52.9%	0.77 [0.53, 1.11] 0.78 [0.59, 1.01]	
	Heterogeneity: $Chi^2 = 0.01$, df = 1 (P = 0.94); l ² Test for overall effect: Z = 1.86 (P = 0.06)			
	1.2.4 EGFR-mut			
	Herbst 2005 -0.1242 0.	7578 12.8%	0.88 [0.20, 3.90]	
		2904 87.2%		
	Subtotal (95% CI) Heterogeneity: Chi ² = 0.58, df = 1 (P = 0.45); l ² Test for overall effect: Z = 2.44 (P = 0.01)	100.0% = 0%	0.52 [0.30, 0.88]	
	1.2.5 Never smoking			_
		2833 36.0%		
	Lee 2013 -0.293 0.1 Subtotal (95% CI)		0.75 [0.49, 1.13] 0.64 [0.46, 0.89]	
	Heterogeneity: $Chi^2 = 1.44$, $df = 1$ (P = 0.23); I^2 Test for overall effect: Z = 2.62 (P = 0.009)		0104 [0140, 0100]	-
				Favours [experimental] Favours [control]
	AE			
	Keine Darstellung nach Mu	utations	status	
	4. Anmerkungen/Fazit d	ler Auto	oren	
	patients with NSCLC, espe	ecially fo ve disea	r patients v se. In addi	a viable treatment option for who never smoked and patients tion, intercalated administration
Vale CL et al.,	1. Fragestellung			
2015 [37].		t of TKIs	as second	-line therapy and maintenance
Should				• •
Should	inerapy after first-line c	nemothe	apy in two	o systematic reviews and

Tyrosine	meta-analyses, focusing on patients without EGFR mutations.					
Kinase Inhibitors Be	2. Methodik					
Considered for Advanced Non-Small-Cell Lung Cancer Patients With Wild Type EGFR? Two Systematic	Population: advanced NSCLC irrespective of sex, age, histology, ethnicity, smoking history, or EGFR mutational status. Patients should not have received previous TKIs					
	<i>Interventionen und Komparatoren:</i> TKI (erlotinib or gefitinib) vs. chemotherapy					
	<i>Endpunkte</i> : PFS, OS					
	Suchzeitraum: bis 2012					
Reviews and Meta-Analyses	Anzahl eingeschlossene Studien/Patienten (Gesamt):					
of Randomized	Second line: 14 (4388) Maintenance: 6 (2697)					
Trials	Qualitätsbewertung der Studien: The risk of bias of individual trials was assessed with a low risk of bias being desirable for sequence generation, allocation concealment, and completeness of outcome data reporting. Trials in the maintenance setting should have also been at low risk of bias for blinding.					
	Heterogenitätsuntersuchungen: l ²					
	3. Ergebnisdarstellung					
	Studiencharakteristika: siehe Anhang					
	Zweitlinienbehandlung					
	Trials compared TKIs with either docetaxel or pemetrexed chemotherapy and were conducted between 2003 and 2012. Six trials were carried out in predominantly Asian populations. Randomized patients had good performance status (0-2) and median age ranged from 54.5 to 67.5 years (range, 20-88 years). Most were men and either current or former smokers. One tria included considerably more women (85%) and only neversmokers. Three trials randomized patients with wild type EGFR exclusively. Five trials evaluated EGFR mutation status using a range of methods (including DAKO EGFR Pharma DX and Eppendorf Piezo-electric microdissector). Mutation status was not evaluated in 5 trials. Twelve trials (3963 patients, 90% of total) reported PFS and 14 trials (4355 patients, 99% of total) reported OS.					
	One trial, published in Chinese language, was judged to be unclear for all domains. The remaining 13 trials were all at low risk of bias regarding incomplete outcome data. Missing data on EGFR mutational status largely resulted from unavailable tumor samples or because the trials were conducted before widespread testing. All were judged to be at low risk of bias for sequence generation. For allocation concealment, 10 trials were judged to be at low risk of bias and 3 were judged as unclear risk. No trials were judged to be at high risk for any of the domains assessed.					

1						
Tan PS et al	1. Fragestell	•				
2015 [36].				ance treatments im	•	е
Bayesian network meta- comparison of maintenance treatments for stage IIIb/IV non-small-cell lung cancer (NSCLC) patients with good performance status not progressing after first-line induction chemotherapy: Results by performance status, EGFR	outcomes for advanced r have little g what drug of network me determined receptor (E 2. Methodik Population had at lea Oncology PS 0-1, or Interventi Kompara Maintenar administe induction Endpunkt Suchzeitr Anzahl ei Qualitäts	or patients not non-small-cell li guidance on sel or regimen is of eta-analysis of I by performand GFR) mutation on: advanced N ast 80% subject Group (ECOG r Karnofsky PS ion: nicht präs nce treatment v red to non-prog chemotherapy te: OS, PFS, A raum: 12/2003 ingeschlosser bewertung de	progressing after ung cancer (NSC lecting which pati- ptimal. Here, we r maintenance trea ce status (PS), ep n, histology and re NSCLC, ts with good PS: R So PS 0-1, World H So So, spezifiziert was defined as tre gressing patients AE So 10/2014 ne Studien/Patie er Studien: nicht	first-line therapy for LC). However, phy ents benefit the mo report a systematic timents in subgroup oidermal growth fac esponse to induction Eastern Cooperativ lealth Organisation eatment after first-line	e with with with with with with with with	ns nd ew and HO)
mutation,	Heteroge	nitätsuntersu	chungen: I ²			
histology and response to	3. Ergebnisc	larstellung				
previous				patients not progressing after first-line chemothe		
induction	Study	Population	Induction	Maintenance		Median follow- up (months)
	Switch to pemetrexed versus no maints JMEN [8,39,40]	tenance Treatment-naïve (systemic) stage IIIb/IV NSCLC with ECOG PS 0-1 not progressing after induction	Carboplatin or cisplatin/gemcitabine, paclitaxel, or docetaxel (4 cycles)	Switch to pemetrexed 500 mg/m ² day 1 of 21-day cycles plus BSC Placebo plus BSC		11.2 10.1
	Switch to gefitinib versus no maintenan INFORM; C-TONG 0804 [15,19]	reatment-naïve stage IIIb/IV NSCLC with WHO PS 0-2 not progressing after induction	Platinum-doublet chemotherapy (4 cycles)	Switch to gefitinib 250 mg daily		17.8
	EORTC 08021/ILCP 01/03 [14]	Treatment-naïve stage IIIb/IV NSCLC with WHO PS 0-2 not progressing after induction	Platinum-containing chemotherapy (median 4 cycles, range 2-6 cycles)	Placebo Switch to gefitinib 250 mg daily	148 86	41

Switch to erlotinib versus no maintee SATURN [16,41,42]

Switch to sunitivily versus no mainten CALGB 30607 [43]

Switch to pazopanib versus no mainte EORTC 08092 [44]

Switch to docetaxel versus no mainten Fidias et al. [10,25]

IFCT-GFPC 0502 [17]

Treatment-naïve recurrent or stage IIIb/IV NSCLC with ECOG PS 0-1 not progressing after induction Treatment-naïve stage IIIb/IV NSCLC with ECOG PS 0-1 not progressing after induction

Treatment-naïve stage IIIb/IV NSCLC with ECOG PS 0-1 not progressing after induction

mce Treatment-naïve advanced NSCLC with ECOG PS 0-2 not progressing after induction

Chemo-naive stage IIIb/IV NSCLC with ECOG PS 0-2 not progressing after induction 87

438 11.4 451 11.5

155 155

106

104

50 -52 -

25.6

Placebo

Placebo

Placebo

Switch to erlotinib 150 mg daily Placebo

Switch to erlotinib 150 mg daily Observation

Switch to sunitinib 37.5 mg qd

Switch to pazopanib 800 mg daily

Switch to immediate docetaxel 75 mg/m² 153 – day 1 every 21-day cycle (maximum 6 cycles) Delayed docetaxel 75 mg/m² day 1 every 156 – 21-day cycle (maximum 6 cycles) at progression

Platinum-doublet chemotherapy (4 cycles)

Cisplatin/gemcitabine (4 cycles)

Platinum containing chemotherapy (4 cycles)

Platinum containing chemotherapy (4-6 cycles)

Carboplatin/gemcitabine (4 cycles)

Study	Population	Induction	Maintenance	N	Median follo up (months)
Switch to docetaxel versus conti					
Karayama et al. [45]	Chemo-naive nonsquamous stage IIIb/IV NSCLC with ECOG PS 0-1 not progressing after induction	Carboplatin/pemetrexed (4 cycles)	Switch to docetaxel 60 mg/m ² day 1 every 21-day cycle	25	16.8
	maccon		Continue pemetrexed 500 mg/m2 day 1 every 21-day cycle	26	
Continue pemetrexed versus no r	naintenance				
PARAMOUNT [9,46,47]	Chemo-naïve nonsquamous stage IIIb/IV NSCLC with ECOG PS	Cisplatin/pemetrexed (4 cycles)	Continue pemetrexed 500 mg/m2 day 1 every 21-day cycle plus BSC	359	12.5
	0-1 not progressing after induction ^b		Placebo plus BSC	180	
Mubarak et al. [48]	Treatment-naïve (systemic) nonsquamous stage IIIb/IV	Cisplatin/pemetrexed (4 cycles)	Continue pemetrexed 500 mg/m ² every 21 days plus BSC	28	-
	NSCLC with ECOG PS 0-1 not progressing after induction		days plus BSC BSC	27	
Continue gemcitabine versus no	maintenance				
IFCT-GFPC 0502 [17]	Treatment-naïve stage IIIb/IV NSCLC with ECOG PS 0-1 not	Cisplatin/gemcitabine (4 cycles)	Continue gemcitabine 1250 mg/m ² days 1 and 8 every 21-days cycle	154	25.6
Production of all (1993)	progressing after induction		Observation	155	20.5
Brodowicz et al. [18]	Chemo-naïve stage IIIb/IV NSCLC with Karnofsky PS >80	Cisplatin/gemcitabine (4 cycles)	Continue gemcitabine 1250 mg/m ² days 1 and 8 every 21-days cycle plus BSC	66	20.5
	not progressing after induction ^e		BSC	33	17
Pemetrexed/bevacizumab versus					
AVAPER1 [35,36]	Treatment-naïve nonsquamous recurrent or stage IIIb/IV	Cisplatin/pemetrexed/bevacizumab 7.5 mg/kg (4 cycles)	Bevacizumab 7.5 mg/kg/pemetrexed 500 mg/m ² on day 1 of 21-days cycle	128	14.8
	NSCLC with ECOG PS 0-1		Bevacizumab 7.5 mg/kg on day 1 of 21- days cycle	125	
Erlotinib/bevacizumab versus bev	acizumab alone				
ATLAS [37,38]	Treatment-naïve recurrent or stage IIIb/IV NSCLC with	Chemotherapy/bevacizumab 15 mg/kg (4 cycles)	Bevacizumab 15 mg/kg on day 1 of 21- days cycle/erlotinib 150 mg daily	370	8.5
	ECOG PS 0-2	• •	Bevacizumab 15 mg/kg on day 1 of 21- days cycle /placebo	373	8.3

ison to terminate, unless otherwise stated. Outcomes were measured from randomisation. Where multiple publications are available, most mature results were used. Included 3/539 patients with ECOGP 8 > 1. Subgroup results of subjects with KPS >80 were used. N, sample size; BSC, best supportive care; PS, performance status; NSCLC, non-small-cell lung cancer; ECOG, Eastern Cooperative Oncology og; WHO, Word Health Organisation.

Trials included in network meta-analysis evaluating maintenance treatments in good performance status stage IIIb/IV non-small-cell lung cancer (NSCLC) patients not progressing after first-line induction. Thicknesses of lines are proportional to the number of trials included in analyses.

OS

In the EGFR mutation positive population, SUCRA, probability of being the best, and probability of outperforming no maintenance for switch to EGFR TKI was 94.1%, as these measures are equivalent for the comparison of only two treatments, EGFR TKI and no maintenance. In the EGFR wild-type population, SUCRA, probability of being the best, and probability of outperforming no maintenance for switch to EGFR TKI was 88.3% (Fig. 3, Table 2). Examination of treatment by EGFR mutation interaction showed that switch to EGFR TKI had 84% posterior probability of performing better relative to no maintenance in the EGFR mutation positive versus EGFR wild-type population (Table 2). There was no evidence of a difference between switch erlotinib and switch gefitinib in either the EGFR mutant or wild-type subpopulations (Appendix Table A3). At the time of SATURN

study or setting. Treatments Maintenance	by covariate interactions exan SUCRA, % (predictive) ^c	nine posterior probabili Probability best (predictive) ^e	Probability outperforming no maintenance (predictive) ⁶	Overall survival, HR (95% Crl)	ttient subgroups. Treatment by covariate interaction
ECOG PS 0		(predictive)	no namenance (preactive)	na (osa ca)	Probability better in PS 0 versus PS
Switch to pemetrexed*	85.4 (83.7)	0.63 (0.60)	1.00 (0.99)	0.57 (0.37-0.87)	0.89 (0.87); $p = 0.149$
Continue pemetrexed*	59.7 (59.3)	0.18 (0.19)	0.96 (0.94)	0.70 (0.46-1.06)	0.73 (0.71); p = 0.469
Continue gemcitabine	56.1 (55.9)	0.15 (0.16)	0.95 (0.93)	0.72 (0.46-1.07)	0.80(0.77); p = 0.137
Switch to EGFR TKI"	45.5 (46.0)	0.04 (0.05)	0.97 (0.94)	0.77 (0.58-1.01)	0.65 (0.62); p = 0.707
No maintenance	3.2 (5.1)	0.00 (0.00)	5	1.00	E and a second s
ECOG PS 1					
Switch to pemetrexed	67.3 (65.9)	0.38 (0.36) 0.20 (0.21)	0.90 (0.88) 0.95 (0.90)	0.80 (0.57-1.13) 0.83 (0.66-1.05)	-
Switch to EGFR TKI ^b Continue pemetrexed ^a	63.8 (62.3) 63.2 (62.0)	0.20 (0.21) 0.29 (0.28)	0.95 (0.90) 0.90 (0.87)	0.83 (0.66-1.05) 0.82 (0.60-1.12)	3
Continue gencitabine	42.7 (43.8)	0.13 (0.14)	0.73 (0.71)	0.90 (0.64-1.32)	
No maintenance	13.0 (16.0)	0.00 (0.00)		1.00	a
EGFR mutant					Probability better in EGFR mutant
Switch to EGFR TKI	94.1 (93.3)	0.94 (0.93)	0.94 (0.93)	0.58 (0.29-1.16)	0.84 (0.83); p = 0.301
No maintenance	5.9 (6.7)	0.06 (0.07)		1.00	
EGFR wild-type					
Switch to EGFR TKI	88.3 (84.4)	0.88 (0.84)	0.88 (0.84)	0.84 (0.64-1.13)	
No maintenance	11.7 (15.6)	0.12 (0.16)		1.00	
Nonsquamous					Probability better in nonsquamous
Switch to pemetrexed	76.6 (74.7)	0.30 (0.29)	0.99 (0.98)	0.70 (0.52-0.94)	0.96 (0.94); p = 0.039
Switch to docetaxel Switch to EGFR TKI ^b	70.3 (69.9) 60.5 (59.4)	0.54 (0.53) 0.09 (0.10)	0.81 (0.81) 0.98 (0.95)	0.63 (0.22-1.80) 0.78 (0.62-0.99)	- 0.80 (0.75); $p = 0.335$
Continue pemetrexed	56.1 (55.7)	0.05 (0.07)	0.96 (0.93)	0.80 (0.62-0.99)	
Continue genetitabine	23.1 (25.1)	0.01 (0.02)	0.59 (0.58)	0.96 (0.70-1.35)	0.16 (0.19); p = 0.429
No maintenance	13.4 (15.2)	0.00 (0.00)	-	1.00	
Squamous					
Continue gemcitabine	88.4 (86.0)	0.79 (0.74)	0.92 (0.90)	0.74 (0.49-1.16)	-
Switch to EGFR TKIb	56.6 (55.9)	0.13 (0.15)	0.78 (0.74)	0.91 (0.70-1.18)	-
No maintenance Switch to pemetrexed	31.5 (32.8) 23.5 (25.3)	0.02 (0.02) 0.07 (0.08)	0.36 (0.37)	1.00 1.07 (0.72-1.58)	8
	man (man)	and final	new (Wart)	. or (scr =-1.20)	Bart Lilling berry strengthere
Induction response CR/PR Switch to docetaxel	87.9 (86.2)	0.66 (0.62)	0.99 (0.98)	0.61 (0.40-0.93)	Probability better in CR/PR versus 0.96 (0.95); p = 0.044
Continue gencitabine	87.9 (86.2) 62.5 (61.1)	0.15 (0.15)	0.94 (0.91)	0.81 (0.40-0.93) 0.77 (0.52-1.08)	0.96 (0.95); p = 0.044 0.87 (0.84); p = 0.081
Continue pemetrexed ^a	51.5 (51.3)	0.09 (0.10)	0.87 (0.85)	0.81 (0.56-1.17)	0.40(0.41); p = 0.770
Switch to pemetrexed*	51.3 (51.1)	0.10 (0.11)	0.86 (0.84)	0.81 (0.55-1.19)	0.14(0.17); p = 0.219
Switch to EGFR TKIh	37.9 (38.8)	0.01 (0.02)	0.89 (0.84)	0.87 (0.70-1.09)	0.25 (0.30); $p = 0.317$
No maintenance	9.0 (11.5)	0.00 (0.00)		1.00	

intervals in black and 95% predictive intervals in red). bSwitch pemetrexed [39] and continue pemetrexed estimates were estimated from trials results within the nonsquamous population. cTKI estimates by PS were in a predominantly Caucasian population. TKI, tyrosine kinase inhibitors; HR, hazard ratio.

PFS

PFS benefit was broadly consistent with OS benefit although more pronounced, with selected maintenance treatments showing remarkable ≥99% probability of outperforming no maintenance.

4. Anmerkungen/Fazit der Autoren

Für alle Patienten (unabhängig vom Mutationsstatus):

Selected maintenance treatments showed clinically meaningful benefits of P20% reduction in hazards of death with P90% probability of outperforming no maintenance in terms of OS: (i) switch to or continue pemetrexed (nonsquamous), continue gemcitabine, or switch to EGFR tyrosine kinase inhibitors (TKIs) for PS 0 patients, (ii) switch to pemetrexed (nonsquamous) for PS 1 patients, (iii) switch to EGFR TKI for EGFR mutation positive patients, (iv) switch to or continue pemetrexed or switch to EGFR TKI for nonsquamous patients, (v) continue gemcitabine for squamous patients, (vi) switch to or continue pemetrexed (nonsquamous patients, (vi) switch to or continue gemcitabine for responders to induction, or (vii) switch to or continue pemetrexed (nonsquamous) or switch to EGFR TKI for patients with stable disease post-induction.

Maintenance treatments show clinically meaningful survival benefits in good performance status patients with advanced NSCLC not progressing after first-line chemotherapy. Benefits are optimised by targeting specific maintenance to individual patients guided by PS, EGFR mutation status, histology and response to induction.

Hinweis der FBMed:

Es erfolgte keine Qualitätsbewertung der Primärstudien.

snona /	1. Frageste	lluna						
Sheng Z ,								
hang Y, 2015		ام مططمط	ha ahamati	arony and ECED TV	la aingla agant hava			
4] .				nerapy and EGFR-TK	• •			
GFR-TKIs	been used	d as first-li	ne treatme	ent for advanced non-	small cell lung cance			
	patients w	ith and wi	ithout EGF	R mutations. Howeve	r, direct headto- hea			
ombined with	compariso	on betwee	n them is a	still lacking. We perfor	med indirect			
nemotherapy	compariso	ons to ass	ess the tre	atment effects of EGF	-R-TKIs added to			
ersus EGFR-								
KIs single	chemotherapy versus EGFR-TKIs alone via common comparator of standard chemotherapy in both subgroups.							
gent as first-	Standard		rapy in bot	in subgroups.				
-								
ne treatment	2. Methodik	K						
r molecularly	Populat	i on: adva	nced NSC	LC, defined as inoperation	able locally advance			
elected	(stage II	IB) or met	astatic or i	recurrent disease (sta	ge IV)			
atients with	Intervention: first-generation EGFR-TKIs (erlotinib or gefitini							
on-small cell			-	ard platinum doublet c	-			
ing cancer	•	reatment	lioi. Stariud	ard platinum doublet c	nemotificiapy as			
			~~					
		kte: PFS,						
	Suchzei	traum: bi	s 09/2014					
	Anzahl	eingesch	lossene S	tudien/Ptienten (Ges	samt): 12 (2031)			
	Qualität	shewertu	ına der St	udien: Two reviewers	s(7XS) and $YX7$			
			-		·			
	independently assessed the quality of selected studies using the							
	following criteria: (1) generation of allocation concealment, (2)							
	following) criteria: ((1) generat	ion of allocation conce	ealment, (2)			
	-							
	descripti	on of dro	pouts, (3)	masking of randomiza	ition, intervention,			
	descripti outcome	on of dro assessm	pouts, (3) ent, and (4	masking of randomiza 4) intention-to-treat (IT	ition, intervention,			
	descripti outcome criterion	on of dro assessm was rated	pouts, (3) ent, and (4 as yes, n	masking of randomiza 4) intention-to-treat (IT o, or unclear.	ition, intervention,			
	descripti outcome criterion	on of dro assessm was rated	pouts, (3) ent, and (4	masking of randomiza 4) intention-to-treat (IT o, or unclear.	ition, intervention,			
	descripti outcome criterion	on of dro assessm was rated	pouts, (3) ent, and (4 as yes, n	masking of randomiza 4) intention-to-treat (IT o, or unclear.	ition, intervention,			
	descripti outcome criterion Heterog	on of dro assessm was ratec enitätsur	pouts, (3) ent, and (4 as yes, n ntersuchu	masking of randomiza 4) intention-to-treat (IT o, or unclear.	ition, intervention,			
	descripti outcome criterion Heterog	on of dro assessm was ratec enitätsur	pouts, (3) ent, and (4 as yes, n ntersuchu	masking of randomiza 4) intention-to-treat (IT o, or unclear.	ition, intervention,			
	descripti outcome criterion Heterog	on of dro assessm was rated enitätsur darstellu	pouts, (3) lent, and (4 l as yes, n ntersuchu	masking of randomiza 4) intention-to-treat (IT o, or unclear.	ition, intervention,			
	descripti outcome criterion Heterog 3. Ergebnis	on of dro assessm was rated enitätsur sdarstellu	pouts, (3) eent, and (4 d as yes, n ntersuchu ing atients	masking of randomiza 4) intention-to-treat (IT o, or unclear.	ition, intervention,			
	descripti outcome criterion Heterog 3. Ergebnis	on of dro assessm was ratec enitätsur sdarstellu	pouts, (3) lent, and (4 d as yes, n ntersuchu I ng	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: I ²	ition, intervention, T) analyses. Each			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) EGFR-TKIs versus Chem	on of dro assessm was rated enitätsur sdarstellu characteristics of pr <u>No. of</u> <u>EGFR</u> -	pouts, (3) lent, and (4 d as yes, n ntersuchu Ing atients No. of EGFR ⁺	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: I ²	EGFR assessment method			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) EGFR-TKIs versus Chen First-SIGNAL [3]	on of dro assessm was rated enitätsur sdarstellu characteristics of pa <u>No. of</u> <u>EGFR</u> - motherapy 54	pouts, (3) pent, and (4 d as yes, n ntersuchu ing atients No. of EGFR ⁺	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ²	EGFR assessment method			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) EGFR-TKIs versus Chem	on of dro assessm was rated enitätsur sdarstellu characteristics of pr <u>No. of</u> <u>EGFR</u> -	pouts, (3) lent, and (4 d as yes, n ntersuchu Ing atients No. of EGFR ⁺	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: I ²	EGFR assessment method			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) EGFR-TKIs versus Chen First-SIGNAL [3] IPASS [4, 5]	on of dro assessm was rated enitätsur sdarstellu characteristics of pr <u>No. of</u> <u>EGFR⁻</u> notherapy 54 176	pouts, (3) pent, and (4 d as yes, n ntersuchu ng atients No. of EGFR ⁺	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP	EGFR assessment method			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic of Study name (Ref) <i>EGFR-TKIs versus Chem</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9] GTOWG ^a [10]	on of dro assessm was rated enitätsur sdarstellu haracteristics of pr No. of EGFR ⁻ notherapy 54 176 0 0 75	pouts, (3) ient, and (4 d as yes, n intersuchu ing atients No. of EGFR+ 43 261 172 228 10	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CisD Gefitinib versus CP Erlotinib versus CV	EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) EGFR-TKIs versus Chen First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9]	on of dro assessm was rated enitätsur sdarstellu characteristics of pr No. of EGFR ⁻ notherapy 54 176 0 0	pouts, (3) pent, and (4 as yes, n intersuchu ing atients No. of EGFR+ 43 261 172 228	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CisD Gefitinib versus CisD Gefitinib versus CP	EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic of Study name (Ref) <i>EGFR-TKIs versus Chem</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9] GTOWG ^a [10]	on of dro assessm was rated enitätsur sdarstellu haracteristics of pr No. of EGFR ⁻ notherapy 54 176 0 0 75	pouts, (3) ient, and (4 d as yes, n intersuchu ing atients No. of EGFR+ 43 261 172 228 10	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CV Erlotinib versus CV Erlotinib versus CV Erlotinib versus	EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) <i>EGFR-TKIs versus Chem</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12]	on of dro assessm was rated enitätsur sdarstellu characteristics of pr <u>No. of</u> <u>EGFR</u> - motherapy 54 176 0 0 75 236 0	pouts, (3) pent, and (4 as yes, n intersuchu ing atients No. of EGFR+ 43 261 172 228 10 39 173	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CV Erlotinib versus CV Erlotinib versus CSG Erlotinib versus mathematical construction	EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing, Direct sequencing Direct sequencing Direct sequencing Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) <i>EGFR-TKIs versus Chen</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9] GTOWG ^a [10] TORCH [11]	on of dro e assessm was rated enitätsur sdarstellu characteristics of pr No. of EGFR- notherapy 54 176 0 0 75 236 0 0	and (a) and (a) <td< td=""><td>masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CV Erlotinib versus CV Erlotinib versus CV Erlotinib versus</td><td>EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing Direct sequencing Direct sequencing Direct sequencing</td></td<>	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CV Erlotinib versus CV Erlotinib versus CV Erlotinib versus	EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing Direct sequencing Direct sequencing Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic of Study name (Ref) <i>EGFR-TKIs versus Chem</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ^b [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12] OPTIMAL [13, 14]	on of dro e assessm was rated enitätsur sdarstellu characteristics of pr No. of EGFR- notherapy 54 176 0 0 75 236 0 0	pouts, (3) pent, and (4 as yes, n intersuchu ing atients No. of EGFR+ 43 261 172 228 10 39 173	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CV Erlotinib versus CV Erlotinib versus CSG Erlotinib versus mathematical construction	EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing, Direct sequencing Direct sequencing Direct sequencing Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis <u>Table 1 Demographic c</u> Study name (Ref) <u>EGFR-TKIs versus Chen</u> First-SIGNAL [3] IPASS [4, 5] WITOG3405 [6, 7] NEJ002 ^b [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12] OPTIMAL [13, 14] EGFR-TKIs + Chemothe INTACT 1 [15, 16] INTACT 2 [16, 17]	on of dro e assessm was rated enitätsur sdarstellu characteristics of pr <u>BGFR</u> - notherapy 54 176 0 0 75 236 0 0 0 erapy 280	pouts, (3) pent, and (4 as yes, n ntersuchu ing atients No. of EGFR+ 43 261 172 228 10 39 173 154 32	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Gefitinib versus CP Erlotinib versus CP Gefitinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CP CP versus CP	EGFR assessment method EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing, PCR clamp Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) <i>EGFR-TKIs versus Chen</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12] OPTIMAL [13, 14] <i>EGR-TKIs</i> + Chemothe INTACT 1 [15, 16] INTACT 2 [16, 17] TALENT [18, 19]	on of dro assessm was rated enitätsur sdarstellu characteristics of pa notherapy 54 176 0 75 236 0 0 0 erapy 280 NA	pouts, (3) pent, and (4 d as yes, n intersuchu ing atients No. of EGFR+ 43 261 172 228 10 39 173 154 32 NA	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Gefitinib versus CP Erlotinib versus CB Gefitinib + CP versus CisG Gefitinib + CP versus CP Erlotinib + CisG versus CisG	EGFR assessment method EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic of Study name (Ref) <i>EGFR-TKIs versus Chen</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ^b [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12] OPTIMAL [13, 14] <i>EGFR-TKIs</i> + Chemothe INTACT 1 [15, 16] INTACT 2 [16, 17] TALENT [18, 19] TRIBUTE [20]	on of dro e assessm was rated enitätsur sdarstellu characteristics of pr <u>No. of</u> <u>EGFR</u> - notherapy 54 176 0 0 75 236 0 0 0 erapy 280 NA 198	pouts, (3) pouts, and (4 as yes, n ntersuchu ing as as No, of EGFR+ 43 261 172 228 10 39 173 154 32 NA 29	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CB Gefitinib + CisG versus CisG Gefitinib + CisG versus CisG Erlotinib + CisG versus CisG Erlotinib + CisG versus CisG Erlotinib + CP versus CP	EGFR assessment method EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing, PCR clamp PCR clamp Direct sequencing, PCR clamp Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing NA Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) <i>EGFR-TKIs versus Chen</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12] OPTIMAL [13, 14] <i>EGFR-TKIs + Chemothe</i> INTACT 1 [15, 16] INTACT 2 [16, 17] TALENT [18, 19] TRIBUTE [20] <i>ARMS</i> amplification reficientlatin-docetaxel, CG	on of dro assessm was rated enitätsur sdarstellu characteristics of pr <u>No. of</u> <u>EGFR</u> - notherapy 54 176 0 0 75 236 0 0 75 236 0 0 0 75 236 0 0 8 236 0 0 8 236 0 0 8 236 0 198	pouts, (3) pouts, (3) pent, and (4 d as yes, n ntersuchu ing utients No. of EGFR ⁺ 43 261 172 228 10 39 173 154 32 NA 29 ystem, <i>CisG</i> cisplat abine, <i>G</i> gencitabin	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Gefitinib versus CP Erlotinib versus CB Gefitinib + CP versus CisG Gefitinib + CP versus CP Erlotinib + CisG versus CisG	EGFR assessment method EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing, PCR clamp PCR clamp Direct sequencing Direct sequencing ARA Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing NA Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic c Study name (Ref) EGFR-TKIs versus Chen First-SIGNAL [3] IPASS [4, 5] WITOG3405 [6, 7] NEJ002 ^b [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12] OPTIMAL [13, 14] EGFR-TKIs + Chemothe INTACT 2 [16, 17] TALENT [18, 19] TRIBUTE [20] ARMS amplification refi cisplatin-docetaxel, CG EGFR absence of epide 19 and exon 21 only ^a Trials reported in absta	on of dro assessm was rated enitätsur sdarstellu characteristics of pa notherapy 54 176 0 0 75 236 0 0 75 236 0 0 0 erapy 280 NA 198 ractory mutation s carboplatin-gemeit rmal growth factor ract format	pouts, (3) pent, and (4 d as yes, n ntersuchu ing atients No. of EGFR ⁺ 43 261 172 228 10 39 173 154 32 NA 29 ystem, <i>CisG</i> cisplat abine, <i>G</i> geneitabin receptor mutation, <i>N</i>	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CSG Erlotinib versus CSG Erlotinib + CSG versus CisG Gefitinib + CSG versus CisG Gefitinib + CSG versus CisG Gefitinib + CP versus CP Erlotinib + CP versus CP Erlotinib + CP versus CP Erlotinib + CP versus CP Erlotinib + CP versus CG Gefitinib + CP versus CP Erlotinib + CP versus CisG Erlotinib + CP versus CP Erlotinib + CP versus CisG Erlotinib + CP versus CP	EGFR assessment method EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing, PCR clamp PCR clamp Direct sequencing Direct sequencing ARA Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing NA Direct sequencing			
	descripti outcome criterion Heterog 3. Ergebnis Table 1 Demographic of Study name (Ref) <i>EGFR-TKIs versus Chen</i> First-SIGNAL [3] IPASS [4, 5] WJTOG3405 [6, 7] NEJ002 ⁶ [8, 9] GTOWG ^a [10] TORCH [11] EURTAC [12] OPTIMAL [13, 14] <i>EGFR-TKIs</i> + Chemothe INTACT 1 [15, 16] INTACT 2 [16, 17] TALENT [18, 19] TRIBUTE [20] <i>ARMS</i> amplification refi cisplatin-docetaxel, <i>CG</i> of <i>EGFR</i> absence of epide 19 and exon 21 only	on of dro assessm was rated enitätsur sdarstellu characteristics of pa notherapy 54 176 0 0 75 236 0 0 75 236 0 0 0 erapy 280 NA 198 ractory mutation s carboplatin-gemeit rmal growth factor ract format	pouts, (3) pent, and (4 d as yes, n ntersuchu ing ntersuch	masking of randomiza 4) intention-to-treat (IT o, or unclear. ngen: l ² Therapy regimen Gefitinib versus CisG Gefitinib versus CP Gefitinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CP Erlotinib versus CSG Erlotinib versus CSG Erlotinib + CSG versus CisG Gefitinib + CSG versus CisG Gefitinib + CSG versus CisG Gefitinib + CP versus CP Erlotinib + CP versus CP Erlotinib + CP versus CP Erlotinib + CP versus CP Erlotinib + CP versus CG Gefitinib + CP versus CP Erlotinib + CP versus CisG Erlotinib + CP versus CP Erlotinib + CP versus CisG Erlotinib + CP versus CP	EGFR assessment method EGFR assessment method Direct sequencing ARMS Direct sequencing, PCR clamp PCR clamp Direct sequencing, PCR clamp PCR clamp Direct sequencing Direct sequencing ARA Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing Direct sequencing NA Direct sequencing			

	lazard Ratio] SE	Hazard Ratio	Hazard Ratio IV, Random, 95
		by in patients with mutant EGFR	
INTACT1-2	0.571 0.6443	1.77 [0.50, 6.26]	
TALENT	-0.0513 0.8195	0.95 [0.19, 4.73]	
TRIBUTE	-0.2178 0.7578	0.80 [0.18, 3.55]	
Subtotal (95% CI)		1.18 [0.52, 2.69]	-
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.3		70); I ² = 0%	
1.3.2 EGFR-TKIs + Chemoth	erapy vs Chemotherap	oy in patients with wild-type EGF	R
ATLAS	-0.1508 0.1455	0.86 [0.65, 1.14]	
INTACT1-2	-0.0943 0.155	0.91 [0.67, 1.23]	
TALENT	0.1398 0.191	1.15 [0.79, 1.67]	
TRIBUTE	-0.2485 0.1998	0.78 [0.53, 1.15]	
Subtotal (95% CI)		0.91 [0.77, 1.07]	•
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 1.13		52); l ² = 0%	
1.3.3 EGFR-TKIs vs. Chemo	therapy in patients wit	h mutant EGFR	
EURTAC	0.0392 0.2407	1.04 [0.65, 1.67]	
First-SIGNAL	0.0392 0.3756	1.04 [0.50, 2.17]	
GTOWG	-0.3147 0.8435	0.73 [0.14, 3.81]	.]
IPASS	0 0.1408	1.00 [0.76, 1.32]	
NEJ002	-0.1165 0.1727	0.89 [0.63, 1.25]	
OPTIMAL	0.0392 0.2097	1.04 [0.69, 1.57]	
TORCH	0.4574 0.4156	1.58 [0.70, 3.57]	
WJTOG3405	0.174 0.2208	1.19 [0.77, 1.83]	
Subtotal (95% CI)		1.02 [0.88, 1.20]	T
Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 0.2		93); 1² = 0%	
1.3.4 EGFR-TKIs vs. Chemo			
First-SIGNAL	0 0.3319	1.00 [0.52, 1.92]	
GTOWG	-0.3147 0.8435	0.73 [0.14, 3.81]	· · · · ·
IPASS	0.1655 0.1615	1.18 [0.86, 1.62]	
TORCH	0.2546 0.1446	1.29 [0.97, 1.71]	
Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; C		1.21 [0.99, 1.47]	
			Favours EGFR-TKIs Favo
Indirect comparise	on of chemot	herany added to F	GER-TKIS VORSU
TKIs single agent (OS) in previously	on progress	herapy added to E sion-free survival (I advanced NSCLC atio. CL 95 % cont	PFS) and overal patients with an
TKIs single agent (OS) in previously	on progress	ion-free survival (PFS) and overal patients with an
TKIs single agent (OS) in previously	on progress / untreated a HR hazard r	ion-free survival (ladvanced NSCLC	PFS) and overal patients with an
TKIs single agent (OS) in previously EGFR mutations.	on progress / untreated a HR hazard r	ion-free survival (ladvanced NSCLC	PFS) and overal patients with an
TKIs single agent (OS) in previously EGFR mutations. random-effects mo	on progress / untreated a HR hazard r odel log[Hazard Ratio]	Hazard Ratio	PFS) and overal patients with an idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo	on progress / untreated a HR hazard r odel log[Hazard Ratio]	Hazard Ratio	PFS) and overal patients with and idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo	on progress / untreated a HR hazard r odel log[Hazard Ratio]	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR	PFS) and overal patients with an idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat	Hazard Ratio Hazard Ratio <u>SE IV. Random, 95% CI</u> tients with mutant EGFR 1.0778 1.16 [0.99, 1.35]	PFS) and overal patients with an idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR .0778 1.16 [0.99, 1.35] .1396 1.35 [1.03, 1.77]	PFS) and overal patients with and idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison	on progress / untreated a HR hazard r odel log[Hazard Ratio] 0.145 0 0.3001 0 on PFS and OS in pat	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] tients with wild-type EGFR	PFS) and overal patients with and idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.3001 0 on PFS and OS in pat -0.2849 0	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR 1.0778 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85]	PFS) and overal patients with and idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison	on progress / untreated a HR hazard r odel log[Hazard Ratio] 0.145 0 0.3001 0 on PFS and OS in pat	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR 1.0778 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85]	PFS) and overal patients with and idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.3001 0 on PFS and OS in pat -0.2849 0	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR 1.0778 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85]	PFS) and overal patients with and idence interval. Hazard Ratio
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.3001 0 on PFS and OS in pat -0.2849 0	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR 1.0778 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85]	PFS) and overall patients with and idence interval.
TKIs single agent (OS) in previously EGFR mutations. random-effects mo <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.3001 0 on PFS and OS in pat -0.2849 0	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI Hents with mutant EGFR 1.0778 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] Hients with wild-type EGFR 1.0645 0.75 [0.66, 0.85] 1.0923 0.38 [0.32, 0.46]	PFS) and overall patients with and idence interval.
TKIs single agent (OS) in previously EGFR mutations. random-effects model <u>Study or Subgroup</u> 1.4.1 Indirect comparison Overall Survival Progression free survival Overall Survival Progression free survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR .0778 1.16 [0.99, 1.35] .1396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85] .0923 0.38 [0.32, 0.46]	PFS) and overal patients with and idence interval.
TKIs single agent (OS) in previously EGFR mutations. random-effects mode Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival Overall Survival Progression free survival A.2 Indirect comparison Overall Survival Progression free survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Au	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR .0778 1.16 [0.99, 1.35] .1396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85] .0923 0.38 [0.32, 0.46] Fa utoren	PFS) and overal patients with and idence interval. Hazard Ratio IV. Random, 95%
TKIs single agent (OS) in previously EGFR mutations. random-effects mode Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival Overall Survival Progression free survival A.2 Indirect comparison Overall Survival Progression free survival	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Au	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR .0778 1.16 [0.99, 1.35] .1396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85] .0923 0.38 [0.32, 0.46]	PFS) and overal patients with an idence interval. Hazard Ratio IV. Random, 95%
TKIs single agent (OS) in previously EGFR mutations. random-effects mode Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival Progression free survival A. Anmerkunger In summary, additi	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Au	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR .0778 1.16 [0.99, 1.35] .1396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85] .0923 0.38 [0.32, 0.46] Fa utoren herapy to EGFR-TI	PFS) and overal patients with an idence interval. Hazard Ratio IV. Random. 95%
TKIs single agent (OS) in previously EGFR mutations. random-effects mode Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival Progression free survival A. Anmerkunger In summary, additi	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Au	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR .0778 1.16 [0.99, 1.35] .1396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85] .0923 0.38 [0.32, 0.46] Fa utoren	PFS) and overal patients with and idence interval. Hazard Ratio IV. Random. 95%
TKIs single agent (OS) in previously EGFR mutations. random-effects mode Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival Progression free survival A. Anmerkunger In summary, additidid confer an additididid	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Au	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI Hents with mutant EGFR 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] Hents with wild-type EGFR 0.045 0.75 [0.66, 0.85] 0.0923 0.38 [0.32, 0.46] Fa utoren herapy to EGFR-TI ver EGFR-TKIs alor	PFS) and overal patients with and idence interval. Hazard Ratio IV. Random, 95% + + + + + + + + + + + + + + + + + + +
TKIs single agent (OS) in previously EGFR mutations. random-effects model Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival Progression free survival A. Anmerkunger In summary, additional did confer an additional type EGFR tumors	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Ar ion of chemot tive benefit ov s, but was infe	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI tients with mutant EGFR .0778 1.16 [0.99, 1.35] .1396 1.35 [1.03, 1.77] tients with wild-type EGFR .0645 0.75 [0.66, 0.85] .0923 0.38 [0.32, 0.46] Fa utoren herapy to EGFR-TI	PFS) and overall patients with and idence interval. Hazard Ratio IV. Random, 95% + + + + + + + + + + + + + + + + + + +
TKIs single agent (OS) in previously EGFR mutations. random-effects mode Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival Progression free survival A. Anmerkunger In summary, additidid confer an additididid	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Ar ion of chemot tive benefit ov s, but was infe	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI Hents with mutant EGFR 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] Hents with wild-type EGFR 0.045 0.75 [0.66, 0.85] 0.0923 0.38 [0.32, 0.46] Fa utoren herapy to EGFR-TI ver EGFR-TKIs alor	PFS) and overall patients with and idence interval. Hazard Ratio IV, Random, 95% + + + + + + + + + + + + + + + + + + +
TKIs single agent (OS) in previously EGFR mutations. random-effects model Study or Subgroup 1.4.1 Indirect comparison Overall Survival Progression free survival 1.4.2 Indirect comparison Overall Survival Progression free survival A. Anmerkunger In summary, additional did confer an additional type EGFR tumors	on progress / untreated a HR hazard r odel log[Hazard Ratio] on PFS and OS in pat 0.145 0 0.3001 0 on PFS and OS in pat -0.2849 0 -0.964 0 h/Fazit der Ar ion of chemot tive benefit ov s, but was infe	Hazard Ratio Hazard Ratio SE IV. Random, 95% CI Hents with mutant EGFR 1.16 [0.99, 1.35] 1.396 1.35 [1.03, 1.77] Hents with wild-type EGFR 0.045 0.75 [0.66, 0.85] 0.0923 0.38 [0.32, 0.46] Fa utoren herapy to EGFR-TI ver EGFR-TKIs alor	PFS) and overal patients with and idence interval.

Reference treatment vs comparator	Total deaths/patients in both arms	MA HR (95% CI) N=3	MTC HR (95% CI) N=3
Overall survival			
PAX+PLAT vs GEF ^{5 31 36}	199*/448	0.94 (0.74 to 1.18)	0.94 (0.67 to 1.3)
DOC+PLAT vs GEF ³²	NR/172	1.64 (0.75 to 3.58)†	1.64 (0.54 to 4.96)
PAX+PLAT vs DOC+PLAT	No trial data	No trial data	0.57 (0.18 to 1.81)
Progression-free survival			
PAX+PLAT vs GEF ^{5 31 36}	NR/488	0.38 (0.24 to 0.60)	0.39 (0.29 to 0.52)
DOC+PLAT vs GEF ³²	NR/172	0.49 (0.33 to 0.73)†	0.49 (0.28 to 0.86)
PAX+PLAT vs DOC+PLAT	No trial data	No trial data	0.79 (0.42 to 1.48)

Durect evaluate. Bold text indicates statistically significant results. DOC, docetaxel; GEF, gefitinib; MA, meta-analysis; MTC, mixed treatment comparison; NR, not reported; NSCLC, non-small cell lung cancer; PAX, paditaxel; PLAT, platinum.

4. Anmerkungen/Fazit der Autoren

NSCLC population with EGFR+ status Evidence was found that EGFR M+ patients have a better prognosis than other NSCLC patients; this means that gefitinib could only be compared with two standard treatments through evidence from three small trials which recruited from this specific patient subgroup. As there is currently no evidence of OS advantage, at the current price paid by the UK NHS, gefitinib does not appear to be cost effective compared to docetaxel or paclitaxel doublets.

The evidence relating to patients with EGFR M+ status is based on the results from three trials conducted in East Asian countries.

Mok TS, Wu Y-L, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361:947-57.

Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362:2380-8.

Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010;11:121-8.

Fukuoka M, Wu Y-L, Thongprasert S, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced nonsmall-cell lung cancer in Asia (IPASS). J Clin Oncol 2011;29:2866-74.

It is questionable whether the results of these trials are generalisable to UK clinical practice as evidence suggests that East Asian populations with NSCLC have a more favourable prognosis compared with non-East Asian populations. EGFR mutation rates are likely to differ between countries (in Europe and the UK estimated EGFR M+ rates are low compared to Asian countries), although the actual response to chemotherapy may not differ in patients with the same mutation status. Evidence from our review shows that patients who are EGFR M+ have improved OS outcomes compared to all other patients. As yet there are no relevant UK-based trial data for patients with EGFR M+ status; this is not surprising as only a small proportion of UK patients participate in international RCTs. In trials where ethnicity is not a risk factor for disease, this is less of a problem when considering the generalisability

	of results.
	 Hinweis der FBMed Das Ende des Suchzeitraumes lag 5 Jahre vor dem Veröffentlichungsjahr dieses SR.
Liu J et al.,	Fragestellung
2015 [21].1The Efficacy ofrEpidermalp	To determine the efficacy of first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) in molecularly selected patients with advanced non-small cell lung cancer (NSCLC), we performed this pooled analysis.
Receptor	Methodik
Tyrosine Kinase Inhibitors	Population: advanced NSCLC, patients with known EGFRmutation status
forMolecularly Selected	Intervention: first-generation EGFR-TKIs (erlotinib or gefitinib) Komparator: standard chemotherapy or placebo.
Patients with Non-Small Cell	Endpunkte: PFS, OS
Lung Cancer:	Suchzeitraum: bis 09/2014
AMeta-	Anzahl eingeschlossene Studien/Patienten (Gesamt): 30 (4053)
Analysis of 30 Randomized Controlled Trials	Qualitätsbewertung der Studien: Two reviewers (Z.X.S. and Y.X.Z.) independently assessed the quality of selected studies using the following criteria: (1) generation of allocation concealment, (2) description of drop-outs, (3) masking of randomization, intervention, outcome assessment, (4) intention-to-treat (ITT) analysis. Each criterion was rated as yes, no, or unclear.
	Heterogenitätsuntersuchungen: Cochrane χ2 test, I ²
	Ergebnisdarstellung
	All included trials were open-labeled. Random sequence generation and allocation concealment were performed adequately in most of the trials. None were blinded. Only two trials that exclusively designed for wild-type EGFR patients and four trials that designed for mutant EGFR patients reported intention-to-treat analyses, and description of dropouts for molecularly selected patients.

Study name (year)	No. of patients		Therapy Regimen	EGFR Assessment Method			
	EGFR -	EGFR +					
EGFR TKIs vs. Chemotherapy							
First-Line Therapy							
First-SIGNAL 2012 [15]	54	43	Gefitinib vs. CisG	Direct sequencing			
IPASS 2009 [16, 17]	176	261	Gefitinib vs. CP	ARMS			
GTOWG 2010 [18]	75	10	Erlotinib vs. CV	Direct sequencing			
TORCH 2012 [19]	236	39	Erlotinib vs. CisG	Direct sequencing/Fragment analysis/MS			
ML 20322, 2012 [20]	36	24	Erlotinib vs. vinorelbine	Direct sequencing			
WJTOG3405 [21, 22]	0	172	Gefitinib vs. CisD	Direct sequencing, PCR clamp			
NEJ002 23, [24]	0	228	Gefitinib vs. CP	PCR clamp			
EURTAC [25]	0	173	Erlotinib vs. platinum-G or platinum-D	Direct sequencing			
OPTIMAL [26, 27]	0	154	Erlotinib vs. CG	Direct sequencing			
Second/Third-Line Therapy							
V-15-32 2008 [28]	26	31	Gefitinib vs. D	Direct sequencing			
INTEREST 2008 [29, 30]	253	44	Gefitinib vs. D	Direct sequencing			
KCSG-LU08-01 2012 [31]	38	33	Gefitinib vs. Pem	Direct sequencing			
CTONG-0806 2013 [32]	157	0	Gefitinib vs. Pem	Direct sequencing			
TAILOR 2013 [33]	219	0	Erlotinib vs. D	Direct sequencing + fragment analysis			
DELTA 2014 [34]	199	56	Erlotinib vs. Docetaxel	PCR-based method			
TITAN 2012 [35]	149	11	Erlotinib vs. pem or D	Direct sequencing			
NCT01565538 2014 [36]	123	0	Erlotinib vs. pem	ARMS			
CT/06.05, 2013 [37]	112	11	Erlotinib vs. pem	Direct sequencing			
PROSE [38]	163	14	Erlotinib vs. pem or D	NA			
EGFR TKIs vs. Placebo							
First-line Therapy							
TOPICAL 2010 [39, 40]	362	28	Erlotinib vs. placebo	SequenomOncoCarta Panel			
Second/Third-Line Therapy			-				
ISEL 2005 [41]	189	26	Gefitinib vs. Placebo	Direct sequencing, ARMS			
BR21 2005 [42, 43]	170	34	Erlotinb vs. Placebo	Direct sequencing, ARMS			
Maintenance Therapy							
IFCT-GFPC 0502 2010 [44]	106	8	Erlotinib vs. Placebo	NA			
INFORM 2011 [45]	49	30	Gefitinib vs. Placebo	NA			
SATURN 2010 [46]	388	49	Erlotinib vs. Placebo	Direct sequencing			
EGFR TKIs + Chemotherapy v	s. Chemothe	rapy alone					
First-Line Therapy							
INTACT 1 ^A 2004 [47, 48]	280	32	Gefitinib + CisG vs. CisG	Direct sequencing			
INTACT 2 ⁴ 2004 [48, 49]			Gefitinib + CP vs. CP				
TALENT 2007 [50, 51]	NA	NA	Erlotinib + CisG vs. CisG	NA			
TRIBUTE 2005 [52]	198	29	Erlotinib + CP vs. CP	Direct sequencing			
Maintenance Therapy							
ATLAS 2013 [53]	295	52	Erlotinib + B vs. B	NA			

* No. number, ARMS Amplification refractory mutation system, MS MassARRAY, CG Carboplatin-gemcitabine, CisD Cisplatin-docetaxel, CisG Cisplatin-gemcitabine, CisPem Cisplatin-pemetrexed, CP Carboplatin-paclitaxel, CV Carboplatin-venorelbine, D Docetaxel, PEM Pemetrexed, B Bevacizumab, EGFR[®] Presence of epidermal growth factor receptor mutation, EGFR[®] Absence of epidermal growth factor receptor mutation, G Gemcitabine, NA Not available, PCR Polymerasechain reaction; * EGFR mutation based on exon 19 and exon 21 only. [♠] INTACT 2 and INTACT 1 did not report the No. of patients with known EGFR status separately, but reported it together. Also, they both used direct sequencing as the EGFR assessment method

PFS Twenty-eight trials provided available data on PFS except ISEL and BR21 in molecularly selected patients. The treatment effect of EGFR-TKIs in different subgroups is indicated in Fig. 2. *Siehe Anlage 1* - In those patients with mutant EGFR, EGFR-TKIs treatment produced a prominent reduction of the risk of progression over chemotherapy in the first-line setting (HR=0.41 [0.31, 0.55], p<0.00001) and second/third-line treatment (HR=0.46 [0.24, 0.89], p=0.02), as shown in Fig. 2a. However, using a random-effects model, the pooled analysis showed a significantly longer PFS with chemotherapy than with TKIs in the patients with wild-type EGFR (HR, 1.38 [1.12, 1.70], p=0.002) (Fig. 2b), and EGFR-TKIs have fared worse than chemotherapy in the first-line setting (HR=1.65 [1.06, 2.58], p=0.03) and in the second/third-line treatment (1.27 [1.08, 1.51], p=0.005) (Fig. 2b). Also, there were three outlying small trials (ML 20322, V-15-32, KCSG-LU08-01) [20, 28, 31] of less than 50 patients with wild-type EGFR. To strengthen the results of this subgroup analysis, the three small trials

including less than 50 patients with wild-type EGFR were excluded; the same trend favoring chemotherapy over EGFR-TKIs was also found for first- line setting (HR=2.15 [1.68, 2.76], p<0.00001) for second/third-line setting (HR=1.35 [1.17, 1.56], p<0.00001). The heterogeneity within each subgroup decreased prominently, but the difference between the first-line and second/third-line subgroup was significant (p=0.001). The pooled results of four trials showed that patients treated with EGFR-TKIs had a more pronounced PFS benefit compared with placebo among patients with (HR, 0.26 [0.09, 0.79], p=0.02) (Fig. 2c) and without (HR, 0.83 [0.72, 0.95], p=0.006) (Fig. 2d) EGFR mutant tumors. The heterogeneity between the EGFR mutant subpopulation and EGFR wildtype one is significant (p=0.04), suggesting these patients harboring EGFR mutation had a greater improvement in PFS. This benefit was consistent across those trials within the subgroup of patients with EGFR wild-type tumors, but the heterogeneity within the subgroup of EGFR mutant patients was significant because of the TOPICAL trial [39, 40], which was the only trial of first-line treatment. The other three trials were conducted compared EGFR-TKIs versus placebo for maintenance treatment. When pooling them, the same trend favoring EGFR-TKIs over placebo was also found among patients with (HR, 0.14 [0.08, 0.26], p<0.0001) (Fig. 2c) and without (HR, 0.81 [0.68, 0.97], p=0.02) (Fig. 2d) EGFR mutant tumors. The pooled results of five trials showed that patients treated with EGFR-TKIs added to chemotherapy had a more pronounced PFS benefit over chemotherapy alone among patients with (HR, 0.49 [0.32, 0.77], p=0.002) (Fig. 2e) and without (HR, 0.83 [0.71, 0.96], p=0.01) (Fig. 2f) EGFRmutant tumors. The heterogeneity between the two subpopulation is significant (p=0.03), suggesting that these patients harboring EGFR-TKIs in combination with standard platinum doublet chemotherapy for previously untreated patients. When pooling them, the therapeutic advantage for the concur
statistically significant difference in terms of overall survival was observed in any other subgroup analysis (Fig. 3): for these patients with mutant EGFR,
Chemotherapy, 0.72, [0.45, 1.15] (p=0.17) for EGFR-TKIs vs. placebo, 0.74, [0.40, 1.38] (p=0.35) for EGFR-TKIs added to chemotherapy vs.
Chemotherapy alone, respectively. For these patients with wild-type EGFR, the summary HRs were 0.93, [0.77, 1.12] (p=0.45) for EGFR-TKIs vs. placebo, 0.91, [0.77, 1.07] (p=0.26) for EGFR-TKIs added to chemotherapy vs. Chemotherapy alone, respectively.

	Indirect Comparison of EGFR-TKIs Versus EGFR-TKIs Added to									
	Chemotherapy Indirect comparison of EGFR-TKIs versus EGFR-TKIs									
	added to chemotherapy when using standard platinum doublet									
	chemotherapy as common comparator was shown in Fig. 4. For patients									
	with mutant EGFR, EGFR-TKIs was superior to the combination of EGFR-									
	TKIs and chemotherapy in terms of PFS (HR, 0.74 [0.56, 0.97], p=0.03)									
	(Fig. 4a). A marginal trend towards the same direction was also found in the									
	survival analysis (HR, 0.86 [0.74, 1.01], p=0.06) (Fig. 4c). In contrast, EGFR-TKIs was inferior to the combination of EGFRTKIs and chemotherapy in the EGER wild-type subpopulation in terms of PES (HR 2.62 [2.26, 3.04]									
	in the EGFR wild-type subpopulation in terms of PFS (HR, 2.62 [2.26, 3.04], $p_{-0.021}$ (Fig. 4b) and OS (HR, 1.20 [1.03, 1.40], $p_{-0.022}$ (Fig. 4d)									
	p<0.001) (Fig. 4b) and OS (HR, 1.20 [1.03, 1.40], p=0.02) (Fig. 4d).									
	Hazard Ratio Hazard Ratio 									
	3.1.1 Indirect comparison on PFS and OS in EGFR (+)									
	Overall survival -0.1457 0.0778 0.86 [0.74, 1.01] T Progression free survival -0.3001 0.1396 0.74 [0.56, 0.97] T									
	3.1.2 Indirect comparison on PFS and OS in EGFR (-)									
	Overall survival 0.1841 0.0782 1.20 [1.03, 1.40] + Progression free survival 0.964 0.0751 2.62 [2.26, 3.04] +									
	0.05 0.2 1 5 20 Favours EGFR-TKIs EGFR-TKIs + Chemo									
	Anmenikungen/Cerit der Auteren Fer FOFD mutent netiente FOFD Tille									
	Anmerkungen/Fazit der Autoren For EGFR mutant patients, EGFR-TKIs									
	therapy produced a prominent PFS benefit in all settings. Among EGFR									
	wild-type patients, EGFR-TKIs were inferior to chemotherapy both for first- line treatment and for second/thirdline treatment. However, EGFR-TKIs									
	maintenance and addition of EGFR-TKIs to chemotherapy could provide									
	additive benefit over chemotherapy alone in such EGFR wild-type patients.									
Lee CK et al.,	Fragestellung									
2015 [19].	We examined the impact of different epidermal growth factor receptor									
Impact of	(EGFR) mutations and clinical characteristics on progression-free survival									
Specific	(PFS) in patients with advanced EGFR-mutated non-small-cell lung cancer									
Epidermal	treated with EGFR tyrosine kinase inhibitors (TKIs) as first-line therapy.									
Growth Factor	Methodik Population: advanced NSCLC, EGFR M+									
Receptor										
(EGFR)	Intervention: EGFR TKIs									
Mutations and	Komparator: chemotherapy									
Clinical	Endpunkte: PFS									
Characteristics										
on Outcomes After	Suchzeitraum: 2004 – 02/2014									
Treatment	Anzahl eingeschlossene Studien/Patienten (Gesamt): 7 (1649)									
With EGFR	Qualitätsbewertung der Studien: keine Angaben									
Tyrosine										
Kinase	Heterogenitätsuntersuchungen: chi Quadrat Cochran Q test									
Inhibitors										
	1									

emotherapy													
GFR-					Table 1.	Characteristic		in Constitu	ient Trials				
tant Lung	Name, Year		atment parison	Median PFS (months)	No. of Patients	Exon 19 Deletion (%)	Exon 21 L858R Substitution (%)	Age < 65 Years (%)	ECOG PS and 1 (%)		Women (%)	Never-Smoker (%)	Adenocarcinom
	2, 2010,	Gefitini		10.8 v 5.4		51	43	49	99	100	63	62	93
20	13 ^{2,15} * 3 3405,	Gefitini	o v CisD	9.6 v 6.5	172	51	49	53	100	100	69	69	97
Analysis 20	10, 2012 ^{3,16}												
OPTIM 20	AL, 2011, 12 ^{4.18}	Erlotini	v CG	13.1 v 4.6	154	53	47	75	94	100	59	71	87
EURTA	C, 2012 ⁵		o v ium-G or ium-D	9.7 v 5.2	173	66	34	49	86	0	73	69	92
	ing 3, 20136*					49	40	61	100	72	65	68	100
	ing 6, 2014 ⁷ * RE, 2014 ⁸ ‡			11.0 v 5.6 11.0 v 5.5		51 54	38 45	76 79	100 94	100 100	65 61	77 71	100 94
		ЦР	050/ CI				110		E9/ CI				
Trial		HR	95% CI				HR		5% CI				
ENOU	PE		19 deletion		_				ubstitution				
ENSU		0.20 0.27	0.12 to 0.3 0.17 to 0.4				0.5		2 to 0.91 9 to 0.97				
LUX-L		0.28	0.18 to 0.4		-		0.7		6 to 1.16			-	
LUX-L	-	0.20	0.13 to 0.3		-		0.3		9 to 0.54				
NEJO		0.24	0.15 to 0.3		-		0.3		0 to 0.54				
OPTIM	IAL G 3405	0.13 0.42	0.07 to 0.2 0.26 to 0.6		÷		0.2		4 to 0.48 4 to 1.07			<u> </u>	
All	0.0400	0.42	0.20 to 0.2		•		0.6		9 to 0.58			▲	
			er-smoker					nt or form				•	
ENSU	RE	0.33	0.20 to 0.5	54			0.3		7 to 0.76				
EURT	AC	0.24	0.15 to 0.3	39	-		0.5		2 to 1.54 (fe			-+	
LUX-L	una 3	0.47	0.33 to 0.6	57	-		0.6		2 to 1.86 (c 9 to 1.33 (fe				
207-2		9.47	5.00 10 0.1				1.0		4 to 1.99 (c				
LUX-L	ung 6	0.24	0.16 to 0.3	35	-		0.3		7 to 2.29 (fe		-		
NELO	02	0.27	0.10 += 0	11	_		0.4		2 to 0.98 (c	urrent)			
NEJ 0 OPTIN		0.27 0.14	0.18 to 0.4 0.08 to 0.2		-		0.4		3 to 0.74 9 to 0.49				
	G 3405	0.52	0.35 to 0.7				0.5		1 to 0.99				
All		0.32	0.27 to 0.3	37	•		0.5	0 0.40	0 to 0.63			•	
		F	emale					Male					
								E 0.0/	1 to 0 61				
ENSU		0.31	0.20 to 0.4		-		0.3		0 to 0.61				
EURT	AC	0.31 0.30	0.19 to 0.4	18	÷		0.4	0 0.19	9 to 0.84				
	AC .ung 3	0.31		18 77	+++++++++++++++++++++++++++++++++++++++			0 0.19					
EURT/ LUX-L	AC .ung 3 .ung 6	0.31 0.30 0.54 0.24	0.19 to 0.4 0.38 to 0.7	18 77 35	++++		0.4 0.6	0 0.19 1 0.3 6 0.2	9 to 0.84 7 to 1.01			++++	
EURT/ LUX-L LUX-L NEJ00 OPTIN	AC ung 3 ung 6)2 1AL	0.31 0.30 0.54 0.24 0.25 0.13	0.19 to 0.4 0.38 to 0.7 0.16 to 0.3 0.17 to 0.3 0.07 to 0.2	18 77 35 38 24 —	+++++++++++++++++++++++++++++++++++++++		0.4 0.6 0.3 0.4 0.2	0 0.19 1 0.37 6 0.2 8 0.30 6 0.14	9 to 0.84 7 to 1.01 1 to 0.63 0 to 0.77 4 to 0.49			+++++++++++++++++++++++++++++++++++++++	
EURT/ LUX-L LUX-L NEJ00 OPTIM WJT0	AC ung 3 ung 6)2	0.31 0.30 0.54 0.24 0.25 0.13 0.48	0.19 to 0.4 0.38 to 0.3 0.16 to 0.3 0.17 to 0.3 0.07 to 0.2 0.33 to 0.3	18 77 35 38 24 — 71	++++++++++++++++++++++++++++++++++++++		0.44 0.6 0.34 0.44 0.24	0 0.19 1 0.3 6 0.2 8 0.3 6 0.1 1 0.4	9 to 0.84 7 to 1.01 1 to 0.63 0 to 0.77 4 to 0.49 0 to 1.26			++++	
EURT/ LUX-L LUX-L NEJ00 OPTIN	AC ung 3 ung 6)2 1AL	0.31 0.30 0.54 0.24 0.25 0.13	0.19 to 0.4 0.38 to 0.7 0.16 to 0.3 0.17 to 0.3 0.07 to 0.2 0.33 to 0.7 0.28 to 0.3	18 77 35 38 24 — 71 38	++ + + + + + + + + + + + + + + + + + +		0.4 0.6 0.3 0.4 0.2	0 0.19 1 0.3 6 0.2 8 0.3 6 0.1 1 0.4	9 to 0.84 7 to 1.01 1 to 0.63 0 to 0.77 4 to 0.49	_		+++++++++++++++++++++++++++++++++++++++	
EURT, LUX-L LUX-L NEJOC OPTIN WJTO	AC ung 3 ung 6)2 1AL	0.31 0.30 0.54 0.24 0.25 0.13 0.48	0.19 to 0.4 0.38 to 0.3 0.16 to 0.3 0.17 to 0.3 0.07 to 0.2 0.33 to 0.3	18 77 35 38 24 — 71 38 01 0	1 Favors FR TKI	1 10 Favors chemoti	0.4 0.6 0.3 0.4 0.2 0.7 0.7	0 0.19 1 0.3 6 0.2 8 0.3 6 0.1 1 0.4	9 to 0.84 7 to 1.01 1 to 0.63 0 to 0.77 4 to 0.49 0 to 1.26	0.0			10 Tavors hemotherapy
	U	Inadjusted Analysis	Adjus	ted Analysis									
----------------------------------	------	------------------------	-------	--------------									
Subgroup	HR	95% CI	HR	95% CI									
Exon 19 deletions													
EURTAC	0.27	0.17 to 0.43	0.25*	0.15 to 0.41									
NEJ002	0.24	0.15 to 0.38	0.24*	0.15 to 0.38									
OPTIMAL	0.13	0.07 to 0.25	0.12*	0.06 to 0.22									
WJTOG 3405	0.42	0.26 to 0.68	0.46*	0.28 to 0.76									
Pooled result	0.26	0.20 to 0.34	0.26	0.20 to 0.33									
Exon 21 L858R substitution													
EURTAC	0.53	0.29 to 0.97	0.51*	0.28 to 0.94									
NEJ002	0.33	0.20 to 0.54	0.33*	0.20 to 0.55									
OPTIMAL	0.26	0.14 to 0.49	0.23*	0.12 to 0.45									
WJTOG 3405	0.69	0.44 to 1.07	0.69*	0.44 to 1.08									
Pooled result	0.45	0.34 to 0.58	0.44	0.34 to 0.58									
Treatment-EGFR mutation													
interaction		P = .004	F	.004									
Never-smoker	0.04	0.15 +- 0.00	0.00+	0.144-0.20									
EURTAC	0.24	0.15 to 0.39	0.23†	0.14 to 0.38									
NEJ002	0.27	0.18 to 0.41	0.24†	0.16 to 0.37									
OPTIMAL	0.14	0.08 to 0.25	0.14†	0.08 to 0.25									
WJTOG 3405	0.52	0.35 to 0.77	0.52†	0.34 to 0.79									
Pooled result	0.29	0.24 to 0.37	0.28	0.22 to 0.35									
Current or former smoker													
EURTAC (former)	0.59	0.22 to 1.54	0.67†	0.25 to 1.78									
EURTAC (current)	0.64	0.22 to 1.86	0.56†	0.19 to 1.71									
NEJ002	0.46	0.28 to 0.74	0.45†	0.28 to 0.73									
OPTIMAL	0.21	0.09 to 0.49	0.20†	0.08 to 0.47									
WJTOG 3405	0.56	0.31 to 0.99	0.57†	0.32 to 1.02									
Pooled result	0.46	0.34 to 0.62	0.46†	0.34 to 0.62									
Treatment-smoking interaction		P = .02		P = .01									
Women													
EURTAC	0.30	0.19 to 0.48	0.29‡	0.18 to 0.47									
NEJ002	0.25	0.17 to 0.38	0.21‡	0.14 to 0.33									
OPTIMAL	0.13	0.07 to 0.24	0.13‡	0.07 to 0.24									
WJTOG 3405	0.48	0.33 to 0.71	0.50‡	0.33 to 0.76									
Pooled result	0.30	0.24 to 0.38	0.28	0.22 to 0.36									
Men	0.00	0.24 (0 0.00	0.20	0.22 10 0.00									
EURTAC	0.40	0.19 to 0.84	0.37‡	0.17 to 0.81									
			0.45‡										
NEJ002	0.48	0.30 to 0.77		0.28 to 0.74									
OPTIMAL	0.26	0.14 to 0.50	0.23‡	0.12 to 0.45									
WJTOG 3405	0.71	0.40 to 1.26	0.69‡	0.39 to 1.22									
Pooled result	0.46	0.34 to 0.61	0.43	0.32 to 0.58									
Treatment-sex interaction		P = .02		P = .03									

	Table 3. Association Bet Exon 21 L858R S					tion or
		Exon Dele	19 tion	Exor L85 Substi	n 21 i8R itution	
	Characteristic	n = 1 No.	*01) %	(n = No.	%	Ρ
	Age, years < 65	233	58	166	53	.20
	≥ 65	233 168	42	147	47	
	ECOG PS 0	186	46	136	44	.32
	1 2	191 24	48 6	164 13	52 4	
	Sex Female	268	67	206	66	.81
	Male Smoking	133	33	107	34	.81
	Never	268	67	212 101	68 32	.01
	Ever Histologic subtype	133	33			.11
	Adenocarcinoma Other	377 24	94 6	284 29	91 9	
	Abbreviations: EGOG, mance status.	Eastern Co	operative	Oncology (Group; PS,	perfor-
	Anmerkung Although EG subgroups, o those with ex should enhar design and in Hinweis der Es ist keine O Fragestellur This systema receptor (egf lung cancer (selected—in maintenance	FR Theorem of the second secon	KIs signation of the second se	gnifica vith ch tions, evelop n of c wertu addrea s in the ents—	antly p neve ment linical ng de sses f ree po -unse	r-sm and trial r Pri he u ppula
or ors						-
ib, ib, b, aitinib	Population: selected In the participate in	ne uns the tr	select	ed gro long	oup, a as the	ny r e oth
comitinib, d icotinib in treatment non-small- l lung ncer: a	the absence were selecte mutation suc smoking stat included if th	d bas h as / us, or	Asian age.	ethnio In the	city, a e mo	aract deno lecul
icotinib in reatment on-small- lung cer: a ematic	were selecte mutation suc smoking stat	d bas h as <i>l</i> us, or eir tur	Asian age. nours	ethnic In the teste	city, a e mo ed pos	aract deno lecul itive
icotinib in reatment on-small- lung cer: a	were selecte mutation suc smoking stat included if th	d bas h as A us, or eir tur : EG	Asian age. nours FR-TI	ethnic In the teste KI (firs	city, a e mo ed pos st line	aract deno lecul itive
cotinib in reatment n-small- ung er: a ematic	were selecte mutation suc smoking stat included if th Intervention	d bas h as / us, or eir tur : EG : nich	Asian age. nours FR-TI t präs	ethnic In the teste KI (firs pezifi	city, a e mo ed pos st line ziert	aract deno lecul itive

Anzahl eingeschlossene Studien/Patienten (Gesamt): 96, nur RCT
 Qualitätsbewertung der Studien: nicht durchgeführt
 Heterogenitätsuntersuchungen: chi-Quadrat , l²
 Ergebnisdarstellung Überwiegend gualitatives Review

1. Linie

Molecularly Selected Populations: Seven trials used an egfr inhibitor in molecularly selected patients with stage iiib/iv nsclc. One trial selected patients on the basis of egfr protein overexpression (assessed by immunohis- tochemistry) or increased gene copy number (assessed by fluorescence in situ hybridization, Table iii). Six tri- als selected patients with tumours harbouring an EGFR mutation. A meta-analysis of this group of patients was performed because the patients were homogenous, and the treatment comparators were platinum-based chemo- therapy regimens. All six trials observed higher response rates favouring the egfr inhibitor group. Three of the trials (Mitsudomi et al.46, Zhou et al.48 and Yang et al.51) found the results to be statistically significant (p < 0.0001). In every trial, PFS was also statistically significant and favoured the EGFR inhibitor. A meta-analysis [Figure 1(A)] demonstrated a statistically significant improvement in pfs (hr: 0.35; 95% ci: 0.28 to 0.45; p < 0.00001). However, the 12 is high at 80%, which shows considerable statistical heterogeneity. In each of the subgroup analyses (different egfr inhibitors), the I2 also remains high. The cause of the heterogeneity remains unknown at this time. The addition of the subgroup analyses from both the ipass and First-signal trials in patients with a known EGFR mutation status 36,38 resulted in similar findings [hr: 0.38; 95% ci: 0.31 to 0.46; p < 0.00001; Figure 1(B)]. Evidence of statistical heterogeneity remains, with an I2 of 76%. Six trials reported os. The data are difficult to interpret, because many patients are likely to have crossed over to the other treatment arm, but the actual percentages are not reported. Meta-analysis of those trials demonstrates no difference in survival between the two groups [hr: 1.01; 95% ci: 0.86 to 1.18; p = 0.94; Figure 2(A)]. Inclusion of data from the ipass and First-signal trials did not change that result [hr: 0.98; 95% ci: 0.84 to 1.14; p = 0.77; Figure 2(B)]. One additional study compared an egfr inhibitor plus chemotherapy with an egfr inhibitor alone in patients with egfr protein overexpression or increased gene copy num-ber53. No clear recommendation can be made from that trial. Response rate and pfs were higher in the egfr plus chemotherapy group, but os favoured the egfr-inhibitor- alone group The most significant toxicity was skin rash, which occurred in slightly higher numbers in the egfrinhibitor-alone group 53. Symptom control and quality of life were discussed in the Yang et al. and Wu et al. studies. A significant delay in time to deterioration of the cancer-related symptoms of cough (hr: 0.60; p = 0.0072) and dyspnea (hr: 0.68; p = 0.0145) was seen with the egfr inhibitor afatinib. A higher proportion of patients in the afatinib group experienced a

(A)	Study or Subgroup	log[Hazard Ratio] SE	Weight	Hazard Ratio IV, Random, 95% CI	Hazard Ratio IV, Random, 95% CI
	2.1.1 afatinib Wu YL 2013 LUX-Lung 9 Subtotal (95% CI) Heterogeneity: Not applicable Test for overall effect: Z = 0.30	-0.0513 0.1711 (P = 0.76)	23.2% 23.2%	0.95 [0.68, 1.33] 0.95 [0.68, 1.33]	ŧ
	2.1.2 gefitinib Inoue 2011 NEJ002	-0.1199 0.1713		0.89 [0.63, 1.24]	-
	Mitsudomi T 2012 WJTOG3405 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Chi Test for overall effect: Z = 0.07		37.0%	1.18 [0.77, 1.83] 0.99 [0.75, 1.31]	Ŧ
	2.1.3 erlotinib Rosell R 2012 EURTAC Zhou C 2012 OPTIMAL	0.0392 0.2422 0.063 0.1552		1.04 [0.65, 1.67] 1.07 [0.79, 1.44]	÷
	Subtotal (95% CI) Heterogeneity: $Tau^2 = 0.00$; Chi Test for overall effect: Z = 0.43	$l^2 = 0.01, df = 1 (P = 0.93); l^2$	39.8%	1.06 [0.82, 1.37]	Ť
	Total (95% CI)		100.0%	1.01 [0.86, 1.18]	•
	Heterogeneity: $Tau^2 = 0.00$; Chi Test for overall effect: Z = 0.07 Test for subgroup differences: C	(P = 0.94)		F	0.01 0.1 1 10 100 avours experimental Favours control
(B)	Study or Subgroup	log[Odds Ratio] SE	Weight	Odds Ratio IV, Fixed, 95% CI	Odds Ratio IV, Fixed, 95% CI
	2.2.1 afatinib Wu YL 2013 LUX-Lung 9 Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 0.30	-0.0513 0.1711 0 (P = 0.76)		0.95 [0.68, 1.33] 0.95 [0.68, 1.33]	•
	2.2.2 gefitinib Han JY 2012 First-SIGNAL	0.0421 0.3769	4.0%	1.04 [0.50, 2.18]	
	Inoue 2011 NEJ002 Mitsudomi T 2012 WJTOG3409 Mok TS 2009 IPASS Subtotal (95% CI) Heterogeneity: Chi ² = 1.98, df Test for overall effect: Z = 0.59	5 0.1697 0.2217 -0.2485 0.2233 = 3 (P = 0.58); l ² = 0%	11.7% 11.5%	0.89 [0.63, 1.24] 1.18 [0.77, 1.83] 0.78 [0.50, 1.21] 0.94 [0.75, 1.16]	•
	2.2.3 erlotinib Rosell R 2012 EURTAC	0.0392 0.2422	9.8%	1.04 [0.65, 1.67]	
	Zhou C 2012 OPTIMAL Subtotal (95% CI) Heterogeneity: Chi ² = 0.01, df	0.063 0.1552 = 1 (P = 0.93); I ² = 0%	23.8%	1.07 [0.79, 1.44] 1.06 [0.82, 1.37]	•
	Test for overall effect: Z = 0.4 Total (95% CI)		100.0%	0.98 [0.84, 1.14]	
	Heterogeneity: Chi ² = 2.53, df Test for overall effect: Z = 0.2 Test for subgroup differences:	9 (P = 0.77)), $l^2 = 0\%$	Fa	0.1 0.2 0.5 1 2 5 10 vours experimental Favours control
tients.	(B) Meta-analysis of overall sur	vival, comparing epidermal	growth fa	actor receptor inhib	bitors with chemotherapy in molecu vitors with chemotherapy in molecu riance; CI = confidence interval.
2. L					
			-0)	Composed with
	ecularly Selected	-			Compared with egfr inhibitor with t
		• •			R wild-type. The tri
					ent at the time of
					as associated with a
•	• •			•	02). The primary ou
			•		ocetaxel at 8.2 mont
	-	nonths for erloti	nib (ł	nr: 0.73; 9	5% ci: 0.53 to 1.00;
0.05	; Table VIII).				

Reference (ctudy dotails)	Patients (n)	- Treatment - (CR+PR)	Response	Median	survival
(study details)	Enrolled Analyzed		rate ·	Progression-free	Overall
Second-line EGFR inhibitor comp	pared with chemother	apy in molecularly selected patient	s		
Garassino <i>et al.,</i> 2013 ¹⁰⁰ (TAILOR, phase III)	112 110	Erlotinib 150 mg daily Docetaxel 75 mg/m²	Not reported	2.4 Months 2.9 Months HR: 0.71; 95% Cl: 0.53 to 0.95	
Second-line EGFR inhibitor plus	another agent compai	red with EGFR inhibitor in molecula	rly selected pa	(p=0.02) tients	(p=0.05)
Gitlitz et al., 2011 ¹⁰¹	120	Erlotinib 150 mg daily plus	Not reported		5.6 Months
(APRICOT-L, phase II, abstrac	176 176	apricoxib 400 mg daily Placebo plus erlotinib 150 mg daily	,	TTP: 1.8 months HR: 0.5 (p=0.018)	5.9 Months HR: 0.4 (p=0.025)
Belani <i>et al.,</i> 2013 ¹⁰²	18	PF-3512676 (0.20 mg/kg) plus	Not reported	1.6 Months	6.4 Months
(phase II)	21	erlotinib 150 mg daily Erlotinib 150 mg daily		1.7 Months HR: 1.00; 95% Cl: 0.5 to 2.0 (p=0.9335)	4.7 Months HR: 1.3; 95% Cl: 0.6 to 2. (p=0.4925)
Second-line EGFR inhibitor comp	pared with EGFR inhib	itor in molecularly selected patient	5		
Kim <i>et al.,</i> 2012 ¹⁰³ (phase II)	48 48	Gefitinib 250 mg daily Erlotinib 150 mg daily	47.9% 39.6%	4.9 Months 3.1 Months (p=0.336)	Not reached
patients based on quality evidence t therapy for patien tkis are associate	n clinical cha hat an egfr ts with an a d with a hig	tki is preferred ov activating mutation pher likelihood of r	from st lso mixe er a pla of the espons	tudies that ed. There is tinum dout EGFR gen e, longer p	selected s high- blet as init e. The egi rogressior
patients based on quality evidence t therapy for patien tkis are associate free survival, and therapy have com those data demon There is conseque	a clinical cha hat an egfr ts with an a d with a hig improved a pared an e nstrates sim ently no pre	onsistent. Results aracteristics are a tki is preferred ov activating mutation gher likelihood of r quality of life. Multi egfr tki with chemo nilar progression- f eferred sequence	from si lso mixe er a pla of the esponsi ple trial therapy free and for seco	tudies that ed. There is tinum doub EGFR gen e, longer pl s of second 2. Meta-ana d overall su ond-line eg	selected s high- blet as init e. The egi rogressior d-line alysis of rvival. fr tki or
patients based on quality evidence t therapy for patien tkis are associate free survival, and therapy have com those data demor	a clinical chi hat an egfr ts with an a d with a hig improved a pared an e nstrates sim ently no pre otherapy. T ce therapy. ce therapy. benefit was est. Determi te treatmen on-positive ki is still ap selected ag	onsistent. Results aracteristics are a tki is preferred ov activating mutation ther likelihood of r quality of life. Multi offr tki with chemo hilar progression-f eferred sequence the egfr tkis have No molecular ma not observed; how ination of EGFR m t decisions in pati should be treated propriate therapy	from si lso mixe er a pla of the esponse ple trial therapy free and for secc also be rker co wever, t nutation ents with ar in patie	tudies that ed. There is tinum dout EGFR gen e, longer pr s of second Meta-ana d overall su ond-line egi en evaluate uld identify he magnitu status is e th nsclc. Pa n egfr tki as nts who are	selected s high- olet as init e. The eg rogression d-line alysis of rvival. fr tki or ed as patients i ude of the ssential to atients wh s first-line e EGFR
patients based or quality evidence to therapy for patient tkis are associate free survival, and therapy have com those data demor There is conseque second-line chem switch-maintenant whom a survival to benefit was mode making appropria are EGFR mutation therapy. An egfr to wild-type, but the	a clinical chi hat an egfr ts with an a d with a hig improved a pared an e nstrates sim ently no pre otherapy. T ce therapy. benefit was est. Determi te treatmer on-positive ki is still ap selected ag	onsistent. Results aracteristics are a tki is preferred ov activating mutation ther likelihood of r quality of life. Multi offr tki with chemo hilar progression-f eferred sequence the egfr tkis have No molecular ma not observed; how ination of EGFR m t decisions in pati should be treated propriate therapy	from si lso mixe er a pla of the esponse ple trial therapy free and for secc also be rker co wever, t nutation ents with ar in patie	tudies that ed. There is tinum dout EGFR gen e, longer pr s of second Meta-ana d overall su ond-line egi en evaluate uld identify he magnitu status is e th nsclc. Pa n egfr tki as nts who are	selected s high- olet as init e. The egr rogression d-line alysis of rvival. fr tki or ed as patients i ude of the ssential to atients wh s first-line e EGFR
patients based on quality evidence to therapy for patient tkis are associate free survival, and therapy have com those data demon There is conseque second-line chem switch-maintenant whom a survival to benefit was mode making appropria are EGFR mutation therapy. An egfr to wild-type, but the third-line therapy.	a clinical chi hat an egfr ts with an a d with a hig improved a pared an e nstrates sim ently no pre otherapy. T ce therapy. T ce therapy. benefit was est. Determi te treatmer on-positive ki is still ap selected ag	onsistent. Results aracteristics are a tki is preferred ov activating mutation ther likelihood of r quality of life. Multi- egfr tki with chemo- nilar progression- f eferred sequence The egfr tkis have No molecular ma not observed; how ination of EGFR m at decisions in pati- should be treated propriate therapy in gent should be add	from si lso mixe er a pla of the esponse ple trial therapy free and for secc also be urker co wever, t nutation ents with ar in patien ministen	tudies that ed. There is tinum dout EGFR gen e, longer pro- s of second v. Meta-ana d overall su ond-line egi en evaluate uld identify he magnitu status is e th nsclc. Pa n egfr tki as nts who are red as second	selected s high- olet as init e. The eg rogression d-line alysis of rvival. fr tki or ed as patients i ude of the ssential to atients wh s first-line e EGFR
patients based on quality evidence to therapy for patient tkis are associate free survival, and therapy have com those data demon There is conseque second-line chem switch-maintenant whom a survival to benefit was mode making appropria are EGFR mutation therapy. An egfr to wild-type, but the third-line therapy.	a clinical chi hat an egfr ts with an a d with a hig improved a pared an e nstrates sim ently no pre otherapy. T ce therapy. T ce therapy. benefit was est. Determi te treatmer on-positive ki is still ap selected ag	onsistent. Results aracteristics are a tki is preferred ov activating mutation ther likelihood of r quality of life. Multi- egfr tki with chemo- nilar progression- f eferred sequence The egfr tkis have No molecular ma not observed; how ination of EGFR m at decisions in pati- should be treated propriate therapy in gent should be add	from si lso mixe er a pla of the esponse ple trial therapy free and for secc also be urker co wever, t nutation ents with ar in patien ministen	tudies that ed. There is tinum dout EGFR gen e, longer pro- s of second v. Meta-ana d overall su ond-line egi en evaluate uld identify he magnitu status is e th nsclc. Pa n egfr tki as nts who are red as second	selected s high- olet as init e. The eg rogression d-line alysis of rvival. fr tki or ed as patients i ude of the ssential to atients wh s first-line e EGFR

NSCLC:	lung cancer (NSCLC).
platinum- based	Methodik Population:
chemotherapy	advanced NSCLC
plus erlotinib	Intervention: erlotinib plus platinum-based chemotherapy
or platinum- based	Komparator: platinum-based chemotherapy alone
chemotherapy	Endpunkte: OS, ORR, PFS
alone? A	Methode: systematic review and meta-analysis of RCTs
systematic review and	Suchzeitraum: 2000-2014
meta-analysis	Anzahl eingeschlossene Studien/Patienten (Gesamt): 8
of randomised controlled trials	Qualitätsbewertung der Studien: Cochrane risk of bias. Mittlere bis gute Qualität.
	Ergebnisdarstellung

Table 1 Main characteristics	racteristi	ics of the studies	dies						
References	Phase	Line of treat	Intervention regimen	Control regimen	Participants	Median age (years)	Stage IIIB (n, %)	PFS HR (95 % CI)	OS HR (95 % CI)
Herbst et al. [26]	⊟	-	Erl 150 mg/day plus Car AUC = 6 D1 and Pac 200 mg/ m ² D1	Car AUC = 6 D1 and Pac 200 mg/m ² D1, 6 cycle	180/164	62.6/ 62.7	84 (46.7)/96 (58.5)	ÐN	0.99 (0.86–1.16)
Gatzemeier et al. [25]	Ħ	ŊŊ	Erl 150 mg/day plus (Gem 1,250 mg/m ² D1,8 and Cis 80 mg/m ² D1)*6 cycles	Gem 1,250 mg/m ² D1,8 and Cis 80 mg/m ² D1)*6 cycles	579/580	61/60	242 (41.8)/225 (38.8)	0.98 (0.86–1.11)	1.06 (0.90–1.23)
Mok et al. [24]	п	-	Erl 150 mg/day plus (Gem $1,250 \text{ mg/m}^2 \text{ D1}$) and either Cis75 mg/m ² D1 or Car AUC = 5, D1)	Gem 1,250 mg/m^2 D1,8 and either	57.5/57	76/78	13 (17.1)/16 (20.5)	0.71 (0.62–0.82)	1.09 (0.70–1.69)
Cappuzzo et al. [23]	Π	-	Erl 150 mg/day plus select one of seven standard chemotherapy regimens	Cis75 mg/m ² D1 or Car AUC = 5, D1	438/451	60/60	116 (26.5)/109 (24.2)	ÐN	0.81 (0.70–0.95)
Boutsikou et al. [21]	Π	DN	Erl 150 mg/day plus (Doc 100 mg/m ² and Car AUC = $5.5 \text{q}28 \text{d}^{*} \text{d}$)	Doc 100 mg/m ² and Car AUC = 5.5 q28d*4	52/61	62.5/65	13 (25.0)/10 (16.4)	DN	0.81 (0.39–1.70)
Lee et al. [20]	п	2	Erl 150 mg/day plus Pem 500 mg/m 2 D1 q21d	Pem 500 mg/m ² D1 q21d	78/80	55.8/ 55.9	6 (7.7)/11 (13.8)	0.58 (0.39–0.85)	0.75 (0.49–1.13)
Stinchcombe et al. [22]	п	-	Erl 150 mg/day plus Gem 1,200 mg/m ² D1,8 q21d	Gem 1,200 mg/m ² D1,8 q21d	51/44	78/74	10 (19.6)/11 (25.0)	0.87 (0.60–1.27)	1.20 (0.76–1.91)
Wu et al. [3]	Ш	-	Erl 150 mg/day plus Gem 1,250 mg/m ² D1,8, six cycles and Car AUC = 5 or Cis 75 mg/ m ² , D1	Gen 1.250 mg/m ² , d1,8, six cycles and Car AUC = 5 or Cis 75 mg/ m^2 , D1	226/255	59/57.3	21 (9.3)/24 (10.7)	0.57 (0.47–0.69)	0.79 (0.64–0.99)

Overall survival:

A total of eight RCTs regarding OS were incorporated into this metaanalysis. The heterogeneity test indicated that a fixed effect model could be selected ($I^2 = 39.6$ %, P = 0.115). The pooled results showed that there was no significant difference between the two groups (HR 0.93; 95 % CI 0.86, 1.00; P = 0.170)

PFS:

The heterogeneity test indicated that a random effect model could be selected ($I^2 = 85.1$ %, P<0.0001). The meta-analysis showed that the pooled HR was 0.73 (95 % CI = 0.58, 0.93), P = 0.009) and without statistical significance was identified in terms of the erlotinib platinum-based chemotherapy regimen relative to the platinum-based chemotherapy alone

Anmerkungen/Fazit der Autoren

In summary, the current available evidence suggests that erlotinib lacks the potential to improve OS. PFS and objective response rate could be improved by using erlotinib plus chemotherapy in patients with advanced NSCLC. Finally, smoking status and histological type are important evaluation factors that should be considered for evaluating clinical therapy and prognosis.

This is a systematic review and meta-analysis to further evaluate the efficacy of erlotinib plus platinum-based chemotherapy for advanced NSCLC. The present systematic review and meta-analysis suggested that erlotinib combined with platinum-based chemotherapy was beneficial for advanced NSCLC patient with EGFR mutation compared with platinum-based chemotherapy alone regime.

Burotto M, et al., 2015 [8]	Fragestellung The objective of this study was to compare the efficacy and toxicity of erlotinib, gefitinib, and afatinib in NSCLC.
Gefitinib and Erlotinib in Metastatic Non-Small Cell Lung Cancer: A Meta-Analysis of Toxicity and Efficacy of Randomized Clinical Trials	Methodik Population: advanced or metastatic stage IIIB or IV NSCLC according to the sixth American Joint Committee on Cancer classification Intervention: erlotinib or gefitinib Komparatoren: control arm did not receive erlotinib, gefitinib, or any other TKI Endpunkte: primär: PFS or OS; sekundär: nicht spezifiziert Suchzeitraum: 01/2003 – 12/2013 Anzahl eingeschlossene Studien/Patienten (Gesamt): Erlotinib: 12/4 227, Gefitinib: 16/7 043 Qualitätsbewertung der Studien: Jadad-Score (phase II and phase III randomized studies; the treatment arm receiving the EGFR TKI had <40 patients) Heterogenitätsuntersuchungen: chi-square test Ergebnisdarstellung trials had median/mean Jadad scores of 3/3.5 and 3/3 for gefitinib and erlotinib, respectively 12 erlotinib studies were 11 phase III and 5 randomized phase II trials for efficacy analyses comparing median OS and PFS distributions in the experimental arms of the erlotinib and gefitinib studies, we also analyzed trials according to the characteristics of the patients enrolled and the line of treatment, using the following groups: monotherapy in second line, monotherapy in first line (including the four trials in patient with mutated EGFR), maintenance or consolidation in first line, and monotherapy in the elderly population. Toxitizität There is no direct comparison between erlotinib and gefitinib. Clinical toxicities, including pruritus, rash, anorexia, diarrhea, nausea, fatigue, mucositis,
	paronychia, and anemia, were similar between erlotinib and gefitinib, although somestatistical differences were observed.

Study	ORR	OR	95% CI
EGFR MT Afatinib 40-50 mg Wu 2014 Miller 2012 Sequist 2013 Fixed effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = .3743$	# # * *	6.69 9.81 4.31 5.53 5.53	[4.07–11.00] [1.88–51.21] [2.60–7.14] [3.91–7.83] [3.91–7.83]
EGFR MT Erlotinib 150 mg Optimal 2010 Eurtac 2012 Fixed effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = .8543$	+ + *	8.41 7.64 8.00 8.00	[4.01–17.63] [3.72–15.68] [4.78–13.40] [4.78–13.40]
EGFR MT Gefitinib 250 mg Maemondo 2010 Mitsudomi 2010 Fixed effect model Random effects model Heterogeneity: $I^2 = 49.3\%$, $\tau^2 = 0.0895$, $p = .16$	# # ♦	6.20 3.40 4.69 4.64	[3.50–11.00] [1.84–6.28] [3.08–7.13] [2.57–8.37]
Erlotinib 150 mg Kelly 2012 Pasi 2012 Shepherd 2005 Stinchcombe 2011 Titan 2012 Natale 2011 Capuzzo 2010 SATURN Chen 2012 Fixed effect model Random effects model Heterogeneity: I ² = 73.7%, t ² = 0.03629, p = .000		3.13 0.73 9.46 0.12 1.26 1.00 2.37 2.84 1.33 1.65	[0.73–13.45] [0.40–1.32] [2.62–34.16] [0.01–2.29] [0.61–2.62] [0.71–1.40] [1.44–3.90] [0.97–8.28] [1.06–1.67] [0.96–2.82]
Gefitinib 250 mg Takeda 2010 Kim 2008 IPASS 2009 Lee 2010 ISTANA Sun 2012 Gaafar 2011 Goss 2009 Thatcher 2005 ISEL Crino 2008 Cufer 2006 Morere 2003b Zhan 2012 Fixed effect model Random effects model Heterogeneity: $l^2 = 77.6\%$, $r^2 = 0.03564$, $p < .00000000000000000000000000000000000$		1.27 1.21 1.59 4.47 4.81 7.92 4.61 6.47 0.64 0.97 0.32 0.13 31.90 1.68 2.29	$\begin{matrix} [0.90-1.79] \\ [0.84-1.76] \\ [1.26-2.00] \\ [1.76-11.36] \\ [2.29-10.11] \\ [1.39-45.02] \\ [0.76-27.81] \\ [3.05-13.72] \\ [0.16-2.50] \\ [0.37-2.49] \\ [0.01-8.03] \\ [0.01-8.03] \\ [0.01-2.59] \\ [6.12-166.32] \\ [1.44-1.96] \\ [1.47-3.56] \end{matrix}$
0.01 Less likely than of Forest plot depicting the efficacy of afatinib measured by ORR. An OR of > 1 indicates (TKI) performed better. An OR of <1 indicates (TKI) performed better. An OR of <1 indicates worse. The three groups at the top designar patients with tumors harboring mutations in erlotinib and gefitinib studies conducted in status. PFS	ontrol More likely , erlotinib, and ge that the arm with tes that the arm w ted EGFRMT are EGFR. The two	y than control fitinib in the s the tyrosine k yith the TKI po studies that e groups at the	tudies evaluated as inase inhibitor erformed enrolled only bottom represent

Study	PFS	HR 95% CI
EGFR MT Afatinib 40-50 mg Miller 2012 Sequist 2013 Wu 2014 Fixed effect model Random effects model Heterogeneity: I ^o = 96.5%, t ² = .0854, p < .0001		0.38 [0.35–0.41] 0.58 [0.49–0.69] 0.28 [0.25–0.31] 0.35 [0.33–0.38] 0.39 [0.28–0.55]
EGFR MT Erlotinib 150 mg Optimal 2010 Eurtac 2012 Fixed effect model Random effects model Heterogeneity: P = 99%, t ² = .3478, p < .0001		0.16 [0.15-0.17] 0.37 [0.32-0.43] 0.19 [0.18-0.21] 0.24 [0.11-0.55]
EGFR MT Gefitinib 250 mg Maemondo 2010 Mitsudomi 2010 Fixed effect model Random effects model Heterogeneity: I ² = 95.2%, t ² = .1136, p < .0001		0.30 [0.27–0.33] 0.49 [0.41–0.59] 0.33 [0.30–0.36] 0.38 [0.24–0.61]
Erlotinib 150 mg Shepherd 2005 Titan 2012 Kelly 2012 Capuzzo 2010 SATURN Perol 2012 Chen 2012 Fixed effect model Random effects model Heterogeneity: I ² = 83.5%, r ² = .0338, p < .0001		0.61 [0.54-0.68] 0.96 [0.78-1.18] 1.19 [0.91-1.55] 0.71 [0.64-0.78] 0.69 [0.58-0.82] 0.64 [0.49-0.84] 0.71 [0.67-0.76] 0.76 [0.65-0.90]
Gefitinib 250 mg Cufer 2006 Kim 2008 Lee 2010 ISTANA Sun 2012 Goss 2009 IPASS 2009 Kelly 2008 Takeda 2010 Ahn 2012 Zhan 2012 Gaafar 2011 Crino 2008 Fixed effect model Random effects model Heterogeneity: I* = 93.2%, r² = .1067, p < .0001		$\begin{array}{cccc} 0.97 & [0.62-1.53] \\ 1.04 & [0.92-1.18] \\ 0.73 & [0.55-0.96] \\ 0.54 & [0.44-0.67] \\ 0.82 & [0.63-1.06] \\ 0.74 & [0.67-0.82] \\ 1.25 & [0.96-1.62] \\ 0.68 & [0.61-0.76] \\ 0.53 & [0.36-0.78] \\ 0.42 & [0.38-0.47] \\ 0.61 & [0.50-0.74] \\ 1.19 & [0.80-1.78] \\ 0.69 & [0.65-0.72] \\ 0.74 & [0.61-0.91] \\ \end{array}$
Fixed effect model Random effects model Heterogeneity: I ² = 98.4%, t ² = .32, p < .0001		0.46 [0.45–0.47] 0.60 [0.48–0.75]
Forest plot depicting the meta-an indicates that the arm with the tyre	150.2 0.5 1 2 5 6.77 Favors TKI Favors Control nalysis of the PFS HR outcome. An odds osine kinase inhibitor performed better t orer hazard ratios than those for F	s ratio of <1 han the control.

F	
	progression-free survival (PFS) and overall survival (OS) distributions. Boxplots depict the distributions, including the following attributes: the median (solid bar), interquartile range (IQR, box), the range as 1.5 times the IQR (dashed line, excluding any outliers), and the individual study data overlaid as scatterplots.
	Anmerkungen/Fazit der Autoren
	Gefitinib has similar activity and toxicity compared with erlotinib and offers a valuable alternative to patients with NSCLC. Afatinib has similar efficacy compared with erlotinib and gefitinib in first-line treatment of tumors harboring EGFR mutations but may be associated with more toxicity, although further studies are needed. Gefitinib deserves consideration for U.S. marketing as a primary treatment for EGFR-mutant NSCLC. Limitationen: no head-to-head comparisons heterogeneity within subgroups for certain outcomes (i.e., variation between studies exists beyond that forwhich treatment group accounts) some might argue the 150-mg erlotinib dose is the maximum tolerated dose but that the 250-mg gefitinib dose is not, and this may "penalize" erlotinib; however, these are the approved doses and the doses for which data were available inclusion of patients with and without mutations makes analysis more difficult <i>Anmerkungen der FB Med: Phase II Studien eingeschlossen, Jadad Score aber insgesamt gering DISCLOSURES: The authors indicated no financial relationships.</i>
Normando	Fragestellung
SRC et al, 2015 [27]. Cumulative	We carried out a meta-analysis to evaluate the benefit of epidermal growth factor-tyrosine kinase inhibitors (EGFR-TKI) over the standard first-line platinum-based chemotherapy for metastatic non-small-cell lung cancer
meta-analysis	(NSCLC).
of epidermal growth factor	Methodik
receptor-	Population: advanced NSCLC, stages IIIB or IV
tyrosine kinase inhibitors as first-line therapy in	Intervention: standard first-line platinum-based chemotherapy Komparator: EGFR-TKI We excluded studies that used EGFR inhibitors as second-line therapy as well as studies in which the control group received only placebo.
metastatic non-small-cell	Endpunkte: OS, PFS
lung cancer	Suchzeitraum: 2009 - 2014
	Anzahl eingeschlossene Studien/Patienten (Gesamt): 8
	Qualitätsbewertung der Studien: Jadad
	Heterogenitätsuntersuchungen: χ2-test
	Ergebnisdarstellung
	All studies were randomized, open, controlled, and phase III trials. A formal review of the eight studies indicated that the quality was high (Jadad score \geq

	٩			ø				Ø		
	PFS mean (Int × control) <i>P</i>	5.7×5.8 months $P < 0.001$	5.8×6.4 months P < 0.138	10.8×5 4 months P<0.0001	9.2×6.3 months $P < 0.001$	13.3 × 4.6 P < 0.0001	9.7×5.2 months $P < 0.0001$	11.1×6.7 months P<0.001	11×5.6 months P<0.0001	
	OS mean (Int × control) <i>P</i>	18.6×17.3 months	22.3 × 22.9 months P=0.604	27.7 × 26.6 months P = 0.483	$30.9 \times \text{not reached}$ P = 0.211	NR	13.6 × 19.5 months P=0.87	16.6 × 14.8 months P=0.6	22.1 × 22.2 months P=0.76	
	EGFR mutated Int/control [<i>n</i> (%)]	132 (21.6)/29 (4.7) 1	26 (16.3)/ 16 2 (10.6) <i>F</i>	114 (100)/114 2 (100) <i>F</i>	86 (100)/86 (100) 3 F	82 (100)/72 (100)	86 (100)/87 (100) 1 F	230 (100)/115 1 (100) <i>F</i>	242 (100)/364 2 (100) <i>F</i>	rival.
	Primary end point/ significance	PFS/Yes	OS/No	PFS/Yes	PFS/Yes	PFS/Yes	PFS/Yes	PFS/Yes	PFS/Yes	rogression-free surv
	Phase N [<i>n</i> (%)]	922 (75.7)	278 (89.9)	172 (75.4)	82 (47.6)	138 (89.6)	160 (92.4)	308 (89.2)	342 (93.9)	rall survival: PFS, p
	Adenocarcinomas [<i>n</i> (%)]	1.1172 (96)	309 (100)	213 (93.4)	167 (97)	134 (87)	160 (92.4)	345 (100)	364 (100)	vot reported; OS, ove
	Smokers [<i>n</i> (%)]	77 (6.3)	0	87 (38.1)	54 (31.3)	45 (29)	53 (30.6)	109 (31.5)	84 (23)	ntion group; NR, r
s	Ethnicity, White/ Asian/others	0/1214/0	NR	NR	NR	NR	NR	91/248/6	0/364/0	.ceptor; Int, interve
cteristics of the studies	Therapy	Gefitinib (<i>n</i> = 609) Carboplatin/paclitaxel	Gencitabine/cisplatin	(<i>n</i> = 150) Gefitinib (<i>n</i> = 114) Carboplatin/paclitaxel	Gefitinib (<i>n</i> = 86) Cisplatin/docetaxel	(<i>n</i> = 86) Erlotinib (<i>n</i> = 82) Gemcitabine/	carboplatin $(n = 72)$ Erlotinib $(n = 86)$ Cisplatin/docetaxel or	gemontation $(n = 87)$ Afatinib $(n = 230)$ Cisplatin/pemetrexed	(n=115) Afatinib $(n = 242)$ Gemcitabine/cisplatin (n = 122)	Control, control group; EGFR, epidermal growth factor receptor; ht, intervention group; NR, not reported; OS, overall survival; PFS, progression-free survival,
Population characteristics	Number of patients	1217	309	228	172	154	173	345	364	oup; EGFR
1 ^{abe} 1	Study	IPASS	First-SIGNAL	Uptade NEI002	WJTOG3405	OPTIMAL	EURTAC	III SNNFNNG III	IN SNNT NI	Control, control gr
PFS										
compar P< 0.00 9.402, F (Table 2 = 0.187 exon 21	ed, fa 001]. 2= 0.2 2). Th (95% [HR	avori Hete 225) ie ar 6 CI = 0.	ng t eroge . Th nalys = 0. .345	he E eneit is be ses c 131- (95º	GFF enefi of PF -0.2 % C	R-TK etwee t was 5S of 67), I = 0	I gro en th s sus f the P <(.181	oup [ne ar stair diffe 0.000 –0.6	HR = nalyze ned in erent r 01, Q 559), F	ere found when PFS were 0.266 (95% CI = $0.20-0.35$ d arms was absent (Q = all the subgroups analyzed nutations, del Exon 19 [HR = 4.436 P= 0.35] and L858 P < 0.001 , Q = 0.995 P Two studies (IPASS/First

SIGNAL) included patients without the EGFR mutation, where subgroup analysis was carried out according to the status of the EGFR mutation with respect to PFS. Among the patients without the EGFR mutation (n= 230), there was no PFS gain compared with the control group [HR = 1.170 (95% CI = 0.48–2.83), P =0728], (Q =0.008, P= 0.931) (Fig. 5). The cumulative meta-analysis of the studies showed that, since 2011 (OPTIMAL study), the PFS gain for EGFRTKI compared with chemotherapy was statistically significant.

Table 2 Patient subgroup analysis in relation to progression-free survival

Subgroup	Study	HR (95% CI)	HR bundled (95%)
Smokers	WJTOG3405	0.57 (0.29-1.12)	0.29 (0.14-0.62)
	OPTIMAL	0.21 (0.09-0.49)	
	EURTAC	0.56 (0.15-2.15)	
	LUX-LUNG III	1.04 (0.54-1.98)	
	LUX-LUNG VI	0.46 (0.22-1.00)	
Nonsmokers	WJTOG3405	0.46 (0.28-0.73)	0.20 (0.15-0.27)
	OPTIMAL	0.14 (0.08-0.25)	
	EURTAC	0.24 (0.15-0.39)	
	LUX-LUNG III	0.47 (0.33-0.67)	
	LUX-LUNG VI	0.24 (0.16-0.34)	
Adenocarcinoma	OPTIMAL	0.17 (0.11-0.28)	0.19 (0.12-0.30)
	EURTAC	0.37 (0.24-0.56)	
Nonadenocarcinoma	OPTIMAL	0.22 (006-0.73)	0.22 (0.06-0.80)
	EURTAC	0.27 (0.05-1.44)	
Phase IIIb	WJTOG3405	0.333 (0.203-0.544)	0.20 (0.13-0.31)
	OPTIMAL	0.18 (0.11-0.28)	
Phase IV	WJTOG3405	0.333 (0203-0.544)	0.32 (0.13-0.78)
	OPTIMAL	0.27 (0.06-1.16)	
ECOG 0	OPTIMAL	0.16 (0.10-0.26)	0.19 (0.30-0.27)
	EURTAC	0.26 (0.12-0.59)	
	LUX-LUNG III	0.50 (0.31-0.82)	
	LUX-LUNG VI	0.22 (0.12-0.41)	
ECOG 1	OPTIMAL	0.16 (0.10-0.26)	0.21 (0.15-0.30)
	EURTAC	0.37 (0.22-0.62)	
	LUX-LUNG III	0.63 (0.43-0.91)	
	LUX-LUNG VI	0.29 (020-0.43)	
ECO 2	OPTIMAL	0.21 (0.04-1.28)	0.30 (0.04-1.95)
	EURTAC	0.48 (0.15-1.48)	
Feminine	WJTOG3405	0.671 (0.337-1.334)	0.18 (0.13-0.25)
	OPTIMAL	0.13 (0.07-0.24)	
	EURTAC	0.35 (0.22-0.55)	
	LUX-LUNG III	0.61 (0.37-1.01)	
	LUX-LUNG VI	0.24 (0.16-0.35)	
Masculine	WJTOG3405	0.418 (0.267-0.654)	0.35 (0.21-0.59)
	OPTIMAL	0.26 (0.14-0.50)	
	EURTAC	0.38 (0.17-0.84)	
	LUX-LUNG III	0.54 (0.38-0.78)	
	LUX-LUNG VI	0.36 (0.21-0.63)	
EGFR wild type	First-SIGNAL	1.419 (0.817-2.466)	-
Mutation: exon 19 del	WJTOG3405	0.453 (0.268-0.768)	0.19 (0.14-0.25)
	EURTAC	0.30 (0.18-0.50)	
	OPTIMAL	0.13 (0.07-0.25)	
	LUX-LUNG III	0.28 (0.18-0.44)	
	LUX-LUNG VI	0.20 (0.13-0.33)	
Mutation: L858R/exon 21	WJTOG3405	0.514 (0.294-0.899)	0.34 (0.20-0.60)
	EURTAC	0.55 (0.29-1.02)	
	OPTIMAL	0.26 (0.14-0.49)	
	LUX-LUNG III	0.73 (0.46-1.17)	
	LUX-LUNG VI	0.32 (0.19-0.52)	
Mutation Del19/L858R uncommon	LUX-LUNG III	0.47 (0.34-0.65)	-
Cl, confidence interval; HR, hazard ratio.			
Fig. 2			
Fig. 3			

Progression-free survival in patients with the EGFR mutation (del Exon 19 mutation). Odds ratio = 0.187 (0.131–0.267, P < 0.0001); heterogeneity test: Q = 4.436 P = 0.35. EGFR, epidermal growth factor receptor.

Progression-free survival in patients with the EGFR mutation (L858R-exon 21 mutation). Odds ratio = 0.345 (0.181-0.659, P < 0.001); heterogeneity test: Q = 0.995 P = 0.911. EGFR, epidermal growth factor receptor.

os

For OS analysis, an updated WJTOG3405 study was used, available only in abstract form presented at a conference [19]. The other studies were analyzed from full articles mentioned previously. There was no significant difference between the control group and the EGFRTKI in the population with the EGFR mutation [HR = 0.946 (95% CI = 0.35-2.53), P =0.912] (Fig. 7). There was no heterogeneity in the results (Q = 0.073, P = 1.0). Similarly, there was no difference in the OS in the population without any EGFR mutation [HR = 1.16 (95% CI 0.09-14.4), P =0.9] (Fig. 8). There was no significant difference in terms of OS in the cumulative meta-analysis.

Anmerkungen/Fazit der Autoren

The cumulative meta-analysis of the studies showed that, since 2011 (OPTIMAL study), the PFS benefit in the EGFR-TKI arm was statistically significantly longer. Toxicity values greater than or equal to 3 in the most prevalent EGFR-TKI group included skin rash, diarrhea, and increased aminotransferase. EGFR-TKI treatment significantly extends PFS, with acceptable toxicities than platinum-based chemotherapy. Thus, they should be considered as the first choice in the first-line treatment for patients with NSCLC and with the EGFR mutation.

The Efficacy of Bevacizumab Compared with Other unclear. We performed this meta-analysis to compare the efficacy of bevacizumab with other commonly used targeted drugs for different patients with advanced NSCLC. Methodik Population: patients with confirmed stage IIIB, stage IV or recurrent NSCLC based on historical or cytological evidence, 1. und 2. Linie Intervention: bevacizumab (15 mg/kg) with chemotherapy Komparator: standard chemotherapy alone Radvanced NSCLC: A Meta-Analysis from 30 Randomized Controlled Clinical Trials Methodik Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of respon rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for disease progression was 0.645 (95%Cl: 0.661, 0.743), the pooled HR for disease progression was 0.645 (95%Cl: 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to CF/G. material Response Treatment Washable Meta-analysis 0.640 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to CF/G.	Cui J et al., 2013 [10].	Fragestellung The extent the treatme	of the ben						
Compared with Other patients with advanced NSCLC. Methodik Targeted Drugs for Patients with Advanced NSCLC based on historical or cytological evidence, 1. und 2. Linie Intervention: bevacizumab (15 mg/kg) with chemotherapy Komparator: standard chemotherapy alone Endpunkt: OS, ORR, PFS Methode: systematic review and meta- analysis of RCTs (placebo-controlled or other types of superiority tr well as noninferiorityv trial) Suchzeitraum: 1999 to 2011 Anzahl eingeschlossene Studien/Patienten (Gesamt): 30 (k.A.) Qualitätsbewertung der Primärstudien: Jadad Score Controlled Clinical Trials Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of respon rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G. Patients Response group windble group Treatment windble group Adjusted HRow 99%Cl Other treated HRow 99%Cl 0.680, 107.0.970, 10.492, 0.942) EGR- 10.730 Demotherapy-naive HRow 99%Cl 1.0422, 0.942, 1.011 Mateingene (0.665, 18 Drugt of the system rate was 2.741 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for 0.730, 090, 0570, 090, 0570, 090, 0570, 090, 0420, 0472 Mateingene (0.665, 18 1.01 Demotherapy-na	The Efficacy of						-	•	,
Compared with Other patients with advanced NSCLC. Methodik Population: patients with confirmed stage IIIB, stage IV or recurrer NSCLC based on historical or cytological evidence, 1. und 2. Linie Intervention: bevacizumab (15 mg/kg) with chemotherapy Komparator: standard chemotherapy alone Advanced NSCLC: A Meta-Analysis from 30 Randomized Controlled Clinical Trials Methodik Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of respon rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G. Methodik Response group-naive Response trials Response trials Response HR _{ev} Response trials Response trials 2 0.95%Cl: 0.492, 0.942) Chemotherapy-naive HR _{ev} Bev 2 0.85, 107.0970 (0.492, 0.	Bevacizumab	bevacizum	ab with oth	ner comm	ionly use	d targ	eted dru	gs for c	different
Other Methodik Targeted Drugs for Patients with Advanced Advanced NSCLC based on historical or cytological evidence, 1. und 2. Linie Intervention: bevacizumab (15 mg/kg) with chemotherapy Alone Meta-Analysis Fradpunkt: OS, ORR, PFS Methode: systematic review and meta- analysis of RCTs (placebo-controlled or other types of superiority tr well as noninferiorityv trial) Suchzeitraum: 1999 to 2011 Anzahl eingeschlossene Studien/Patienten (Gesamt): 30 (k.A.) Qualitätsbewertung der Primärstudien: Jadad Score Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of respon rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G. Methodike HR _{eve} Bev 2 0.738 0.642,1191 0.6492,044 (0.647,042,044 Chemotherapy-naive HR _{ev} Bev 2 0.74 0.617,072 1.117	Compared with	patients wi	th advance	ed NSCLO	С.				
Targeted Population: patients with confirmed stage IIIB, stage IV or recurrer NSCLC based on historical or cytological evidence, 1. und 2. Linie Intervention: bevacizumab (15 mg/kg) with chemotherapy Komparator: standard chemotherapy alone Radvanced NSCLC: A Meta-Analysis Forgunkt: OS, ORR, PFS Methode: systematic review and meta-analysis of RCTs (placebo-controlled or other types of superiority tr well as noninferiorityv trial) Suchzeitraum: 1999 to 2011 Anzahl eingeschlossene Studien/Patienten (Gesamt): 30 (k.A.) Qualitätsbewertung der Primärstudien: Jadad Score Ergebnisdarstellung Erste Linie (chemotherapy-narve patients) the pooled OR of respontrate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/s. Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/s. Patients Response Crede 18 1 Previously-treated HR _{ins} Bev Crude 18 Crede 18 1 Crede 18 1 Previously-treated HR _{ins} Bev Crude 18 Previously-treated HR _{ins} Bev Response 2 Crude	•								
Drugs for NSCLC based on historical or cytological evidence, 1. und 2. Linie Patients with Advanced MSCLC: A Schemation: bevacizumab (15 mg/kg) with chemotherapy Meta-Analysis From 30 Randomized Controlled anoninferiority trial) Schematical Trials Ergebnisdarstellung Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) Trials Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of response rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G Image: second trial Patients Response Treatment Previously-treated Previously-treated 10.753 Previously-treated Image: second 10.790 Previously-treated Previously-treated 10.793 Response 2 0.753 0.649, 0070.0990 Chemoth									
Patients with Advanced NSCLC: A Meta-Analysis from 30 Randomized Controlled Clinical Trials Freeponse Trate as 2.741(95%Cl: 2.046, 3.672), the pooled OR of respon rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G.	•					0			
Advanced NSCLC: A Meta-Analysis from 30 RandomizedKomparator: standard chemotherapy alone Endpunkt: OS, ORR, PFS Methode: systematic review and meta- analysis of RCTs (placebo-controlled or other types of superiority tr well as noninferiorityv trial) Suchzeitraum: 1999 to 2011 Anzahl eingeschlossene Studien/Patienten (Gesamt): 30 (k.A.) Qualitätsbewertung der Primärstudien: Jadad ScoreControlled Clinical TrialsErgebnisdarstellung Erste Linie (chemotherapy-nalve patients) the pooled OR of respon rate was 2.741(95%CI: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%CI: 0.561, 0.743), the pooled HR for deat 0.790 (95%CI: 0.674, 0.926), respectively2. Linie adjusted HR for previously-treated patients was 0.680 (95%CI: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G.PatientsResponse variable groupNumber of trialsCrude HR _{outed} PatientsResponse variablePeriously-treated Chemotherapy-naiveNumber of groupChemotherapy-naive CAGG18Treatment group0.482, 1.1911 0.680*Chemotherapy-naive CAGG1Previously-treated HR _{rs} Bev20.685, 1.4751Chemotherapy-naive HR _{rs} Bev20.685, 1.47511-Previously-treated HR _{rs} Bev20.685, 1.47511-Previously-treated HR _{rs} Bev20.9850.688, 1.47510.626, 181 </td <th>Drugs for</th> <td>NSCLC ba</td> <td>sed on his</td> <td>torical or</td> <td>cytologic</td> <td>cal evid</td> <td>dence, 1</td> <td>. und 2</td> <td>. Linie</td>	Drugs for	NSCLC ba	sed on his	torical or	cytologic	cal evid	dence, 1	. und 2	. Linie
Endvanted NSCLC: A Meta-Analysis from 30 Randomized Controlled Clinical TrialsEndpunkt: OS, ORR, PFS Methode: systematic review and meta- analysis of RCTs (placebo-controlled or other types of superiority tr well as noninferiorityv trial) Suchzeitraum: 1999 to 2011 Anzahl eingeschlossene Studien/Patienten (Gesamt): 30 (k.A.) Qualitätsbewertung der Primärstudien: Jadad ScoreErgebnisdarstellung Erste Linie (chemotherapy-narve patients) the pooled OR of respon rate was 2.741(95%CI: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%CI: 0.561, 0.743), the pooled HR for deat 0.790 (95%CI: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%CI: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G.PatientsResponse variable groupResponse variableTreatment groupNumber of trialsAdjusted 10.617, 0.920, 1.151** (0.821, 1.04 0.680* (0.492, 0.942) EGFR-S 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042, 0.942, 1.191 1.0680* (0.492, 0.944 1.191 1.0424, 1.042, 1.042, 1.042, 1.042, 1.042, 1.042 1.042, 1.042, 1.042, 1.042, 1.042, 1.042, 1.042 1.042, 1.042, 1.042, 1.042, 1.042, 1.042, 1.042, 1.042 1.042, 1.042, 1.042, 1.042, 1.042, 1.042, 1.042, 1.042 1.042, 1	Patients with	Interventio	on : bevaciz	zumab (1	5 mg/kg)	with o	chemoth	erapy	
NSCLC: A Meta-Analysis from 30 Randomized Controlled Clinical Trials Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G Response Treatment group Number of patients Crude HR _{rps} Bev 3 0.733 0.570 (0.617, 0.920 (0.547, 0.920, 18) 1 Chemotherapy-naive HR _{rps} Bev 3 0.738 0.578 0.647, 0.9204, 18 C/E/G 18 1 C/E/G 18 1 C/E/G 1 1 Previously-treated HR _{rps} 2 0.758 C/E/G 18 1 1 - Previousl	Advanced	Komparat	or: standa	rd chemo	therapy a	alone			
Meta-Analysis from 30 Randomized ControlledAnzahl eingeschlossene Studien/Patienten (Gesamt): 30 (k.A.) Qualitätsbewertung der Primärstudien: Jadad ScoreErgebnisdarstellung Erste Linie (chemotherapy-naive patients) traitsErgebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of respons rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/GPatientsResponse variable Treatment Chemotherapy-naiveNumber of traitsAdjusted HR-use 95%ClPatientsResponse VariableTreatment CE/GNumber of traitsAdjusted HR-use 95%ClPatientsResponse VariableTreatment CE/GScoreAdjusted HR-use 95%ClChemotherapy-naïveHR-use Bev20.774 0.607, 0.9721151***Chemotherapy-naïveHR-use Bev20.9851.668, 1.473Chemotherapy-naïveHR-use Bev20.9851.658, 1.473		Endpunkt:	: OS, ORR	, PFS Me	ethode: s	system	atic revi	ew and	l meta-
from 30 Anzahl eingeschlossene Studien/Patienten (Gesamt): 30 (k.A.) Qualitätsbewertung der Primärstudien: Jadad Score Controlled Clinical Trials Ergebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of response rate was 2.741 (95%CI: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%CI: 0.561, 0.743), the pooled HR for deat 0.790 (95%CI: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%CI: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G. Patients Response trials Chemotherapy-naive HR _{res} Bev 3 0.733 0.570, 0.990 0.947* Chemotherapy-naive HR _{res} Bev 2 0.758 C/E/G 1 - Chemotherapy-naive HR _{res} Bev 2 C/E/G 1 - 1 C/E/G 1 - 1 Chemotherapy-naive HR _{res} Bev 2 0.958 C/E/G 18 1 - 1 - <th></th> <td>analysis of</td> <td>RCTs (pla</td> <td>icebo-cor</td> <td>ntrolled o</td> <td>r othe</td> <td>r types c</td> <td>of super</td> <td>iority trial</td>		analysis of	RCTs (pla	icebo-cor	ntrolled o	r othe	r types c	of super	iority trial
Randomized Controlled Clinical TrialsQualitätsbewertung der Primärstudien: Jadad ScoreErgebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of respon rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively2. Linie adjusted HR for rate was 2.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G.matientsResponse variableTreatment groupNumber of trialsAdjusted HRoutematientsResponse variableTreatment group0.5730.570, 0.990 (0.687* 0.0492, 0.942)matientsResponse variableC/E/G18-1Chemotherapy-naiveHRyrsBev20.7580.442, 1.191Chemotherapy-naiveHRyrsBev20.7580.642, 1.191Chemotherapy-naiveHRosBev20.7580.642, 1.191Chemotherapy-naiveHRosBev20.9850.658, 1.4751.262**Chemotherapy-naiveHRosBev20.9850.658, 1.4751.262**0.927, 1.71	-	well as nor	ninferiorityv	/ trial) Su	chzeitra	um: 19	999 to 2	011	
Controlled Clinical TrialsErgebnisdarstellung Erste Linie (chemotherapy-naive patients) the pooled OR of response rate was 2.741(95%Cl: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%Cl: 0.561, 0.743), the pooled HR for deat 0.790 (95%Cl: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%Cl: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G.patientsResponse variable rate was 0.673Treatment groupNumber of trialsAdjusted HR _{cude} 95%ClAdjusted 95%ClpatientsResponse variable (Chemotherapy-naïveTreatment HR _{rys} Number of trialsAdjusted 95%ClAdjusted 95%ClPreviously-treated (Chemotherapy-naïveHR _{rys} Bev30.7530.570, 0.990 0.4847*0.6887, 1.00 0.6887, 1.00Previously-treatedHR _{rys} Bev30.7530.642, 0.921 0.6417, 0.9720.6887, 1.00 0.6827, 1.01Previously-treatedHR _{rys} Bev20.7740.6417, 0.972 0.5731.511**0.6828, 1.60 0.628, 1.475Previously-treatedHR _{cs} Bev20.985 0.658, 1.4751.522**0.927, 1.71	from 30	Anzahl eir	ngeschlos	sene Stu	idien/Pa	tiente	n (Gesa	mt): 30) (k.A.)
Clinical Trials $\begin{array}{ c c c c } \hline Ergebnisdarstellung \\ \hline Erste Linie (chemotherapy-naive patients) the pooled OR of response rate was 2.741(95%CI: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%CI: 0.561, 0.743), the pooled HR for deate 0.790 (95%CI: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%CI: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G. \\ \hline $		Our all the table	owortung	der Prin	närstudi	en: Ja	dad Sco	re	
Clinical Trials $\begin{array}{ c c c c } \hline Ergebnisdarstellung \\ \hline Erste Linie (chemotherapy-naive patients) the pooled OR of response rate was 2.741(95%CI: 2.046, 3.672), the pooled HR for disease progression was 0.645 (95%CI: 0.561, 0.743), the pooled HR for deate 0.790 (95%CI: 0.674, 0.926), respectively 2. Linie adjusted HR for previously-treated patients was 0.680 (95%CI: 0.492, 0.942) EGFR-S Table 2. Crude and risk-adjusted hazard ratio of BEV comparing to C/E/G. \\ \hline $	Randomized	Qualitatsb	ewentung						
patients variable group trials Crude Adjusted HR_orude 95%CI HR_odusted 95%CI HR_odusted 95%CI Chemotherapy-naive HR _{PFS} Bev 3 0.753 (0.570, 0.996) 0.847* (0.687, 1.04) Previously-treated HR _{PFS} Bev 1 - 1 - Previously-treated HR _{PFS} Bev 2 0.758 (0.482, 1.191) 0.680* (0.492, 0.942) C/E/G 6 1 - 1 - - Chemotherapy-naïve HR _{CS} Bev 2 0.758 (0.617, 0.972) 1.151** (0.828, 1.60) C/E/G 18 1 - 1 - - - Previously-treated HR _{CS} Bev 2 0.754 (0.617, 0.972) 1.151** (0.828, 1.60) Previously-treated HR _{CS} Bev 2 0.985 (0.658, 1.475) 1.62** (0.927, 1.71)	Controlled	Ergebnisdars Erste Linie (d	stellung chemothei	rapy-nan	ve patier	nts) the	e pooled	I OR of	
Chemotherapy-naïve HR _{PFS} Bev 3 0.753 (0.570, 0.996) 0.847* (0.687, 1.04 C/E/G 18 1 - 1 - Previously-treated HR _{PFS} Bev 2 0.758 (0.482, 1.191) 0.680* (0.492, 0.94) C/E/G 6 1 - 1 - - - C/E/G 6 1 - 1 -	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre	stellung chemother 1(95%Cl: 2 vas 0.645 (l: 0.674, 0.4 ated patier	r apy-na n 2.046, 3.6 95%CI: 0 926), res _l nts was 0	ve patier 572), the 0.561, 0.7 pectively .680 (95	nts) the poole 743), 1 2. Li i %Cl: 0	e pooled ed HR fo the poole nie adjus	l OR of r diseas ed HR f sted HF	se for death w R for
C/E/G 18 1 - 1 - Previously-treated HR _{PFS} Bev 2 0.758 (0.482, 1.191) 0.680* (0.492, 0.94) C/E/G 6 1 - 1 - - C/E/G 6 1 - 1 - - Chemotherapy-naïve HR _{os} Bev 2 0.774 (0.617, 0.972) 1.151** (0.828, 1.60 C/E/G 18 1 - 1 - - - Previously-treated HR _{os} Bev 2 0.985 (0.658, 1.475) 1.262** (0.927, 1.71)	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris	stellung chemothel 1(95%CI: 2 vas 0.645 (1: 0.674, 0.4 ated patier sk-adjusted hazard	rapy-nan 2.046, 3.6 95%CI: 0 926), res nts was 0 d ratio of BEV of Treatment	ve patier 672), the 0.561, 0.7 pectively .680 (95 ⁴ comparing to C	nts) the poole 743), 1 2. Li i %CI: 0 /E/G.	e pooled ed HR fo the poole nie adjus	I OR of r diseas ed HR f sted HF 942) E	se for death w R for
Previously-treated HR _{PFS} Bev 2 0.758 (0.482, 1.191) 0.680* (0.492, 0.94) C/E/G 6 1 - 1 - Chemotherapy-naïve HR _{os} Bev 2 0.774 (0.617, 0.972) 1.151** (0.828, 1.60) C/E/G 18 1 - 1 - Previously-treated HR _{os} Bev 2 0.985 (0.658, 1.475) 1.262** (0.927, 1.71)	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris	stellung chemothel 1(95%CI: 2 vas 0.645 (1: 0.674, 0.4 ated patier sk-adjusted hazard	rapy-nan 2.046, 3.6 95%CI: 0 926), res nts was 0 d ratio of BEV of Treatment	ve patier 672), the 0.561, 0.7 pectively .680 (95 ⁴ comparing to C	nts) the poole 743), 1 2. Li i %CI: 0 /E/G. <u>Crude</u> HR _{cude}	e pooled ed HR fo the poole nie adjus 0.492, 0.1	I OR of r diseased HR f sted HF 942) E	se for death w R for GFR-Statu
C/E/G 6 1 - 1 - Chemotherapy-naïve HR _{os} Bev 2 0.774 (0.617, 0.972) 1.151** (0.828, 1.60 C/E/G 18 1 - 1 - Previously-treated HR _{os} Bev 2 0.985 (0.658, 1.475) 1.262** (0.927, 1.71)	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris	stellung chemother 1(95%CI: 2 vas 0.645 (1: 0.674, 0.4 ated patier sk-adjusted hazard Response variable	rapy-nam 2.046, 3.6 95%Cl: 0 926), res 1 rest was 0 1 ratio of BEV of Treatment group	572), the 572), the 5561, 0.7 pectively .680 (95° comparing to C Number of trials	nts) the poole 743), 1 2. Lin %CI: C /E/G. <u>crude</u> <u>HRcrude</u> 0.753	e pooled ed HR fo the poole nie adjus 0.492, 0.1	I OR of r diseased HR f sted HF 942) E	se for death v R for GFR-State
C/E/G 18 1 - 1 - Previously-treated HR _{os} Bev 2 0.985 (0.658, 1.475) 1.262** (0.927, 1.71)	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris	stellung chemother 1(95%CI: 2 vas 0.645 (l: 0.674, 0.4 ated patier sk-adjusted hazard Response variable	rapy-nam 2.046, 3.6 95%Cl: 0 926), res 926), res nts was 0 tratio of BEV of treatment group Bev c/E/G	A patier 572), the 561, 0.7 pectively .680 (95° comparing to C Number of trials 18	ats) the poole 743), 1 2. Li %CI: C /E/G. Crude HR _{crude} 0.753	e pooled ed HR fo the poole nie adjus 0.492, 0.1 95%c1 (0.570, 0.996)	I OR of r diseased HR f sted HR 942) E Adjusted HR _A djusted 0847* 1	se for death w R for GFR-Statu 95%cl (0687, 1.043)
Previously-treated HR _{os} Bev 2 0.985 (0.658, 1.475) 1.262** (0.927, 1.71	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris	stellung chemother 1(95%CI: 2 vas 0.645 (l: 0.674, 0.4 ated patier sk-adjusted hazard Response variable	rapy-nam 2.046, 3.6 95%Cl: 0 926), res 926), res 926), res 926), res 926), res 926,	A patier 572), the 561, 0.7 pectively .680 (95° comparing to C Number of trials 18 2	2. Li 2. Li 3. Ci 2. Li 6. Ci 7. Ci	e pooled ed HR fo the poole nie adjus 0.492, 0.1 95%c1 (0.570, 0.996)	I OR of r diseased HR f sted HR 942) E Adjusted HR _A djusted 0847* 1	se for death w R for GFR-Statu
	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris patients Chemotherapy-naive	stellung chemother 1(95%CI: 2 vas 0.645 (1: 0.674, 0.1 ated patier kk-adjusted hazard Response variable HR _{PFS}	rapy-nain 2.046, 3.6 95%CI: 0 926), res 926), res 926), res 926), res 926 926 926 926 926 926 926 926 926 926	Ve patier 572), the 5561, 0.7 pectively .680 (95° comparing to C Number of trials 18 2 6 2	crude Crude Crude HRcrude 0.753 1 0.758 1 0.774	e pooled ed HR fo the poole nie adjus 0.492, 0.4 95%cl (0.570, 0.996) - (0.482, 1.191) -	I OR of r diseased HR f sted HR 942) E Adjusted HRadjusted 0.847* 1 0.680* 1	se for death w R for GFR-Statu 95%cl (0687, 1.043)
	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris patients Chemotherapy-naïve Previously-treated	stellung chemother 1(95%CI: 2 vas 0.645 (1: 0.674, 0.1 ated patier kk-adjusted hazard Response variable HR _{PFS} HR _{PFS}	rapy-nain 2.046, 3.6 95%Cl: 0 926), res 926), res 926), res 926), res 926 926 926 926 926 926 926 926 926 926	Ve patier 572), the 5561, 0.7 pectively .680 (95° comparing to C Number of trials	crude Crude Crude HRcrude 0.753 1 0.758 1 0.774 1	e pooled ed HR fo the poole nie adjus 0.492, 0.4 95%c1 (0.570, 0.996) - (0.482, 1.191) - (0.617, 0.972) -	I OR of r diseased HR f sted HR 942) E	se for death w R for GFR-State (0.687, 1.043) - (0.492,0.942) - (0.828, 1.600) -
*HR _{adjusted} was adjusted by In(OR _{ORP}).	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris patients Chemotherapy-naïve Previously-treated	stellung chemother 1(95%CI: 2 vas 0.645 (1: 0.674, 0.1 ated patier kk-adjusted hazard Response variable HR _{PFS} HR _{PFS}	Papy-naiv 2.046, 3.6 95%Cl: 0 926), res 926), res ots was 0 dratio of BEV of Bev C/E/G Bev C/E/G Bev C/E/G Bev	Ve patier 572), the 5561, 0.7 pectively .680 (95° comparing to C Number of trials 3 18 2 6 2 18 2	rts) the poole 743), 1 2. Lin %CI: C /E/G. Crude HR crude 0.753 1 0.758 1 0.774 1 0.385	e pooled ed HR fo the poole nie adjus 0.492, 0.4 95%c1 (0.570, 0.996) - (0.482, 1.191) - (0.617, 0.972) -	I OR of r diseased HR f sted HF 942) E	se for death w R for GFR-Statu 95%cl (0.687, 1.043) - (0.492,0.942) -
**HR _{adjusted} was adjusted by In(HR _{PFS}).	Controlled	Ergebnisdars Erste Linie (d rate was 2.74 progression w 0.790 (95%Cl previously-tre Table 2. Crude and ris patients Chemotherapy-naïve Previously-treated	stellung chemother 1(95%CI: 2 vas 0.645 (1: 0.674, 0.1 ated patier kk-adjusted hazard Response variable HRprs HRprs HRos HRos	Papy-naiv 2.046, 3.6 95%Cl: 0 926), res 926), res ots was 0 dratio of BEV of Bev C/E/G Bev C/E/G Bev C/E/G Bev	Ve patier 572), the 5561, 0.7 pectively .680 (95° comparing to C Number of trials 3 18 2 6 2 18 2	rts) the poole 743), 1 2. Lin %CI: C /E/G. Crude HR crude 0.753 1 0.758 1 0.774 1 0.385	e pooled ed HR fo the poole nie adjus 0.492, 0.4 95%c1 (0.570, 0.996) - (0.482, 1.191) - (0.617, 0.972) -	I OR of r diseased HR f sted HF 942) E	se for death w R for GFR-State (0.687, 1.043) - (0.492,0.942) - (0.828, 1.600) -

hazard ratios for PFS and OS (HRPFS and HROS) and the corresponding 95% confidence intervals (CIs). For other 5 trials, 3 reported the HRPFS directly and 2 reported the HROS directly. In terms of the efficacy for patients treated with gefitinib (2 trials [15,17] for EGFR-mutated patients among 14 clinical trials), meta-analysis showed that pooled ORORR in EGFRmutated patients was 4.862 (95%CI: 3.064, 7.715; I2= 20.2%; Figure 3) compared to 1.199 (95%CI: 1.003, 1.434; I2 =43.3%) in EGFR untested patients (P,0.001). Pooled HRPFS in EGFRmutated patients (0.379, 95%CI: 0.235, 0.611; I2 = 74.2%) was smaller than that in EGFR untested patients (0.896, 95%CI: 0.738, 1.087; I2= 79.1%, P= 0.001). In addition, pooled HROS in EGFR-mutated patients was 1.046 (95%CI: 0.509, 2.149; I2 = 63.0%), compared to 1.005 (95%CI: 0.924, 1.093; I2 = 38.5%) in EGFR untested patients (P= 0.914). Therefore, in the following comparison, we compared bevacizumab with other targeted drugs (gefitinib, erlotinib and cetuximab) in EGFR untested patients. However, in terms of HROS, the comparison was made in both EGFR-mutated and EGFR untested patients.

	Church .	
	Study	ES (95% CI) N
	OR for Response Rate Bev(chemotherapy-naive) Gefitinib (gene-screen) P<0.001 Gefitinib (no gene-screen)	2.74 (2.05, 3.67) 1097 → 4.86 (3.06, 7.71) 400 1.20 (1.00, 1.43) 2671
	Favours Control Groups Favours Ta HR for PFS	Target Groups
	Bev(chemotherapy-naive) Gefitinib (gene-screen) Gefitinib (no gene-screen)	.036 0.64 (0.56, 0.74) 1097 P=0.007 0.38 (0.24, 0.61) 400 0.90 (0.74, 1.09) 2671
		Control Groups
	HR for OS Bev(chemotherapy-naive) Gefitinib (gene-screen) Gefitinib (no gene-screen)	P=0.456 0.79 (0.67, 0.93) 917 1.05 (0.51, 2.15) 400 1.00 (0.92, 1.09) 2671
	Favours Target Groups Favours C	Control Groups
	.13 1	1 7.71
	Fig. 3 Response rate, PFS, OS of Bey patients with different EGFR status.	vacizumab versus Gefitinib in NSCLC
Gao H et al.,	targeted drugs, chemotherapy improved patients' response ra bevacizumab provided significa lower HR _{OS} among chemother among previous treated patient EGFRmutated patients, gefitin reduces HR _{PFS} . However, in ge untested, bevacizumab showe well as HR _{OS} , compared with g Limitierungen Our study included clinical trial criteria and patient demograph (age, gender, ECOG performa balanced between groups in a level difference may lead to be Inconsistency of chemotherapi	cantly higher OR_{ORR} , lower HR_{PFS} , and rapy-naive patients, and lower HR_{PFS} ints. It was also found that in hib significantly improved OR_{ORR} and leneral patients with EGFR status ed a clear benefit in OR_{ORR} , HR_{PFS} , as gefitinib. als with only slightly different enrollment hics. However patient characteristics ance status) were found not to be a small number of trials. Such patient eterogeneity in the meta-analysis. bies of the control group did exist in this eliminated due to the study background.
2011 [13].		
Efficacy of	to assess the efficacy and safety of er NSCLC	nounid in patients with advanced
erlotinib in patients with	Methodik	
advanced non-	Population: advanced NSCLC. All	lle Linien
small cell lung cancer: a pooled	Intervention: erlotinib alone or bas other agent or based combination	sed combination therapy Komparator : regimen

	-					
analysis of	Endpunkt: OS, PFS, ORR, toxicity					
randomized trials	Methode: systematic review and meta-analysis of RCTs					
	Suchzeitraum: 1997 bis 2011					
	Anzahl eingeschlossene Studien/Patienten (Gesamt): 14 (n= 7974)					
	Qualitätsbewertung der Studien: keine					
	Ergebnisdarstellung					
	First-line therapy (5 trials)					
	Overall survival (4 trials) : no statistically significant difference between erlotinib-based regimens and other regimens. Significant heterogeneity The subgroup analysis showed a similar OS compared with placebo (HR: 1.02; 95% CI: 0.92–1.13; P=0.73) a <u>decreased</u> OS compared with chemotherapy (HR: 1.39; 95% CI: 0.99–1.94; P=0.05) and a similar OS compared with placebo as maintenance therapy (HR: 0.87; 95% CI: 0.68–1.11; P=0.22)					
	PFS (3 trials) : no statistically significant difference between erlotinib-based regimens and other regimens. Significant heterogeneity The pooled estimate showed a similar PFS when compared with placebo (HR: 0.93; 95% CI: 0.85–1.01; P=0.09) a <u>decreased</u> PFS compared with chemotherapy (HR: 1.55; 95% CI: 1.24–1.93; P<0.01) but a prolonged PFS compared with placebo as maintenance therapy (HR: 0.71; 95% CI: 0.60–0.83; P<0.01).					
	Response rate (9 trials, 5.404 patients): no statistically significant difference between erlotinib-based regimens and other regimens. Significant heterogeneity The subgroup analysis showed a similar ORR comparing with placebo (OR: 0.90; 95% CI: 0.74–1.09; P=0.29) or chemotherapy (OR: 0.33; 95% CI: 0.64–17.36; P=0.15) but an increased ORR comparing with placebo as maintenance therapy (OR: 0.47; 95% CI: 0.31–0.70; P<0.01).					
	second/third-line therapy compared with placebo: erlotinib-based regimens also significantly increased ORR (OR: 0.10;95% CI: 0.02–0.41; P<0.01), prolonged PFS (HR: 0.61; 95% CI: 0.51–0.73; P<0.01), and improved OS (HR: 0.70; 95% CI: 0.58–0.84; P<0.01). compared with chemotherapy: outcomes were similar between two arms. compared with PF299804: decreased ORR (OR: 3.87; 95% CI: 1.27–11.81; P=0.02), and shortened PFS (HR: 0.58; 95% CI: 0.49–0.95; P=0.02).					
	<i>Toxicity</i> : All 14 trials including 7261 patients provided results of adverse events. Reported toxicities were analyzed in only 12 trials except for the targeted drugs containing trials. Grade 3/4 diarrhea (OR: 4.87; 95% CI: 3.19–7.44; P<0.01), rash (OR: 28.94; 95% CI: 14.28–58.66; P<0.01), and anemia (OR: 1.39; 95% CI: 1.06–1.82; P=0.02) were significantly prominent in the erlotinib-based regimens.					
	Anmerkungen/Fazit der Autoren Our findings demonstrate that erlotinib- based regimens significantly increase ORR and improve PFS as a first-line maintenance therapy or as a second/third-line therapy compared with					

	pleashe. Thus, the use of orlatinih may be a new offective thereasy is treating
	placebo. Thus, the use of erlotinib may be a new effective therapy in treating advanced NSCLC as first-line maintenance therapy or second/third-line therapy compared with best supportive care.
Pan G et al.,	Fragestellung
2013 [29]. Comparison of the efficacy	This study aims to assess the efficacy and safety of doublettargeted agents based on erlotinib in patients with advanced NSCLC.
and safety of	Methodik
single-agent	Population: Adult patients with advanced NSCLC
erlotinib and doublet	Intervention: doublets (erlotinib plus another targeted drugs)
molecular	Komparator: erlotinib
targeted	Endpunkte: OS, ORR, DCR (disease control rate), side effects
agents based on erlotinib in	Suchzeitraum: Bis 11/2012, nur RCTs
advanced non- small cell lung cancer	Anzahl eingeschlossene Studien/Patienten (Gesamt): 5 (2100 Patienten) Qualitätsbewertung der Studien: Cochrane risk of bias. Insgesamt gute Qualität der Studien
(NSCLC): a systematic	Heterogenitätsuntersuchungen: I ²
review and	Ergebnisdarstellung
meta-analysis	The RCTs included in this systematic review all seem to be
	of fairly good methodological quality
	mean age 63; 1,224 men and 876 women; 118 stage IIIB and 1,180 stage IV; 441 squamous cell cancers, 1,287 adenocarcinomas, and 372 other pathological types Effects: fixed effect models
	OS:
	One-year OS did not significantly improve with doublets compared with single erlotinib (HR 1.06, 95 % CI 0.95–1.18, p=0.26; fixed effect model) ORR:
	ORR were significantly superior with doublets (HR 1.49, 95%CI 1.13–1.98,
	Risk Ratio Risk Ratio
	Study or Subgroup M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl
	David 2011 0.74 [0.28, 1.98] Giorgio 2012 1.55 [1.02, 2.35]
	Lecia 2011 1.32 [0.48, 3.63]
	Roy 2011 1.99 [1.17, 3.37]
	Suresh 2011 0.90 [0.32, 2.56]
	Total (95% CI) 1.49 [1.13, 1.98]
	Total events Hotorogonative Chi ² = 4.05, df = 4.(P = 0.40) \cdot 12 = 1%
	Heterogeneity: $Chi^2 = 4.05$, $df = 4$ (P = 0.40); $l^2 = 1\%$ Test for overall effect: Z = 2.78 (P = 0.005)
	p<0.05) Favours Erlotinib Favours Doublet

	DCR (disease control rate):
	HR 1.25, 95%Cl 1.12–1.39, p<0.05
	Side effects/ AEs:
	All grades of the most frequent side effects such as rash, anemia, diarrhea, anorexia, and fatigue were similar for two groups (HR 1.25, 95 % CI 0.99– 1.58; 0.98, 95 % CI 0.78–1.24; 1.43, 95%CI 0.97–2.11; 1.18, 95%CI 0.84– 1.65; 1.23, 95 % CI 0.86–1.77, respectively; random effect model). The grade \geq 3 toxicity was not significantly different (HR 1.40, 95 % CI 0.97–2.01; random effect model). Some adverse events (e.g., alopecia, dyspnea, dry skin, hypertension, bleeding complications, stomatitis, interstitial lung disease, and thrombocytopenia) could not be analyzed precisely due to their low incidence.
	Anmerkungen/Fazit der Autoren
	The results of this systematic review suggest that patients with advanced NSCLC might benefit from doublet-targeted therapy based on erlotinib compared to erlotinib alone. However, an individual patient data systematic review and meta-analysis are needed to give us a more reliable assessment of the size of benefits and to explore whether doublet therapy may be more or less effective for particular types of patients.
	From out MA and these studies, we can conclude that patients with advanced NSCLC can benefit from doublettargeted therapy, whereas having no notable impact on OS in unselected patients according to EGFR or KRAS status, the EGFR-negative or KRAS-positive group may benefit more from the combination therapy. Therefore, the predictive biomarkers are essential for further development of combined inhibition.
Pilkington G et al., 2015 [31]. A systematic review of the	Fragestellung Our aim was to evaluate the clinical effectiveness of chemotherapy treatments currently licensed in Europe and recommended by the National Institute for Health and Care Excellence (NICE) for the first-line treatment of adult patients with locally advanced or metastatic non-small cell lung cancer
clinical effectiveness of first-line chemotherapy for adult patients with locally advanced or metastatic non-small cell lung cancer	 Methodik Population: adult patients with locally advanced or metastatic NSCLC Intervention: first-line chemotherapy treatments for NSCLC; treatments had to be currently licensed for use in Europe and recommended by NICE Komparator:. Andere first-line Chemotherapie Endpunkte: OS or PFS and TTP Suchzeitraum: 2001-2010 Anzahl eingeschlossene Studien/Patienten (Gesamt): 23 Methode: In terms of direct evidence syntheses, standard meta- analysis (MA) was undertaken for each pair-wise treatment comparison. An insufficient number of trials directly compared all chemotherapy treatment options and so multiple treatment comparison (MTC) methodology was undertaken in order to synthesise information on the relative efficacy of all included chemotherapy regimens. Qualitätsbewertung der Studien: All RCTs were assessed for

methodological quality using criteria based on the Centre for Reviews and Dissemination guidance. Overall, the quality of the included RCTs was poor-few trials fully reported methods and the definitions of the health outcomes used often differed between trials.

Ergebnisdarstellung

Table 1 MA and MTC results. NSCLC population with squamous disease

Reference treatment vs comparator	Number of data points (trials with head-to-head comparison)	Number of patients in reference treatment/ comparator	Number of events (deaths) in reference treatment/comparator	MA HR (95% CI) N=18	MTC HR (95% CI) N=18
Overall survival					
GEM+PLAT vs VNB+PLAT ^{8 9 21 25-28 35}	8	1075/1077	842/860	1.08 (0.98 to 1.20)	1.09 (0.99 to 1.19
GEM+PLAT vs PAX+PLAT9 11 23 28 33 34	6	1245/1344	1053/1186	1.03 (0.94 to 1.13)	1.05 (0.96 to 1.1
GEM+PLAT vs DOC+PLAT ³⁴	1	301/304	262/271	1.06 (0.89 to 1.28)	1.00 (0.88 to 1.1
VNB+PLAT vs PAX+PLAT ⁹ 19 24 28	4	625/630	496/481	0.98 (0.83 to 1.16)	0.96 (0.86 to 1.0
VNB+PLAT vs DOC+PLAT ^{10 20 22 30}	4	766/1175	607/920	0.89 (0.78 to 1.00)	0.92 (0.81 to 1.0
PAX+PLAT vs DOC+PLAT ³⁴	1	602/304	538/271	0.98 (0.76 to 1.27)	0.95 (0.82 to 1.1
Progression-free survival					
GEM+PLAT vs VNB+PLAT ^{8 26}	2	269/269	312*	1.09 (0.87 to 1.38)	1.06 (0.81 to 1.3
GEM+PLAT vs PAX+PLAT ^{23 34}	2	350/656	142/304†	1.17 (1.00 to 1.36)	1.23 (0.94 to 1.6
GEM+PLAT vs DOC+PLAT ³⁴	1	301/304	105/114	1.15 (0.96 to 1.37)	1.08 (0.79 to 1.4
VNB+PLAT vs PAX+PLAT ¹⁹	1	70/70	7/14†	1.52 (1.06 to 2.17)	1.16 (0.87 to 1.6
VNB+PLAT vs DOC+PLAT ²⁰ 22	2	168/165	92/86	0.92 (0.74 to 1.16)	1.02 (0.78 to 1.3
PAX+PLAT vs DOC+PLAT ³⁴	1	602/304	130/263†	0.97 (0.75 to 1.24)	0.88 (0.62 to 1.2
Time to tumour progression					
GEM+PLAT vs VNB+PLAT ^{9 21 25 35}	4	433/436	91 †/82 †	1.03 (0.90 to 1.18)	1.02 (0.83 to 1.2
GEM+PLAT vs PAX+PLAT ⁹ 11 33	3	744/742	417†/423†	1.01 (0.90 to 1.13)	1.21 (0.73 to 1.9
GEM+PLAT vs DOC+PLAT	0	No trial data	No trial data	No trial data	0.98 (0.62 to 1.5
VNB+PLAT vs PAX+PLAT9	1	203/204	34†/37†	0.90 (0.64 to 1.28)‡	0.99 (0.77 to 1.2
VNB+PLAT vs DOC+PLAT ¹⁰	1	404/406	86†/88†	0.96 (0.70 to 1.31)‡	0.96 (0.65 to 1.4
PAX+PLAT vs DOC+PLAT	0	No trial data	No trial data	No trial data	0.98 (0.6 to 1.55

*In one trial PFS events were reported for both arms. †Includes progressive disease (PD) only as PFS/TTP event (PD or death) not reported. ‡Direct evidence. Bold text indicates statistically significant results. DOC, docetaxel; GEM, gencitabine; MA, meta-analysis; MTC, mixed treatment comparison; NSCLC, non-small cell lung cancer; PAX, paclitaxel; PLAT, platinum; VNB, vinorelbine.

Table 2 MA and MTC results. NSCLC population with non-squamous disease

Reference treatment vs comparator	Number of data points (trials with head-to-head comparison)	Number of patients in reference treatment/ comparator	Number of deaths in reference treatment/ comparator	MA HR (95% CI) N=20	MTC HR (95% CI) N=20
Overall survival					
GEM+PLAT vs VNB+PLAT ⁸ 9 25-28 35 21	8	1075/1077	842/860	1.08 (0.98 to 1.20)	1.08 (0.99 to 1
GEM+PLAT vs PAX+PLAT ⁹ 11 23 28 33 34	6	1245/1344	1053/1186	1.03 (0.94 to 1.13)	1.06 (0.97 to 1
GEM+PLAT vs DOC+PLAT ³⁴	1	301/304	262/271	1.06 (0.89 to 1.28)	0.99 (0.87 to 1
GEM+PLAT vs PEM+PLAT ^{4 29}	2	1084/1087	755/772	0.85 (0.73 to 1.00)	0.85 (0.74 to
VNB+PLAT vs PAX+PLAT ⁹ 19 24 28	4	625/630	496/481	0.98 (0.83 to 1.16)	0.92 (0.68 to 1
VNB+PLAT vs DOC+PLAT ^{10 20 22 30}	4	766/1175	607/920	0.89 (0.78 to 1.00)	0.98 (0.87 to 1
VNB+PLAT vs PEM+PLAT	0	No trial data	No trial data	No trial data	0.92 (0.82 to 1
PAX+PLAT vs DOC+PLAT ³⁴	1	602/304	538/271	0.98 (0.76 to 1.27)	0.79 (0.66 to
PAX+PLAT vs PEM+PLAT	0	No trial data	No trial data	No trial data	0.85 (0.63 to 1
DOC+PLAT vs PEM+PLAT	0	No trial data	No trial data	No trial data	0.94 (0.81 to 1
Progression-free survival					
GEM+PLAT vs VNB+PLAT ⁸ 26	2	269/269	312*	1.09 (0.87 to 1.38)	1.06 (0.78 to 1
GEM+PLAT vs PAX+PLAT ^{23 34}	2	350/651	142/304†	1.17 (1.00 to 1.36)	1.23 (0.77 to 1
GEM+PLAT vs DOC+PLAT ³⁴	1	301/304	105/114	1.15 (0.96 to 1.37)	1.08 (0.7 to 1.0
GEM+PLAT vs PEM+PLAT ⁴	1	1084/1087	NR	0.90 (0.79 to 1.02)	0.90 (0.53 to 1
VNB+PLAT vs PAX+PLAT ¹⁹	1	70/70	7/14†	1.52 (1.06 to 2.17)	1.16 (0.6 to 1.
VNB+PLAT vs DOC+PLAT ²⁰ 22	2	168/165	92/86	0.92 (0.74 to 1.16)	1.02 (0.61 to 1
VNB+PLAT vs PEM+PLAT	No trial data	No trial data	No trial data	No trial data	0.85 (0.42 to 1
PAX+PLAT vs DOC+PLAT ³⁴	1	602/304	130/263†	0.97 (0.75 to 1.24)	0.88 (0.59 to 1
PAX+PLAT vs PEM+PLAT	No trial data	No trial data	No trial data	No trial data	0.73 (0.42 to 1
DOC+PLAT vs PEM+PLAT	No trial data	No trial data	No trial data	No trial data	0.83 (0.43 to 1

Bold text indicates statistically significant results. DOC, docetaxel; GEM, gemcitabine; MA, meta-analysis; MTC, mixed treatment comparison; NSCLC, non-small cell lung cancer; PAX, paclitaxel; PFS, progression-free survival; PEM, pemetrexed; PLAT, platinum; VNB, vinorelbine.

		nd MTC results, NSCLC pop				MTC
	Reference treatme	ent vs comparator	Total deaths/patients in both arms	MA HR (95% N=3	CI)	MTC HR (95% CI) N=3
	Overall survival					
	PAX+PLAT vs GEI DOC+PLAT vs GE		199*/448 NR/172	0.94 (0.74	to 1.18) 5 to 3.58)†	0.94 (0.67 to 1.3)
	PAX+PLAT vs DO		NK/172 No trial data	No trial d	· · · · · · · · · · · · · · · · · · ·	1.64 (0.54 to 4.96) 0.57 (0.18 to 1.81)
	Progression-free sur					,
	PAX+PLAT vs GEI		NR/488		4 to 0.60)	0.39 (0.29 to 0.52)
	DOC+PLAT vs GE PAX+PLAT vs DO		NR/172 No trial data	0.49 (0.3 No trial d	3 to 0.73)†	0.49 (0.28 to 0.86 0.79 (0.42 to 1.48)
		ents not reported by EGFR M+.			ala	0.79 (0.42 to 1.46)
	†Direct evidence. Bold text indicates s DOC, docetaxel; GE	statistically significant results. F, gefitinib; MA, meta-analysis; M1	IC, mixed treatment comparison; NR, no	ot reported; NSCLC, non-small ce	ell lung cancer, PAX, paclitaxel; I	PLAT, platinum.
	DOC+PLAT) adverse events by chemo GEM+PLAT	PAX+PLAT	PEM+PLAT	VNB+PLAT	GEF
	Neutropenia 71.4%	Granulocytopenia 48.8%	Neutropenia 62.5%	Granulocytopenia 37.9%	Neutropenia 68.3%	Aminotransferas
	Leucopenia	Asthenia	Leucopenia	Blood transfusions	Leucopenia	33.8% Appetite loss
	43.5%	40.3%	31.9%	26.9%	47.2%	5.3%
	Weakness 16.0%	Neutropenia 36.4%	Weakness 14.5%	Infection 16.4%	Oedema 24.0%	Rash/acne 3.3%
	Pneumonitis	Thrombocytopenia	Cancer pain	Neutropenia	Anaemia	Toxic deaths
	11.5%	34.6%	13.2%	15.1%	19.3%	3.1%
	Anaemia 11.2%	Anorexia 27.0%	Nausea 10.3%	Alopecia 11.9%	Phlebitis 15.7%	Diarrhoea 3.1%
	Asthenia	Leucopenia	Anaemia	Leucopenia	Nausea/vomiting	Neutropenia
	10.2%	20.1%	10.0%	8.2%	11.5%	2.8%
	Nausea 9.9%	Transfusion 18.5%	Lethargy 9.4%	Thrombocytopenia 8.1%	Vomiting 10.3%	Pneumonitis 2.6%
	Vomiting	Alopecia	Thrombocytopenia	Anaemia	Nausea	Fatigue
	9.8% Cancer pain	17.2% Weakness	8.3% Neuropathy	7.0% Eatique	9.9% Acthonia	2.5%
	Cancer pain 8.4%	Weakness 17.0%	Neuropathy 7.9%	Fatigue 6.7%	Asthenia 9.4%	Infection 1.8%
	Infection	Anaemia	Vomiting	Nausea	Pain	Anaemia
	7.5%	16.5%	7.4%	6.2%	8.3%	1.6%
		ungen/Fazit d			ss of third ae	neration
Di W-X et al	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non-	trials that asse erapy drugs, the histology or ge ogeneous pate batients can be amous disease onts. Our comp ations of patie rove useful for R M+ status is an countries. It ralisable to Uk pulations with East Asian po	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with n arisons of availa ents with NSCLC decision-maker s based on the r is questionable K clinical practice NSCLC have a	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for c are therefore s. The evide esults from the whether the e as evidence	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely ti nce relating t nree trials cor results of the suggests that	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East
•	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non-	trials that asse erapy drugs, the histology or ge ogeneous pate batients can be amous disease onts. Our comp ations of patie rove useful for R M+ status is an countries. It ralisable to Uk pulations with East Asian po	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with r arisons of availa ents with NSCLC decision-maker s based on the r is questionable c clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care thereford s. The evide esults from th whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely ti nce relating t nree trials cor results of the suggests that ble prognosis	y factors ere classe ed that s: patients d EGFR imely and o patients nducted in se trials at East s compare
•	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non-	trials that asse erapy drugs, the histology or ge ogeneous pate batients can be amous disease onts. Our comp ations of patie rove useful for R M+ status is an countries. It ralisable to Uk pulations with East Asian po	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with n arisons of availa ents with NSCLC decision-maker s based on the r is questionable K clinical practice NSCLC have a	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care thereford s. The evide esults from th whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely ti nce relating t nree trials cor results of the suggests that ble prognosis	y factors ere classe ed that s: patients d EGFR imely and o patients nducted in se trials at East s compare
2013 [32].	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo	trials that asserting the trials that asserting the trials that asserting the trials that asserting the trials as the trial trials and trials as the trial trials as the trial trials as the trial trials and trials as the trial trial trial trials as the trial trial trial trial trial trials as the trial trial trial trial trial trials as the trial tr	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with n arisons of availa ents with NSCLC decision-maker s based on the r is questionable K clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care therefore s. The evide esults from the whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to results of the suggests that ble prognosis the efficacy a	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compare and safety
2013 [32]. Dverall	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo of combir	trials that asse erapy drugs, the histology or ge ogeneous pate patients can be amous disease onts. Our comp ations of patie rove useful for R M+ status is an countries. It ralisable to Uk pulations with East Asian po ellung rmed a meta-a ning targeted t	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with n arisons of availa ents with NSCLC decision-maker s based on the r is questionable c clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care therefore s. The evide esults from the whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to results of the suggests that ble prognosis the efficacy a	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compare and safety
2013 [32]. Dverall	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo of combir	trials that asserting the trials that asserting the trials that asserting the trials that asserting the trials as the trial trials and trials as the trial trials as the trial trials as the trial trials and trials as the trial trial trial trials as the trial trial trial trial trial trials as the trial trial trial trial trial trials as the trial tr	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with n arisons of availa ents with NSCLC decision-maker s based on the r is questionable K clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care therefore s. The evide esults from the whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to results of the suggests that ble prognosis the efficacy a	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compare and safety
2013 [32]. Overall Survival Benefits for	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo of combir	trials that asse erapy drugs, the histology or ge ogeneous pat batients can be amous disease onts. Our comp ations of patie rove useful for 'R M+ status is an countries. It ralisable to Uk bulations with East Asian po ellung rmed a meta-an hing targeted to ced NSCLC.	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with n arisons of availa ents with NSCLC decision-maker s based on the r is questionable K clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care therefore s. The evide esults from the whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to results of the suggests that ble prognosis the efficacy a	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compared
2013 [32]. Overall Survival Benefits for	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo of combir for advan	trials that asse erapy drugs, the histology or ge ogeneous pate batients can be amous disease onts. Our comp ations of patie rove useful for 'R M+ status is an countries. It ralisable to Uk bulations with East Asian po ellung rmed a meta- hing targeted to ced NSCLC.	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with r arisons of availa ents with NSCLC decision-maker s based on the r is questionable (clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for c are thereford s. The evide esults from th whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to nee trials cor results of the suggests that ble prognosis	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compared and safety reatment
2013 [32]. Overall Survival Benefits for Combining	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo of combin for advan Methodil	trials that assert erapy drugs, the histology or get ogeneous patter patients can be amous disease onts. Our comp ations of patier rove useful for R M+ status is an countries. It ralisable to Uk pulations with East Asian po ellung rmed a meta- hing targeted to ced NSCLC.	er Autoren essed the clinicat nere was very lit netic markers at ient population. e divided into at e, patients with n arisons of availat ents with NSCLC decision-maker s based on the r is questionable K clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care therefore s. The evide esults from the whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to results of the suggests that ble prognosis the efficacy a second-line to pf advanced I	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compared and safety reatment
Qi W-X et al., 2013 [32]. Overall Survival Benefits for Combining Targeted Therapy as	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo of combin for advan Methodil	trials that assert erapy drugs, the histology or get ogeneous patter patients can be amous disease onts. Our comp ations of patier rove useful for R M+ status is an countries. It ralisable to Uk pulations with East Asian po ellung rmed a meta- hing targeted to ced NSCLC.	er Autoren essed the clinica nere was very lit netic markers an ient population. e divided into at e, patients with r arisons of availa ents with NSCLC decision-maker s based on the r is questionable (clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su oon-squamou able drugs for care therefore s. The evide esults from the whether the e as evidence more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to results of the suggests that ble prognosis the efficacy a second-line to pf advanced I	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compared and safety reatment
2013 [32]. Overall Survival Benefits for Combining Targeted	In earlier chemothe such as h as a hom NSCLC p with squa M+ patier subpopul should pr with EGF East Asia are gener Asian pop with non- Frageste We perfo of combir for advan Methodil previously	trials that assert erapy drugs, the histology or get ogeneous patter patients can be amous disease onts. Our comp- ations of patient rove useful for R M+ status is an countries. It ralisable to Uk pulations with East Asian po- ellung rmed a meta- hing targeted to ced NSCLC.	er Autoren essed the clinicat nere was very lit netic markers at ient population. e divided into at e, patients with n arisons of availat ents with NSCLC decision-maker s based on the r is questionable K clinical practice NSCLC have a pulations.	al effectivenes tle analysis o nd patients w However, it is least three su on-squamou able drugs for care therefore s. The evide esults from the whether the e as evidences more favoura	f outcomes b ith NSCLC w s now accept ubpopulations s disease and different e extremely tince relating to results of the suggests that ble prognosis the efficacy a second-line to pf advanced I therapy	y factors ere classe ed that : patients d EGFR mely and o patients nducted in se trials at East s compare and safety reatment

Advanced	response rate	(ORR), grade	e 3 or 4 a	dvers	se ever	nt (AEs)				
Non-Small-	Suchzeitraum	: 1980 bis 20	012							
Cell-Lung Cancer: A	Anzahl einges								7 .	
Meta-Analysis of Published	prospective ph Qualitätsbewe	ertung der S					•			
Data	Studienqualität									
	" Publication b		nnung: E	Begg	and Eg	ger tes	ts: no	evid	ence	e of
	Ergebnisdarst									
	Table 1. overview of stu	-	nalysis (N=2417	7).						
	Study/year F	Primary Phase endpoint	Treatment regin	nen	No.of patients	CR+PR (%)	PFS, mo	OS, mo	1- Year SR (%)	Jadad score
	Lynch T.J.et al 2009	I ORR	Erlotinib/Bortezom	nib	25	9	1.3	8.5	40	3
	Bennouna J. et al 2010	I NR	Erlotinib Erlotinib/Everolimu	us	25 66	16 12.1	2.7 2.9	7.3 NR	30 NR	3
			Erlotinib		67	10.4	2.0	NR	NR	-
	HerBst, Roy S. et al I 2011	II OS	Erlotinib/bevacizur	mab	319	13	3.4	9.3	42.1	5
			Erlotinib/placebo		317	6	1.7	9.2	40.7	
	Sequist L.V. et al. 2011	I PFS	Erlotinib/tivantinib Erlotinib/placebo)	84 83	10 7	3.8 2.3	8.5 6.9	NR NR	5
	Spigel D.R. et al. 2011	I ORR and PFS	Erlotinib/sorafenib		112	8	3.38	7.62	NR	5
	Ramalingam S.S. I et al. 2011	I PFS	Erlotinib/placebo Erlotinib/R1507(IGI	F-1R)	56 57	11 8.8	1.94 1.6	7.23 8.1	NR NR	5
	et al. 2011		weekly Erlotinib/R1507(IGI Q 3 weekly	F-1R)	57	7	2.7	12.1	NR	
			Erlotinib/placebo		57	8.8	1.5	8.1	NR	
	Scagliotti G.V. et al. I 2011	II OS	Erlotinib/sunitinib		480	10.6	3.6	9.0	NR	5
	Witta S.E.et al. 2012	I OS	Erlotinib/placebo Erlotinib/Entinosta	it	480 67	6.9 3.0	2.0 1.97	8.5 8.9	NR NR	5
			Erlotinib/placebo		65	9.2	1.88	6.7	NR	
	Abbreviations: OS: overall survive NR: not reported. Table 2. Characteristics	of patients in the po	oled analysis (N	= 2417). Female	Median	History of smoking,	KRAS m		EGFR	mutation,
	Study/year	Combination		Sex (%)	age, y	% 84	n (%)		n (%) NR	
		Single		48	64	80	NR		NR	
	Bennouna J. et al. 2010	Combination Single		NR NR	59 60	80 82	NR NR		NR NR	
	HerBst, Roy S. et al. 2011	Combination		46	64.8	82	48 (25)		33(32))
		Single		46	65	90	38 (21)		43(42)	
	Sequist L.V. et al. 2011	Combination Single		39 41	64 62	80 78	10 (17) 5 (10)		38(52) 59 (40	
	Spigel D.R. et al. 2011	Combination		44	65	NR	5 (4.5)		22(19.	
	Ramalingam S.S. et al. 2011	Single Combination(weekly)		53 32	65 63	NR 86	6(10.7) 16 (27)		14(25) NR)
		Combination (every 3 weekly)	57	33	62	91	12(36)		NR	
	Sepeliotti C.V. et al 2011	Single		35	62	84	8 (19)		NR 28/5.9	
	Scagliotti G.V. et al 2011	Combination Single		38.1 40.8	61 61	80 81.3	NR		28(5.8 30(6.3	
	Witta S.E.et al. 2012	Combination		42	66	84	4(9)		18(60)	
		Single	65	34	67	83	7(21)		11(38))
	<i>Gesamt:</i> signif PFS (HR 0.83,	95%CI: 0.72	2–0.97, p	= 0.0)18), ar	nd ORR	(OR	1.35,	95%	%CI
	1 4 6 4 4 6 6	0.04) under								

targeted therapy.

Subgruppen: Sub-group analysis based on phases of trials, EGFR-status and KRAS-status also showed that there was a tendency to improve PFS and OS in combining targeted therapy, except that PFS for patients with EGFR-mutation or wild type KRAS favored erlotinib monotherapy. because of a small number of patients with EGFR-status reported in these trials, it should be careful when interpreting these results only 283 patients with EGFR mutation were included in meta-analysis more trials still needed to identify molecular biomarkers that are predictive of efficacy

Table 3. Sub-group analysis based on study characteristics

	No. of studies for PFS	HR (95%CI)	No. of studies for OS	OS (95%CI)
Phases				
Phase II	4 [^{28,29,31,32}]	0.94 (0.80-1.09)	4 [^{28,29,31,32}]	0.82 (0.70-0.97)
Phase III	2 [^{27,30}]	0.71 (0.55-0.92)	2 [^{27,30}]	0.94 (0.84-1.06)
EGFR-status				
Wild type	3 [28,29,30]	0.65 (0.42-0.88)	5 [27,28,29,30,31]	0.92 (0.75-1.12)
Mutation	2 [28,30]	1.20 (0.41-1.97)	3 [27,30,31]	0.91 (0.40-1.43)
KRAS status				
Wild type	1 [28]	1.01 (0.63-1.60)	1 [³²]	0.71 (0.43-1.18
Mutation	1 [28]	0.18 (0.05-0.70)	2 [28,32]	0.37 (0.12-1.09

More studies are still needed to identify patients who will most likely benefit from the appropriate combining targeted therapy.

1. Fragestellung Haaland B et

al., 2014 [16].	Tyrosine kinase inhibitors gefitinib, erlotinib, and afatinib have been
	compared with chemotherapy as first-line therapies for patients with
Meta-Analysis	advanced non-small-cell lung cancer harboring epidermal growth factor
of First-Line	receptor-activating mutations. This meta- analysis compares gefitinib,
Therapies in	erlotinib, afatinib, and chemotherapy.
Advanced	
Auvanceu	2. Methodik

Advanced 2. Methodik

Non-Small-	Population: patients with advanced NSCLC whose tumors present with
Cell Lung	an EGFR-activating mutation
Cancer	Intervention: gefitinib, erlotinib, or afatinib
Harboring	Komparator: chemotherapy or one EGFR-TKI with another as first-line
EGFR-	therapy
Activating	Endpunkte: PFS, OS, DCR, ORR
Mutations	Suchzeitraum: nicht genau angegeben ("within the last 5 years")
	Anzahl eingeschlossene Studien/Ptienten (Gesamt): 11
	Qualitätsbewertung der Studien: keine Angaben
	Heterogenitätsuntersuchungen: I2 statistics and predictive
	intervals (PIs)
	3. Ergebnisdarstellung

				Progression-Fre Survival	e Response	Disease Contro	Overall Survival
Study	Patient Population		Treatment Arms	HR (95% CI)	OR (95% CI)	OR (95% CI)	HR (95% CI)
IPASS	East Asian nonsmol formerly light-sm with advanced pu adenocarcinoma ^a	noking patients almonary	Gefitinib (n = 132) Carboplatin + paclitaxel (n = 129)	0.48 (0.36-0.64)	2.8 (1.7-4.6)	1.6 (0.7–3.5)	1.00 (0.76–1.33)
West Japan	Japanese patients with advanced or recurrent NSCLC with EGFR- activating mutations		Gefitinib ($n = 86$) Cisplatin + docetaxel ($n = 86$)	0.49 (0.34–0.71)	3.4 (1.6–7.4)	3.8 (1.2–12.5)	1.64 (0.75–3.58)
North-East Japar	Japanese patients w NSCLC with EG mutations		Gefitinib ($n = 114$) Carboplatin + paclitaxel ($n = 114$)	fittinib ($n = 114$) 0.32 (0.24-0.44) rboplatin + paclitaxel ($n = 114$) 0.54 (0.27-1.10) meitabine + cisplatin 0.54 (0.27-1.10)		2.1 (1.0-4.6)	0.89 (0.63–1.24)
First-SIGNAL	Korean never-smoka with advanced or adenocarcinoma®	metastatic lung	Gefitinib ($n = 26$) Gemcitabine + cisplatin ($n = 16$)			0.0 (0.0-16.6)	1.04 (0.50-2.18)
OPTIMAL	Chinese patients wi NSCLC with EG mutations		Erlotinib ($n = 82$) Gemcitabine + carboplatin ($n = 72$)	0.16 (0.10-0.26)	8.6 (4.1–18.2)	5.8 (1.6-21.3)	1.07 (0.79–1.44)
EURTAC	Caucasian patients NSCLC with EG mutations		Erlotinib (n = 86) Platinum-based doublet chemotherapy (n = 87)	0.37 (0.25–0.54)	7.9 (3.8–16.4)	2.0 (1.0-3.9)	1.04 (0.65–1.68)
LUX-Lung 3	Patients with advan adenocarcinoma	with EGFR-	Afatinib (n = 230) Pemetrexed + cisplatin	0.58 (0.43-0.78)	4.4 (2.6–7.3)	2.1 (1.1-4.0)	1.12 (0.73–1.73)
	activating mutation	0115	(n = 115)				
"Only the subgradient by the subgradient of the su	Asian patients with adenocarcinoma activating mutation roup with EGFR-activati ed to construct conservati	advanced lung with EGFR- ons ing mutations consid- ive standard error.	(n = 115) Afatinib $(n = 242)$ Gemeitabine + cisplatin (n = 122) Jered. &SCLC, non-small-cell lung cancel	0.28 ($p < 0.0001$) er; EGFR, epidermal gr			0.95 (0.68–1.32)
"Only the subg "p = 0.0001 use HR, hazard rati	Asian patients with adenocarcinoma activating mutatio roup with <i>EGFR</i> -activati ed to construct conservati io; CI, confidence interva	advanced lung with EGFR- ons ing mutations consis ive standard error. al; OR, odds ratio; N	Afatinib (n = 242) Gemeitabine + cisplatin (n = 122) Jered. JSCLC, non-small-cell lung cance ib, Afatinib, and Chemo	er; EGFR, epidermal gr	owth factor recepto	r.	0.95 (0.68–1.32) with Advanced
"Only the subg "p = 0.0001 use HR, hazard rati	Asian patients with adenocarcinoma- activating mutatie roup with <i>EGFR</i> -activati do construct conservati io; CI, confidence interva pomparisons of Ge pring <i>EGFR</i> -Activat	advanced lung with EGFR- ons ing mutations consis ive standard error. al; OR, odds ratio; N	Afatinib (<i>n</i> = 242) Gemcitabine + cisplatin (<i>n</i> = 122) kered. kSCLC, non-small-cell lung cance ib, Afatinib, and Chemo	er; EGFR, epidermal gr otherapy as First	owth factor recepto	es for Patients	
"Only the subg "p = 0.0001 use HR, hazard rati TABLE 2. Co NSCLC Harbo	Asian patients with adenocarcinoma- activating mutatie to construct conservation io; CI, confidence interva omparisons of Ge pring EGFR-Activat	advanced lung with EGFR- ons ing mutations consid- ive standard error. al; OR, odds ratio; N effitinib, Erlotin ting Mutation	Afatinib (n = 242) Gemeitabine + cisplatin (n = 122) kered. kSCLC, non-small-cell lung cancel ib, Afatinib, and Chemo s urvival Respon	er, EGFR, epidermal gr otherapy as First 18e	owth factor recepto	r. es for Patients	with Advanced
"Only the subg "p = 0.0001 us HR, hazard rati TABLE 2. Co NSCLC Harbon Comparison	Asian patients with adenocarcinoma- activating mutatie roup with <i>EGFR</i> -activati do construct conservati io; CI, confidence interva omparisons of Ge pring <i>EGFR</i> -Actival <u>Pro</u> H	advanced lung with EGFR- ons ing mutations consist vive standard error. al; OR, odds ratio; ? fittinib, Erlotin ting Mutation bgression-Free S	Afatinib (n = 242) Gemeitabine + cisplatin (n = 122) dered. dSCLC, non-small-cell lung cancel ib, Afatinib, and Chemo s urvival Kespor OR (95% C1;	er; EGFR, epidermal gr otherapy as First 1se 195% PI) OF	owth factor recepto -Line Therapic Disease Contro	r. es for Patients I PI) HR	with Advanced Overall Survival (95% C1; 95% P
⁵ p = 0.0001 uso HR, hazard rati	Asian patients with adenocarcinoma activating mutatie oroup with <i>EGFR</i> -activati do construct conservati io; CI, confidence interva omparisons of Ge oring <i>EGFR</i> -Activat <u>Pro</u> H motherapy 0.44	advanced lung with EGFR- ons ing mutations consis- ive standard error. al; OR, odds ratio; Y fiftinib, Erlotin ting Mutation pgression-Free S IR (95% CI; 95%	Afatinib (n = 242) Gemcitabine + cisplatin (n = 122) kered. ib, Afatinib, and Chemo s urvival Respon % PI) OR (95% CI; 2–0.88) 4.1 (2.7–6.3; 2	er; EGFR, epidermal gr otherapy as First ise 95% PI) OF 1.3–7.6) 2.	owth factor recepto -Line Therapie Disease Contro R (95% CI; 95%	r. es for Patients I PI) HR 1.7) 0.99 (with Advanced
"Only the subge 'p = 0.0001 use HR, hazard rati TABLE 2. Co NSCLC Harboo Comparison Gefitinib vs. chen Afatinib vs. chen	Asian patients with adenocarcinoma activating mutativit roup with <i>EGFR</i> -activati do construct conservat io; CI, confidence interva pomparisons of Ge oring <i>EGFR</i> -Activat <u>Pro</u> <u>H</u> motherapy 0.44 motherapy 0.44	advanced lung with EGFR- ons ing mutations consist we standard error. al; OR, odds ratio; N fittinib, Erlotin ting Mutation gression-Free S IR (95% CI; 95% 4 (0.31–0.63; 0.2	Afatinib (n = 242) Gemcitabine + cisplatin (n = 122) Vered. VSCLC, non-small-cell lung cance ib, Afatinib, and Chemos urvival Respon % PI) OR (95% CI; 2–0.88) 4.1 (2.7–6.3; 2 1–0.55) 8.2 (4.5–15.1;	er; EGFR, epidermal gr otherapy as First 180	with factor recepto -Line Therapie Disease Contro R (95% CI; 95% I (1.3–3.5; 1.2–3	r. es for Patients I PI) HR 3.7) 0.99 (1.9) 1.06 (with Advanced Overall Survival (95% CI; 95% P 0.81–1.21; 0.81–1
"Only the subg ² p = 0.0001 use HR, hazard rati TABLE 2. Co NSCLC Harboo Comparison Gefitinib vs. chen Erlotinib vs. chen Erlotinib vs. cgefi	Asian patients with adenocarcinoma activating mutati roup with <i>EGFR</i> -activati do construct conservati io; CI, confidence interva proparisons of Ge pring <i>EGFR</i> -Activat <u>Pro</u> <u>H</u> motherapy 0.44 tinib 0.57	advanced lung with <i>EGFR</i> - ons ing mutations consisive standard error. al; OR, odds ratio; N effitinib, Erlotin ting Mutation pgression-Free S IR (95% C1; 95° 4 (0.31–0.63; 0.2 5 (0.15–0.42; 0.1 4 (0.26–0.75; 0.2 7 (0.30–1.08; 0.2	Afatinib (n = 242) Gemeitabine + cisplatin (n = 122) Jered. iSCLC, non-small-cell lung cance ib, Afatinib, and Chemes urvival Respond 2–0.88) 4.1 (2.7–6.3; 2 1–0.55) 8.2 (4.5–15.1; 0.0.98) 5.5 (3.4–8.8; 2 4–1.36) 2.0 (0.9–4.1; 0	er; EGFR, epidermal gr otherapy as First 95% PI) OF 1.3–7.6) 2. 3.9–17.5) 2. 1.9–10.5) 2. 1.8–4.7) 1.	owth factor recepto Line Therapic Disease Contro R (95% CI; 95% 1 (1.3–3.5; 1.2–3 5 (1.4–4.7; 1.3–4 9 (1.8–4.6; 1.7–4 2 (0.5–2.7; 0.5–2	r. es for Patients 1 PI) HR 1.7) 0.99 1.06 1.8) 1.01 (1.8) 1.01 (1.8) 1.01 (with Advancecc Dverall Survival (95% CI; 95% P 0.81–1.21; 0.81–1 0.82–1.37; 0.82–1 0.78–1.31; 0.78–1 0.77–1.47; 0.77–1
*Only the subge *p = 0.0001 use HR, hazard rati TABLE 2. Co NSCLC Harboo Comparison Gefitinib vs. chen Afatinib vs. chen	Asian patients with adenocarcinoma- activating mutatie roup with <i>EGFR</i> -activati do construct conservati io; CI, confidence interva omparisons of Ge rring <i>EGFR</i> -Activat <u>Pro</u> <u>H</u> motherapy 0.44 motherapy 0.25 notherapy 0.44 tinib 0.57 inib 1.01	advanced lung with EGFR- ons ing mutations consis ive standard error. al; OR, odds ratio; N effitinib, Erlotin ting Mutation ogression-Free S IR (95% C1; 95" 4 (0.31–0.63; 0.2 5 (0.15–0.42; 0.1 4 (0.26–0.75; 0.2	Afatinib ($n = 242$) Generitabine + cisplatin ($n = 122$) kered. iSCLC, non-small-cell lung cance ib, Afatinib, and Cheme ib Value QCR (95% CI; 2-0.88) 4.1 (2.7-6.3; 2 1-0.55) 8.2 (4.5-15.1; 0-0.98) 5.5 (3.4-8.8; 2 4-1.36) 2.0 (0.9-4.1; 0 2-2.42) 1.3 (0.7-2.5; 0	er; EGFR, epidermal gr otherapy as First (35% PI) OF (3.3–7.6) 2. (3.9–17.5) 2. (9–10.5) 2. (3.8–4.7) 1. (6–2.8) 1.	owth factor recepto -Line Therapic Disease Contro R (95% CI; 95% 1 (1.3–3.5; 1.2–3 5 (1.4–4.7; 1.3–4 9 (1.8–4.6; 1.7–4	r. es for Patients PI) HR (5.7) 0.99 ((5.9) 1.06 ((5.8) 1.01 ((5.8) 1.02 ((5.8) 1.02 (with Advancec Overall Survival (95% CI; 95% F 0.81–1.21; 0.81–1 0.82–1.37; 0.82–1 0.78–1.31; 0.78–1

	Advarca Evanta
	Adverse Events The more common adverse events with TKIs were diarrhea,rash or acne, dry skin, and pruritis, whereas anorexia,anemia, fatigue, nausea, vomiting, alopecia, and neutropeniawere more common with chemotherapy. Liver enzyme elevationswere more common with gefitinib and erlotinib thanwith chemotherapy, but not reported for afatinib. Grade 3and 4 adverse events were more common with chemotherapythan with TKIs. Broadly, adverse event profiles were similaramong TKIs although there was some indication that gefitinibwas associated with more anemia and afatinib was associatedwith more stomatitis or mucositis.
	4. Anmerkungen/Fazit der Autoren
	Gefitinib, erlotinib, and afatinib out-performed chemotherapy in terms of progression-free survival, overall response rate, and disease control rate. Differences among gefitinib, erlotinib, and afatinib were not statistically significant.
Liang W et al,	1. Fragestellung
2014 [20]. Network Meta- Analysis of Erlotinib, Gefitinib, Afatinib and Icotinib in	Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons.
Patients with Advanced Non-Small-Cell Lung Cancer Harboring EGFR Mutations	 2. Methodik Population: advanced NSCLC, patients with known EGFRmutation status Intervention: erlotinib, gefitinib, afatinib and icotinib Komparator: - interventionen gegenseitig – Standard chemotherapy was defined as platinum-based third generation doublets for first-line treatments or pemetrxed/ doctaxel for second-line treatments. Endpunkte: overall survival (OS), progression free survival (PFS), objective response rate (ORR) and adverse events (rash, grade 3–4 rash, diarrhea, grade 3–4 diarrhea) Suchzeitraum: bis 03/2013 Anzahl eingeschlossene Studien/Ptienten (Gesamt): 12 Qualitätsbewertung der Studien: Jadad Heterogenitätsuntersuchungen: forest plot and the inconsistency statistic (l²) 3. Ergebnisdarstellung
	3. Ergebnisdarstellung

Table 1. Characteristics of included studies regarding TKIs.

Studies	ткі	Control	Year	Sample size	Patients status	EGFR Pts analyzed
IPASS ⁵	Gefitinib	TC	2009	1217	CT-naive	261
First-SIGNAL ⁶	Gefitinib	GP	2012	309	CT-naive	42
NEJ0027	Gefitinib	TC	2010	228	CT-naive	228
WJTOG 3405 ⁸	Gefitinib	DP	2010	172	CT-naive	117
INTEREST ⁹	Gefitinib	DOC	2008	1466	Previously treated	38
V 15-32 ¹⁰	Gefitinib	DOC	2008	490	Previously treated	20
OPTIMAL ¹¹	Erlotinib	GC	2011	165	CT-naive	154
EUTRAC ¹²	Erlotinib	ст	2012	174	CT-naive	173
TITAN ¹³	Erlotinib	PEM/DOC	2012	424	Previously treated	11
LUX-lung 3 ²⁵	Afatinib	AP	2013	345	CT-naive	345
LUX-lung 6 ²⁶	Afatinib	GP	2013	364	CT-naive	364
ICOGEN ¹⁵	lcotinib	Geftinib	2012	399	Previously treated	68

TKI, tyrosine kinase inhibitors; TC, carboplatin plus palitaxel; GP, cisplatin plus gemcitabine; DP, cisplatin plus docetaxel; DOC, docetaxel; GC, carboplatin plus gemcitabine; CT, chemotherapy (not specific); PEM, pemetrexed; AP, cisplatin plus pemetrexed.

Table 2. Pooled Weighted Outcomes and Direct Meta-Analysis.

	TKIs (95% CI)	Chemotherapy (95% CI)	Odds Ratio (95% Cl, P value)
ORR	66.6% (0.596, 0.729)	30.9% (0.245, 0.381)	5.46 (3.59, 8.30; P<0.00001)
1-year PFS	42.9%(0.366, 0.494)	9.7% (0.058, 0.158)	7.83 (4.50, 13.61; P<0.00001)
1-year OS	79.2% (0.745, 0.833)	78.9% (0.709, 0.852)	1.04 (0.79, 1.36; P=0.79)
2-year OS	49.7% (0.432, 0.563)	51.0% (0.431, 0.589)	0.95 (0.76, 1.17; P=0.62)

Cl, confidence interval; ORR, objective response rate; PFS, progression free survival; OS, overall survival.

ORR

	Experim		Contr			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.1.1 Gefitinib							
FIRST SIGNAL	22	26	6	16	3.4%	9.17 [2.11, 39.85]	
INTEREST	8	19	4	19	3.5%	2.73 [0.65, 11.40]	
IPASS	94	132	61	129	15.5%	2.76 [1.65, 4.60]	
NEJ002	84	114	35	114	13.6%	6.32 [3.55, 11.25]	
V 15-32	6	9	5	11	2.3%	2.40 [0.39, 14.88]	
WJTOG3405	36	58	19	59	9.7%	3.44 [1.61, 7.38]	
Subtotal (95% CI)		358		348	48.0%	3.94 [2.66, 5.82]	•
Total events	250		130				
Heterogeneity: Tau ² =	0.05; Chi2	= 6.37, c	if = 5 (P =	= 0.27);	1 ² = 22%		
Test for overall effect:	Z = 6.86 (P	< 0.000	001)				
1.1.2 Erlotinib							
EUTRAC	50	86	13	87	10.2%	7.91 [3.82, 16.38]	
OPTIMAL	68	82	26	72	9.9%	8.59 [4.06, 18.19]	
Subtotal (95% CI)	10.00	168	100.00	159	20.1%	8.23 [4.88, 13.88]	•
Total events	118		39				
Total events		- 0.02		- 0 991-	12 - 0%		
Total events Heterogeneity: Tau ² =	0.00; Chi2		f = 1 (P =	= 0.88);	I ² = 0%		
Total events	0.00; Chi2		f = 1 (P =	= 0.88);	1 ² = 0%		
Total events Heterogeneity: Tau ² =	0.00; Chi2		f = 1 (P =	= 0.88);	² = 0%		
Total events Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi2		f = 1 (P =	= 0.88); 115		4.37 [2.63, 7.27]	-
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib	0.00; Chi ² Z = 7.91 (P	9 < 0.000	df = 1 (P = 001)			4.37 [2.63, 7.27] 6.71 [4.14, 10.85]	÷.
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3	0.00; Chi ² Z = 7.91 (P 129	230	df = 1 (P = 001) 26	115	15.6%		
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6	0.00; Chi ² Z = 7.91 (P 129	230 242	df = 1 (P = 001) 26	115 122	15.6% 16.4%	6.71 [4.14, 10.85]	÷.
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6 Subtotal (95% CI) Total events	0.00; Chi ² Z = 7.91 (P 129 182 311	230 242 472	df = 1 (P = 001) 26 38 64	115 122 237	15.6% 16.4% 31.9%	6.71 [4.14, 10.85]	÷
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6 Subtotal (95% CI)	0.00; Chi ² Z = 7.91 (F 129 182 311 0.03; Chi ²	230 242 472 = 1.43, c	df = 1 (P = 001) 26 38 64 df = 1 (P =	115 122 237	15.6% 16.4% 31.9%	6.71 [4.14, 10.85]	÷.
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	0.00; Chi ² Z = 7.91 (F 129 182 311 0.03; Chi ²	230 242 472 = 1.43, c	df = 1 (P = 001) 26 38 64 df = 1 (P =	115 122 237 = 0.23);	15.6% 16.4% 31.9%	6.71 [4.14, 10.85]	* *
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	0.00; Chi ² Z = 7.91 (F 129 182 311 0.03; Chi ²	230 242 472 = 1.43, c 2 < 0.000	df = 1 (P = 001) 26 38 64 df = 1 (P =	115 122 237 = 0.23);	15.6% 16.4% 31.9% I ² = 30%	6.71 [4.14, 10.85] 5.46 [3.59, 8.30]	* *
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	0.00; Chi ² Z = 7.91 (P 129 182 311 0.03; Chi ² Z = 7.93 (P 679	230 242 472 = 1.43, c 998	df = 1 (P = 201) 26 38 64 df = 1 (P = 201) 233	115 122 237 = 0.23); 744	15.6% 16.4% 31.9% ² = 30% 100.0%	6.71 [4.14, 10.85] 5.46 [3.59, 8.30] 5.07 [3.81, 6.75]	•
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² =	0.00; Chi ² Z = 7.91 (F 129 182 311 0.03; Chi ² Z = 7.93 (F 679 0.07; Chi ²	230 242 472 = 1.43, c 998 = 13.94,	df = 1 (P = 26 38 64 df = 1 (P = 2001) 233 df = 9 (P	115 122 237 = 0.23); 744	15.6% 16.4% 31.9% ² = 30% 100.0%	6.71 [4.14, 10.85] 5.46 [3.59, 8.30] 5.07 [3.81, 6.75]	
Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.3 Afatinib LUX-LUNG3 LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	0.00; Chi ² Z = 7.91 (F 129 182 311 0.03; Chi ² Z = 7.93 (F 679 0.07; Chi ² Z = 11.13 (230 242 472 = 1.43, c 2 < 0.000 998 = 13.94, P < 0.00	df = 1 (P = 26 38 64 df = 1 (P = 201) 233 df = 9 (P 2001)	115 122 237 = 0.23); 744 = 0.12	15.6% 16.4% 31.9% ² = 30% 100.0%); ² = 35%	6.71 [4.14, 10.86] 5.46 [3.59, 8.30] 5.07 [3.81, 6.75]	

20.2.2.2.2	Experim		Contr		100000000	Odds Ratio			s Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 9	5% CI	M-H, Ran	dom. 95% Cl
1.2.1 Gefitinib									
FIRST SIGNAL	9	26	2	16	6.8%	3.71 [0.69, 2			
INTEREST IPASS	46	19 132	0	19 129	2.7% 14.0%	5.57 [0.25, 12			
NEJ002	40	114	5	114		6.37 [3.04, 1 17.03 [6.46, 4			
WJTOG3405	34	86	10	86	13.5%	4.97 [2.26, 1			
Subtotal (95% CI)	54	377	10	364	49.0%	7.00 [4.23, 1			•
Total events	141		27		40.070	rive [rime, r			
Heterogeneity: Tau ² = Test for overall effect:	0.05; Chi ²		f=4 (P=	= 0.33)	; l² = 14%				
1.2.2 Erlotinib	2 - 7.50 (1	× 0.000	,01)						
EUTRAC	34	86	10	87	13.5%	5 03 13 20 1	1 071		
OPTIMAL	47	82	10 1	72		5.03 [2.29, 1 95.34 [12.63, 71	-		
TITAN	6	7	3	4	2.7%	2.00 [0.09, 4			
Subtotal (95% CI)	0	175	5	163		10.62 [1.07, 10			
Total events	87		14						
Heterogeneity: Tau ² =		= 9.11.0		0.01)	1 ² = 78%				
Test for overall effect:				0.01)					
1.2.3 Afatinib				00012					
LUX-LUNG3	117	230	24	115		3.93 [2.34,			
LUX-LUNG6	136	242	7	122		21.08 [9.43, 4			
Subtotal (95% CI)		472		237	29.4%	8.84 [1.65, 4]	.29]		
Total events	253	- 10.00	31	- 0.00	061-12	20/			
Heterogeneity: Tau ² = Test for overall effect:				= 0.00	/u5); I* = 9	270			
Total (95% CI)		1024		764	100.0%	7.83 [4.50, 1	3.611		•
Total events	481	. 52-4	72	104	100.070	1.00 [4.00, 1			
Heterogeneity: Tau ² =		= 25.46		= 0.00	3)· 12 = 65	%	-		+ +
Test for overall effect:				- 0.00	J, I = 05	70	0.0		1 10 1
Test for subaroun diffe	oronnos Ch	i ² = 0 15	df = 2/1		(1) $l^2 = 0.00$	4	Favou	rs control	Favours experin
Study or Subgroup	Experime		Contro		Weight	Odds Ratio	% CI	Odds	
Study or Subgroup 1.3.1 Gefitinib					Weight	Odds Ratio M-H. Random, 95	% CI		Ratio om, 95% Cl
1.3.1 Gefitinib FIRST SIGNAL	Events 19	Total 26	Events 13	<u>Total</u> 16	3.1%	<u>M-H. Random. 95</u> 0.63 [0.14, 2	.88]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST	Events 19 11	<u>Total</u> 26 19	Events 13 8	<u>Total</u> 16 19	3.1% 4.3%	M-H. Random, 95 0.63 [0.14, 2 1.89 [0.52, 6	.88] 85]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS	Events 19 11 106	Total 26 19 132	Events 13 8 97	<u>Total</u> 16 19 129	3.1% 4.3% 20.9%	<u>M-H. Random, 95</u> 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2	.88] .85] .42]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002	Events 19 11 106 97	Total 26 19 132 114	Events 13 8 97 99	Total 16 19 129 114	3.1% 4.3% 20.9% 12.8%	M-H. Random, 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1	.88] .85] .42] .83]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405	Events 19 11 106	Total 26 19 132 114 86	Events 13 8 97	<u>16</u> 19 129 114 86	3.1% 4.3% 20.9% 12.8% 6.0%	M-H. Random, 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1	.88] .85] .42] .83] .13]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI)	Events 19 11 106 97 74	Total 26 19 132 114	Events 13 8 97 99 81	Total 16 19 129 114	3.1% 4.3% 20.9% 12.8%	M-H. Random, 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1	.88] .85] .42] .83] .13]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events	Events 19 11 106 97 74 307	Total 26 19 132 114 86 377	Events 13 8 97 99 81 298	16 19 129 114 86 364	3.1% 4.3% 20.9% 12.8% 6.0% 47.1%	M-H. Random, 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1	.88] .85] .42] .83] .13]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI)	Events 19 11 106 97 74 307 0.08; Chi ² =	Total 26 19 132 114 86 377 5.45, d	Events 13 8 97 99 81 298	16 19 129 114 86 364	3.1% 4.3% 20.9% 12.8% 6.0% 47.1%	M-H. Random, 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1	.88] .85] .42] .83] .13]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib	Events 19 11 106 97 74 307 0.08; Chi ² = Z = 0.20 (P	Total 26 19 132 114 86 377 5.45, d = 0.84)	13 8 97 99 81 298 f = 4 (P =	Total 16 19 129 114 86 364 0.24);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1%	<u>M-H. Random. 95</u> 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1.	88] 85] 42] 83] 13] 55]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC	Events 19 11 106 97 74 307 0.08; Chi ² = Z = 0.20 (P 61	Total 26 19 132 114 86 377 5.45, d = 0.84) 86	Events 13 8 97 99 81 298 f = 4 (P = 65	Total 16 19 129 114 86 364 0.24); 87	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% J ² = 27%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1	88] 85] 42] 83] 13] 55]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82	Events 13 8 97 99 81 298 f = 4 (P = 65 57	Total 16 19 129 114 86 364 0.24); 87 72	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% I ² = 27%	<u>M-H. Random. 95</u> 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.85 [0.58, 1.	88] 85] 42] 83] 13] 55] 62] 18]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN	Events 19 11 106 97 74 307 0.08; Chi ² = Z = 0.20 (P 61	Total 26 19 132 114 86 377 = 5.45, d = 0.84) 86 82 7	Events 13 8 97 99 81 298 f = 4 (P = 65	Total 16 19 129 114 86 364 0.24); 87 72 4	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 1 ² = 27% 15.9% 10.6% 0.9%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.83 [0.42, 1 1.40 [0.61, 3 0.83 [0.05, 13	88] 85] 42] 83] 13] 55] 62] 18] 63]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI)	Events 19 11 106 97 74 307 0.08; Chi² = 2 0.20; Chi² = 61 69 5 5	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3	Total 16 19 129 114 86 364 0.24); 87 72	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% I ² = 27%	<u>M-H. Random. 95</u> 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.85 [0.58, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² =	Events 19 11 106 97 74 307 0.08; Chi² = 2 = 0.20 (P 61 69 5 135 0.00; Chi² =	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82 7 175 = 0.96, d	Events 13 8 97 99 81 298 54 (P = 65 57 3 125	Total 16 19 129 114 86 364 0.24); 87 72 4 163	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 1 ² = 27% 15.9% 10.6% 0.9% 27.5%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.83 [0.42, 1 1.40 [0.61, 3 0.83 [0.05, 13	88] 85] 42] 83] 13] 55] 62] 18] 63]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	Events 19 11 106 97 74 307 0.08; Chi² = 2 = 0.20 (P 61 69 5 135 0.00; Chi² =	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82 7 175 = 0.96, d	Events 13 8 97 99 81 298 54 (P = 65 57 3 125	Total 16 19 129 114 86 364 0.24); 87 72 4 163	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 1 ² = 27% 15.9% 10.6% 0.9% 27.5%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.83 [0.42, 1 1.40 [0.61, 3 0.83 [0.05, 13	88] 85] 42] 83] 13] 55] 62] 18] 63]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib	Events 19 11 106 97 74 307 0.08; Chi² = 2 = 0.20 (P 61 69 5 135 2 2 = 0.05 (P	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82 7 175 = 0.96, d = 0.96)	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P =	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 1 ² = 27% 10.6% 0.9% 27.5% 1 ² = 0%	<u>M-H. Random. 95</u> 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.83 [0.42, 1 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1.	88] 42] 83] 13] 55] 62] 18] 63] 69]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6	Events 19 11 106 97 74 307 0.08; Chi² = 2 = 0.20 (P 61 69 5 135 0.00; Chi² =	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82 7 175 = 0.96, d = 0.96) 242	Events 13 8 97 99 81 298 54 (P = 65 57 3 125	Total 16 19 129 114 86 364 0.24); 72 4 163 0.62); 122	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 10.6% 0.9% 27.5% 12 = 0% 25.4%	M-H. Random. 95 0.63 (0.14, 2 1.89 (0.52, 6 1.34 (0.75, 2 0.86 (0.41, 1 0.38 (0.13, 1 0.95 (0.58, 1) 0.83 (0.42, 1 1.40 (0.61, 3 0.83 (0.42, 1 1.40 (0.61, 3 1.01 [0.61, 1]	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI)	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69 5 135 0.00; Chi² = Z = 0.05 (P 135 135 135 136 194	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82 7 175 = 0.96, d = 0.96)	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 1 ² = 27% 10.6% 0.9% 27.5% 1 ² = 0%	<u>M-H. Random. 95</u> 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.83 [0.42, 1 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events	Events 19 11 106 97 74 307 0.08; Chi² = 2 0.20; Chi² = 61 69 5 135 0.00; Chi² = 2 194 194	Total 26 19 132 114 86 377 5.45, d = 0.84) 86 82 7 175 = 0.96, d = 0.96) 242	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P =	Total 16 19 129 114 86 364 0.24); 72 4 163 0.62); 122	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 10.6% 0.9% 27.5% 12 = 0% 25.4%	M-H. Random. 95 0.63 (0.14, 2 1.89 (0.52, 6 1.34 (0.75, 2 0.86 (0.41, 1 0.38 (0.13, 1 0.95 (0.58, 1) 0.83 (0.42, 1 1.40 (0.61, 3 0.83 (0.42, 1 1.40 (0.61, 3 1.01 [0.61, 1]	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI)	Events 19 11 106 97 74 307 0.08; Chi² = 2 0.20 (P 61 69 5 135 0.00; Chi² = 2 134 194 194 194	Total 26 19 132 114 86 82 7 175 60.96, d = 0.96, d 242 242	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95	Total 16 19 129 114 86 364 0.24); 72 4 163 0.62); 122	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 10.6% 0.9% 27.5% 12 = 0% 25.4%	M-H. Random. 95 0.63 (0.14, 2 1.89 (0.52, 6 1.34 (0.75, 2 0.86 (0.41, 1 0.38 (0.13, 1 0.95 (0.58, 1) 0.83 (0.42, 1 1.40 (0.61, 3 0.83 (0.42, 1 1.40 (0.61, 3 1.01 [0.61, 1]	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95% CI)	Events 19 11 106 97 74 307 0.08; Chi² = 2 = 0.20 (P 61 69 5 0.00; Chi² = 2 = 0.05 (P 194 194 plicable Z = 0.51 (P	Total 26 19 132 114 86 82 7 175 60.96, d = 0.96, d 242 242	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95	Total 16 19 129 114 86 364 0.24); 72 4 163 0.62); 122 122	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 10.6% 0.9% 27.5% 12 = 0% 25.4%	M-H. Random. 95 0.63 (0.14, 2 1.89 (0.52, 6 1.34 (0.75, 2 0.86 (0.41, 1 0.38 (0.13, 1 0.95 (0.58, 1) 0.83 (0.42, 1 1.40 (0.61, 3 0.83 (0.42, 1 1.40 (0.61, 3 1.01 [0.61, 1]	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95% CI) Total events	Events 19 11 106 97 74 307 0.08; Chi² = 2 0.20 (P 61 69 5 135 0.00; Chi² = 2 194 194 194 194 2 0.51 (P 636 636	Total 26 19 132 114 86 82 7 175 60.96, d 242 242 242 242 242 242 242 242 77 794	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95 518	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62); 122 122 122 649	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 1 ² = 27% 10.6% 0.9% 27.5% 1 ² = 0% 25.4% 25.4% 25.4%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.95 [0.58, 1. 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1. 1.15 [0.68, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95]		
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95% CI) Total events Heterogeneity: Not ap	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69 5 135 0.00; Chi² = 194 194 2 = 0.51 (P 636 0.00; Chi² =	Total 26 19 132 114 86 2 87 7 175 $(0.96), 0.96), 0.96, 0.9$	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95 518	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62); 122 122 122 649	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 1 ² = 27% 10.6% 0.9% 27.5% 1 ² = 0% 25.4% 25.4% 25.4%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.95 [0.58, 1. 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1. 1.15 [0.68, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95]	M-H. Rand	om. 95% Cl
 1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not api Test for overall effect: Total (95% CI) Total events Heterogeneity: Not api Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau² = Test for overall effect: 	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69 5 135 0.00; Chi² = Z = 0.05 (P 194 plicable Z = 0.51 (P 636 0.00; Chi² = Z = 0.27 (P	$\begin{array}{c} \textbf{Total} \\ 26 \\ 9 \\ 132 \\ 114 \\ 86 \\ 377 \\ \hline \\ 5.45, d \\ e = 0.84 \\ \end{array}$	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95 518 f = 8 (P =	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62); 122 122 122 649 0.58);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 15.9% 10.6% 0.9% 27.5% 12 = 0% 25.4% 25.4% 100.0% 1 ² = 0%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.95 [0.58, 1. 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1. 1.15 [0.68, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95] 95] 36] 0.01		om. 95% Cl
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95% CI) Total events Heterogeneity: Not ap	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69 5 135 0.00; Chi² = Z = 0.05 (P 194 plicable Z = 0.51 (P 636 0.00; Chi² = Z = 0.27 (P	$\begin{array}{c} \textbf{Total} \\ 26 \\ 9 \\ 132 \\ 114 \\ 86 \\ 377 \\ \hline \\ 5.45, d \\ e = 0.84 \\ \end{array}$	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95 518 f = 8 (P =	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62); 122 122 122 649 0.58);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 15.9% 10.6% 0.9% 27.5% 12 = 0% 25.4% 25.4% 100.0% 1 ² = 0%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.95 [0.58, 1. 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1. 1.15 [0.68, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95] 95] 36] 0.01	M-H. Rand	om. 95% Cl
 1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not api Test for overall effect: Total (95% CI) Total events Heterogeneity: Not api Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau² = Test for overall effect: 	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69 5 135 0.00; Chi² = Z = 0.05 (P 194 plicable Z = 0.51 (P 636 0.00; Chi² = Z = 0.27 (P	$\begin{array}{c} \textbf{Total} \\ 26 \\ 9 \\ 132 \\ 114 \\ 86 \\ 377 \\ \hline \\ 5.45, d \\ e = 0.84 \\ \end{array}$	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95 518 f = 8 (P =	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62); 122 122 122 649 0.58);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 15.9% 10.6% 0.9% 27.5% 12 = 0% 25.4% 25.4% 100.0% 1 ² = 0%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.95 [0.58, 1. 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1. 1.15 [0.68, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95] 95] 36] 0.01	M-H. Rand	om. 95% Cl
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69 5 135 0.00; Chi² = Z = 0.05 (P 194 plicable Z = 0.51 (P 636 0.00; Chi² = Z = 0.27 (P	$\begin{array}{c} \textbf{Total} \\ 26 \\ 9 \\ 132 \\ 114 \\ 86 \\ 377 \\ \hline \\ 5.45, d \\ e = 0.84 \\ \end{array}$	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95 518 f = 8 (P =	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62); 122 122 122 649 0.58);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 15.9% 10.6% 0.9% 27.5% 12 = 0% 25.4% 25.4% 100.0% 1 ² = 0%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.95 [0.58, 1. 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1. 1.15 [0.68, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95] 95] 36] 0.01	M-H. Rand	om. 95% Cl
1.3.1 Gefitinib FIRST SIGNAL INTEREST IPASS NEJ002 WJTOG3405 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.2 Erlotinib EUTRAC OPTIMAL TITAN Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.3.3 Afatinib LUX-LUNG6 Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95% CI) Total events Heterogeneity: Not ap Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	Events 19 11 106 97 74 307 0.08; Chi² = Z = 0.20 (P 61 69 5 135 0.00; Chi² = Z = 0.05 (P 194 plicable Z = 0.51 (P 636 0.00; Chi² = Z = 0.27 (P	$\begin{array}{c} \textbf{Total} \\ 26 \\ 9 \\ 132 \\ 114 \\ 86 \\ 377 \\ \hline \\ 5.45, d \\ e = 0.84 \\ \end{array}$	Events 13 8 97 99 81 298 f = 4 (P = 65 57 3 125 f = 2 (P = 95 95 518 f = 8 (P =	Total 16 19 129 114 86 364 0.24); 87 72 4 163 0.62); 122 122 122 649 0.58);	3.1% 4.3% 20.9% 12.8% 6.0% 47.1% 12 = 27% 15.9% 10.6% 0.9% 27.5% 12 = 0% 25.4% 25.4% 100.0% 1 ² = 0%	M-H. Random. 95 0.63 [0.14, 2 1.89 [0.52, 6 1.34 [0.75, 2 0.86 [0.41, 1 0.38 [0.13, 1 0.95 [0.58, 1. 0.95 [0.58, 1. 1.40 [0.61, 3 0.83 [0.05, 13 1.01 [0.61, 1. 1.15 [0.68, 1.	88] 85] 42] 83] 13] 55] 62] 18] 63] 69] 95] 95] 36] 0.01	M-H. Rand	om. 95% Cl

	cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed potentially better efficacy but significant higher toxicities compared with gefitinib and icotinib.
	5. Hinweis der FBMed
	Icotinib ist in Deutschland für NSCLC nicht zugelassen. Seine Verwendung in der Netzwerkanalyse kann die Ergebnisse der anderen, in Deutschland zugelassenen Wirkstoffe beeinflusst haben.
Bria E et al.,	1. Fragestellung
2011 [6].	Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI)
Outcome of advanced NSCLC patients harboring sensitizing	 are effective as first-line treatment of advanced non-small-cell lung cancer patients with EGFR mutations (EGFR-M+). We conducted a literature-based meta-analysis to quantify the magnitude of benefit with upfront EGFR TKI in EGFR-M+ patients. Meta-regression and sensitivity analyses were also carried out to identify additional predictors of outcome and to assess the influence of trial design. 2. Methodik
EGFR	Population: advanced NSCLC, patients with known EGFRmutation
mutations randomized to EGFR tyrosine kinase inhibitors or chemotherapy as first-line treatment: a meta-analysis	 status; subpopulation of patients carrying an activating EGFR mutation (exon- 19 deletions or exon-21 point mutations, EGFR-M+ patients) in the first- line setting Intervention: gefitinib or erlotinib Komparator: first-line chemotherapy Endpunkte: primär: PFS and OS; sekundär: overall response rate (ORR, as reported by trialists) and grades 3–4 toxic effects, Suchzeitraum: bis 10/ 2010 Anzahl eingeschlossene Studien/Patienten (Gesamt): 5 (805) three trials prospectively enrolling EGFR-M+ patients and two retrospective analyses of EGFR-M+ patients Qualitätsbewertung der Studien: keine Angabe Heterogenitätsuntersuchungen: heterogeneity test was used (nicht spezifiziert) 3. Ergebnisdarstellung

	Authors	Pts Arms	Analysis in EGFR mutant patients	Female gender (%)	Nonsmokers (%)	Exon-19 mutation (%)
		132 Gefitinib	Retrospective	80.8	94.2	53.6
	Lee et al. [9]	29 CBDCA-P 26 Gefitinib	Retrospective	42.3	100.0	NR
	Maemondo et al. [12]	16 DDP-GEM 98 Gefitinib	Prospective	63.0	61.6	50.5
	Mitsudomi et al. [11]	100 CBDCA-P 87 Gefitinib	Prospective	74.0	75.0	50.0
		88 DDP-D				
	Zhou et al. [13]	82 Erlotinib72 CBDCA-GEM	Prospective	59.0	70.5	53.0
		CBDCA, carboplatin;	P, paclitaxel; DDP, cisplatin; C	GEM, gemcitabine; D, docet	axel; NR, not reported	L
	PFS/ OS	D (
	Group by Setting	Reference	ce O	utcome Haza	ard Ratio an	d 95% CI
	Prospective	Zhou et al E	ESMO 2010	PFS 🗧	-	Í Í Í
	Prospective		et al NEJM 2010	PFS	╼┤│	
	Prospective Prospective	Mitsudomi	et al LO 2009	PFS		
	Prospective Retrospective	Mok et al N	EJM 2009	PFS		
	Retrospective	Lee et al IA		PFS -		
	Retrospective					
	Overall				•	
	Prospective	Maemondo	etal NEJM 2010	os 📋	⊢∎⊢	
	Prospective	Mitsudomi	etalLO 2009	os		-
	Prospective					
	Retrospective	Lee et al 14		OS OS		
	Retrospective Retrospective	rangelar	ESMO 2010	03		
	Overall				- •	├
				0.1 0.2	2 0.5 1 2	2 5 10
						urs Chemotherapy
	4. Anmerku	ingen/Fazi	t der Autoren			
	In EGFR-M+	patients, fi	rst-line TKI incr	ease both PF	S and ORF	R by _25%,
	while significa	antly decrea	asing toxicity. T	The role of ad	ditional pre	dictive
	factors and th	e influence	e of trial design	on the magn	tude of the	observed
	benefit warra	nt further ir	vestigation.			
	5. Hinweise	e der FBMe	ed			
			hodischen Bew	ertung der Pr	imärstudier	۱
Zhang J et al.,	1. Frageste	•				
2012 [40].		•	was to evalua	-	•	
Maintenance			apy in patients			mall cell lung
	cancer (N	SCLC) by e	evidence-base	d methodolog	у.	
erlotinib						
improves	2. Methodik	K				
clinical	Populati	i on: patien	ts with unresed	table NSCLC	at baseline	e levels
outcomes of	•	•				
Intervention/ Komparator: maintenance therapy with vs. without unresectable erlotinib after the first-line chemotherapy advanced non-Studies were excluded based on the following criteria; i) patients small cell lung previously treated with targeted agents, ii) phase I clinical trial, iii) cancer: A retrospective trial or iv) any review, comment or case report meta-analysis Endpunkte: OS, PFS, ORR and adverse events (AEs) of randomized Suchzeitraum: bis 06/2011 controlled trials Anzahl eingeschlossene Studien/Ptienten (Gesamt): 6 (4372) Qualitätsbewertung der Studien: durchgeführt (siehe unten: Ergebnisdarstellung)

Heterogenitätsuntersuchungen: chi Quadrat, I Quadrat

3. Ergebnisdarstellung

Table I. Characteristics of included studies.

Study	Design	n	Patients	Intervention	Outcomes
Herbst et al (21)	Multi-center, randomized placebo-controlled phase III trial	1079	CT-naive advanced (stage IIIB or IV) NSCLC	GP concurrent with Erl or placebo and followed by Erl or placebo	OS, TTP, ORR, safety, duration of response
Gatzemeier <i>et al</i> (20)	Multi-center, randomized placebo-controlled, double-blind, phase III trial	1172	CT-naive unresectable or recurrent or advanced (stage III or IV) NSCLC	PC concurrent with Erl or placebo and followed by Erl or placebo	OS, TTP, ORR, QOL, safety, duration of response
Mok et al (30)	Multi-center, randomized placebo-controlled phase II trial	154	Previously untreated advanced (stage IIIB or IV) NSCLC	Sequential Erl or placebo and CT, followed by Erl or placebo	NPR, RR, OS, PFS, safety, duration of response
Cappuzzo et al (16)	Multi-center, randomized placebo-controlled phase III trial	889	Unresectable or advanced (stage IIIB or IV) NSCLC	Maintenance Erl vs. placebo after 4 cycles of standard platinum-doublet CT	PFS, OS, safety, QOL
Perol et al (32)	Randomized, three group phase III trial	310	Stage IIIB or IV NSCLC	Maintenance Erl vs. Gem vs. observation after 4 cycles	PFS, OS, safety symptom control of GP
Kabbinavar et al (31)	Randomized, double-blind, placebo-controlled, phase IIIb trial	768	Previously untreated recurrent or advanced (stage IIIB or IV) NSCLC	Maintenance Erl plus Bev vs. after 4 cycles of first-line CT combined Bev	PFS, OS, safety

NSCLC, non-small cell lung cancer; CT, chemotherapy; GP, gemcitabine + cisplatin; PC, paclitaxel + carboplatin; Erl, erlotinib; Bev, bevacizumab; Gem, gemcitabin; RR, response rate; OS, overall survival; PFS, progression-free survival; TTP, time to progression; NPR, non-progression rate; QOL, quality of life.

Table II. Quality of included studies.

Study	Truly random	Random allocation	Equivalence of baseline features	Eligibility criteria	Blinding assessment	Loss to follow-up	Intent to treat	Study quality
Herbst et al (21)	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	High
Gatzemeier et al (20)	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	High
Mok et al (30)	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	High
Cappuzzo et al (16)	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	High
Perol et al (32)	Yes	No	Yes	Yes	Yes	Unclear	Yes	Fair
Kabbinavar et al (31)	Yes	Yes	Yes	Yes	Unclear	Unclear	Yes	Fair

PFS

Comparative effect of progression-free survival of maintenance with erlotinib

vs. control							
			With erlotinib	Without erlotinib		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV. Random, 95% CI	IV, Random, 95% Cl
Mok 2009	-0.74716255	0.1844422	76	78	9.3%	0.47 [0.33, 0.68]	-
Kabbinavar 2010	-0.32547315	0.10141793	370	373	15.7%	0.72 [0.59, 0.88]	-
Cappuzzo 2010	-0.33824337		437	447	18.4%	0.71 [0.62, 0.82]	*
Herbst 2005		0.07117231	539	540		0.94 [0.81, 1.08]	1
Gatzemeier 2007	-0.02323144		586	586		0.98 [0.86, 1.11]	Ĵ
Perol 2010	-0.19364072	0.06177156	153	152	19.2%	0.82 [0.73, 0.93]	
Total (95% CI)			2161	2176	100.0%	0.79 [0.68, 0.91]	•
Heterogeneity: Tau* =	0.02; Chi ² = 24.86, d	f=5(P=0.00	001); I² = 80%				0.01 0.1 1 10 100
Test for overall effect; 2	Z = 3.20 (P = 0.001)						Favours eriotinib Favours no eriotinib
Comparati	ve effect	of prod	nressio	n-free sui	rviva	I of mainte	enance with erlotinib
•			-				
vs. control	after ex	cludin	g the t	wo studie	es u	sing erloti	nib concurrent with
chemother	apy.						
			With adattalb	Without eriotinib		Hazard Ratio	Hazard Ratio
Study or Subgroup	log Hazard Ratio	SE	Total		Welght	IV. Random, 95% Cl	IV. Random, 95% Cl
Mok 2009	-0.74716255	0 1844422	76	78	12.8%	0.47 [0.33, 0.68]	
Kabbinavar 2010	-0.32547315		370	373	24.4%	0.72 [0.59, 0.88]	*
Cappuzzo 2010	-0.33824337		437	447	30.4%	0.71 [0.62, 0.82]	=
Perol 2010	-0.19364072		153	152	32.4%	0.82 [0.73, 0.93]	-
Total (95% CI)			1036	1050	100.0%	0.71 [0.61, 0.83]	•
Heterogeneity: Tau ² = 0			; ² = 67%				0.01 0.1 1 10 100
Test for overall effect: 2	z = 4.25 (P < 0.0001)						Favours erlotinib Favours no erlotinib
Subaroup	analyses	in pro	aressio	n-free su	rviva	I of mainte	enance with erlotinib
Subgroup	anaryooo	pio	9.00010				
vs contro	l stratific	hv hv	FGFR	status	nne	itive neas	ative) and smoking
vs. contro	i, suaine	Ju by	LOUK	Status	(pus	nive, nega	and smoking
history (cu	rront forn	nor ov	or nor	emokor	c)		
mstory (cu			/ei, 1101	-SHIOKEI	5).		

	Harrard De	tio Harard Patio
	Hazard Ra Study or Subgroup log[Hazard Ratio] SE Weight IV, Random 1.1.1 Non-smoker	
	Mok 2009 -0.97596411 0.32320686 16.0% 0.38 [0.2	0. 0.71]
	Kabbinavar 2010 -1.07880966 0.2969042 17.1% 0.34 [0.1	9, 0.61]
	Herbst 2005 -0.69314718 0.2439003 19.5% 0.50 [0.3	1, 0.81]
	Cappuzzo 2010 -0.58783847 0.19241039 21.9% 0.56 [0.3	8, 0.81] -=-
	Perol 2010 -0.12577151 0.10343688 25.6% 0.88 [0.7	2, 1.08]
	Subtotal (95% Cl) 100.0% 0.53 [0.3	6, 0.78]
	Heterogeneity: Tau ² = 0.14; Chi ² = 17.79, cf = 4 (P = 0.001); l ² = 78% Test for overall effect: Z = 3.19 (P = 0.001)	
	1.1.2 Ever smoker	
	Mok 2009 -0.5783856 0.21218077 9.5% 0.56 [0.3	7, 0.85]
	Kabbinavar 2010 -0.27443685 0.10387893 34.8% 0.76 [0.6	2, 0.93]
	Perol 2010 -0.23452204 0.07711388 55.7% 0.79 [0.6	
	Subtotal (95% Cl) 100.0% 0.75 [0.6	6, 0.86] 🛛 🔻
	Heterogeneity: Tau ² = 0.00; Chi ² = 2.32, df = 2 (P = 0.31); I ² = 14% Test for overall effect: Z = 4.20 (P < 0.0001)	
	1.1.3 Former smoker Mok 2009 -0.60365585 0.37930176 12.6% 0.55 [0.2	8 1 151
	Cappuzzo 2010 -0.41049028 0.14421536 87.4% 0.66 [0.5	
	Subtotal (95% Cl) -0.41045026 0.14421356 87.4% 0.06 [0.3	
	Heterogeneity: Tau ² = 0.00; Chi ² = 0.23, df = 1 (P = 0.63); l ² = 0%	•, •.••
	Test for overall effect: Z = 3.23 (P = 0.001)	
	1.1.4 Current smoker	
	Mok 2009 -0.55055771 0.25473142 25.1% 0.58 [0.3	5, 0.95]
	Cappuzzo 2010 -0.21546839 0.09439417 74.9% 0.81 [0.6	7, 0.97]
	Subtotal (95% Cl) 100.0% 0.74 [0.5	6, 0.99]
	Heterogeneity: Tau ² = 0.02; Chi ² = 1.52, df = 1 (P = 0.22); l ² = 34% Test for overall effect: Z = 2.06 (P = 0.04)	
	1.1.5 EGRF IHC+	
	Kabbinavar 2010 -0.08432768 0.18467657 34.1% 0.92 [0.6	4 4 971
	· · · · · · · · · · · · · · · · · · ·	
	Cappuzzo 2010 -0.37158906 0.0883374 65.9% 0.69 [0.5 Subtotal (95% Cl) 100.0% 0.76 [0.5	
	Heterogeneity: Tau ² = 0.02; Chi ² = 1.97, df = 1 (P = 0.16); l ² = 49%	o, o.asj
	Test for overall effect: Z = 2.01 (P = 0.04)	
	1.1.6 EGFR IHC-	
	Kabbinavar 2010 0.00049975 0.30527946 26.6% 1.00 [0.5	5, 1.82]
	Herbst 2005 0.01797306 0.18391326 73.4% 1.02 [0.7	
	Subtotal (95% Cl) 100.0% 1.01 [0.74	4, 1.38]
	Heterogeneity: Tau ² = 0.00; Chi ² = 0.00, df = 1 (P = 0.96); I ² = 0%	
	Test for overall effect: Z = 0.08 (P = 0.93)	
		0.01 0.1 1 10 100
		Favours erlotinib Favours no erlotinib
	OS	
	03	
	Comparative effect of overall survival of m	aintenance with erlotinib vs.
	•	-
	control using fixed effects model.	
	With erlotinib Without erlotinib	Hazard Ratio Hazard Ratio
	Study or Subgroup log[Hazard Ratio] SE Total Total Weig Mok 2009 0.08402679 0.22485196 76 78 2.3	
	Mok 2009 0.08402679 0.22485196 76 78 2.3 Kabbinavar 2010 -0.10536052 0.09987152 384 384 11.7	
	Gatzemeler 2017 0.05826891 0.08348593 586 586 16.8	
	Cappuzzo 2010 -0.21072103 0.07446765 451 438 21.1	% 0.81 [0.70, 0.94]
	Herbst 2005 -0.00501254 0.0743944 539 540 21.1	
	Perol 2010 -0.09431068 0.06573226 155 155 27.0	% 0.91 [0.80, 1.04]
	Total (95% Cl) 2191 2181 100.0	% 0.93 [0.87, 1.00]
	Heterogeneity: Chi ² = 7.42, df = 5 (P = 0.19); I ² = 33%	
	Test for overall effect: Z = 2.09 (P = 0.04)	0.01 0.1 1 10 100 Favors eriotinib Favors on eriotinib
	Comparative effect of overall survival of m	aintenance with erlotinib vs.
		······································
	control using random effects model.	
	-	

With eriotinib Without eriotinib Hazard Ratio Hazard Ratio <u>Study or Subgroup log[Hazard Ratio] SE Total Total Weight IV. Random, 95% CI IV. Random, 95% CI</u>
Mok 2009 0.08402679 0.22485196 76 78 3.5% 1.09 [0.70, 1.69] Kabbinavar 2010 -0.10536052 0.09987152 384 384 13.8% 0.90 [0.74, 1.09] 1
Gatzemeier 2007 0.05826891 0.08348593 586 596 17.8% 1.06 [0.90, 1.25]
Herbst 2005 -0.00501254 0.0743944 539 540 20.6% 0.99 [0.86, 1.15]
Perol 2010 -0.09431068 0.06573226 155 155 23.8% 0.91 [0.80, 1.04]
Total (95% CI) 2191 2181 100.0% 0.93 [0.86, 1.02]
Heterogeneity: Tau ² = 0.00; Chi ² = 7.42, df = 5 (P = 0.19); P = 33% Test for overall effect: Z = 1.57 (P = 0.12) Favors ericlinib Favors on ericlinib
Comparative effect of overall survival of maintenance with erlotinib vs.
control after excluding the two studies using erlotinib concurrent with
chemotherapy.
With eriotinib Without eriotinib Hazard Ratio Hazard Ratio
Study or Subgroup log[Hazard Ratio] SE Total Total Weight IV. Fixed, 95% CI V. Fixed, 95% CI Mok 2009 0.08402679 0.22485196 76 78 3.7% 1.09 [0.70, 1.69] Total
Mok 2009 0.08402679 0.22485196 76 78 3.7% 1.09 [0.70, 1.69] Kabbinavar 2010 -0.10536052 0.09987152 384 384 18.9% 0.90 [0.74, 1.09] "
Cappuzzo 2010 -0.21072103 0.07446765 451 438 33.9% 0.81 [0.70, 0.94] Perol 2010 -0.09431068 0.06573226 155 155 43.5% 0.91 [0.80, 1.04]
Total (95% CI) 1066 1055 100.0% 0.88 [0.81, 0.96] Heterogeneity: Chi ² = 2.44, df = 3 (P = 0.49); I ² = 0%
Output Output<
Subgroup analyses in overall survival of maintenance with erlotinib vs.
control for non-smokers and the immunohistochemistry-positive (IHC+)
patients.
palients.
With eriotinib Without eriotinib Hazard Ratio Hazard Ratio
Study or Subgroup log[Hazard Ratio] SE Total Total Weight IV, Fixed, 95% C1 IV, Fixed, 95% C1 2.1.1 Non-smoker
Herbet 2005 -0.71334989 0.28552351 72 44 36.4% 0.49 [0.28, 0.86]
Cappuzzo 2010 -0.37485877 0.21615139 77 75 63.6% 0.69 [0.45, 1.05] Subtotal (95% Cl) 149 119 100.0% 0.61 [0.43, 0.85]
Helerogeneity: Chi ² = 0.89, df = 1 (P = 0.34); l ² = 0% Test for overall effect: Z = 2.89 (P = 0.004)
2.1.2 EGFR IHC+ Herbst 2005 0.00024994 0.18944921 93 74 20.2% 1.00 [0.59, 1.45]
Cappuzzo 2010 -0.2594289 0.09533757 307 311 79.8% 0.77 [0.64, 0.93] Subtotal (95% CI) 400 385 100.0% 0.81 [0.69, 0.96] ♦
Heterogeneity: Chi ² = 1.50, df = 1 (P = 0.22); P = 33%
Test for overall effect: Z = 2.43 (P = 0.02)
0.01 0.1 1 10 100
Favor erlotinib Favor no erlotinib
IHC+, immunohistochemistry-positive; IHC-, immunohistochemistry-negative.
Qualitätabowartung dar Studian, Anhand von 7 Qualitätakeitarian das
Qualitätsbewertung der Studien: Anhand von 7 Qualitätskriterien des
NHS Center for Reviews and Dissemination (Randomisierung, Verblindung,
Loss to follow-up, intention to treat etc.). Qualität wurde als mittel bis
hoch eingestuft.
Gesamthonulation
Gesamtpopulation
Ergebnisse zum PFS: The meta-analysis showed a longer PFS in patients
who received erlotinib as maintenance therapy [random effects: HR=0.79
(95% CI=0.68-0.91); P=0.001; NNT=5], showing a high heterogeneity level
[x ² =24.86, df=5 (P=0.0001); l ² =80%].
$[X - 24.00, u] = 0 (\Gamma = 0.0001), I = 00\%].$
Ergebnisse zum OS: The OS was slightly longer for patients who received
erlotinib as maintenance therapy [fixed effect: HR=0.93 (95% CI=0.87-1.00);
P=0.04; NNT=15] with moderate heterogeneity [χ^2 =7.42, df=5 (P=0.19);

 I^2 =33%]. However, the random effects model indicated **no significant difference** [random effects: HR=0.93 (95% CI=0.86-1.02); P=0.12]. Nach Ausschluss der beiden Studien, in denen Erlotinib zusätzlich zu einer platinbasierten Chemotherapie verabreicht wurde, ergab sich ein signifikanter Vorteil für das Gesamtüberleben von [fixed effects: HR=0.88 (95% CI=0.81-0.96); P=0.003; NNT=8] ohne die zuvor beobachtete Heterogenität [χ 2=2.44, df=3 (P=0.49); I2=0%].

Ergebnisse zur ORR: Es gab keinen signifikanten Unterschied in der ORR zwischen der Erlotinib und der Kontrollgruppe [random effects OR=1.39; (95% CI=1.00-1.94);p=0,05].

Ergebnisse zu Sicherheitsendpunkten: The group receiving erlotinib had a higher incidence of anemia [fixed effect: RR=1.36; (95% CI=1.06-1.75); P=0.02]. No difference was observed in patients with other hematological toxicities including neutropenia, thrombocytopenia and leukopenia. With regard to the non-hematological toxicities, patients receiving erlotinib experienced a significantly higher incidence of diarrhea, skin toxicity and renal impairment with a pooled HR of 5.10 [fixed effect: (95% CI=3.20-8.14); P<0.00001], 17.67 [fixed effect: (95% CI=9.22-33.86); P<0.00001] and 4.84 [fixed effect: (95% CI=2.09-11.18); P=0.0002], respectively. There was no significant difference in the incidence of treatment-related deaths [fixed effect: RR=1.51 (95% CI=0.73-3.12); P=0.27].

Limits: Due to limited data, we failed to perform pooled analyses of qualityof-life and cost-effectiveness, which are useful for doctors to determine whether the involved patients should receive maintenance therapy or a 'treatment holiday'. Subsequent therapy may affect the OS of patients, but this issue was not analyzed in the present study. In addition, the number of included studies is small with little difference in design and one study did not achieve the mature OS data.

Hinweise der FBMed

Keine Hinweise auf Publikationsbias (Egger test, p>0,05) Vier Studien wiesen eine hohe Qualität auf (6-7 Qualitätskriterien erfüllt) und zwei Studien eine moderate Qualität (4-5 Qualitätskriterien erfüllt)

4. Anmerkungen/Fazit der Autoren

Erlotinib produced significant clinical benefits with acceptable toxicity as a maintenance strategy in patients with unresectable NSCLC, particularly when sequentially administered with chemotherapy. However, more welldesigned randomized control trials (RCTs) are required to identify patients that may derive greater benefits from maintenance with erlotinib, and whether the use of erlotinib as maintenance therapy is more efficient than second-line treatment should also be investigated.

Wang F et al,	1. Fragestellung
2012 [38].	To define the efficacy of gefitinib in chemotherapy-naive patients with
[].	advanced non-small cell lung cancer, we carried out a meta-analysis of
Gefitinib	randomized controlled trials.
Compared with	
•	
Systemic	2. Methodik
Chemotherapy	Population: advanced NSCLC, patients with known EGFRmutation
as First-line	status
Treatment for	
	Intervention: gefitinib therapy as first-line treatment
Chemotherapy	Komparator: conventional therapy
-naive Patients	Endpunkte: PFS, OS
with Advanced	Suchzeitraum: bis 01/2011
Non-small Cell	Anzahl eingeschlossene Studien/Ptienten (Gesamt): 7 (4656)
Lung Cancer:	Qualitätsbewertung der Studien: criterions: (1) generation of
A Meta-	allocation concealment, (2) description of drop-outs, (3) masking of
	randomisation, intervention, outcome assessment, (4) intention-to-treat
analysis of	
Randomised	analyses, (5) final analysis reported. Each criterionwas rated as yes, no
Controlled	or unclear.
	Heterogenitätsuntersuchungen: I ²
Trials	
	3. Ergebnisdarstellung
	3. Ergebnisdarstending

Characteristics of included studies

References		n	Gende	er (%)	Age (year)	Therapy regimen	Patient	Publication	Follow-up	Ethnicity
1		Male	Male Female			selection*	status	period		
Gefitinib mo	onoth	erapy v	ersus pl	atinum-do	oublet chemoth	nerapy				
[14]	E	115	36.8	63.2	63.9 ± 7.7	G	Yes	Published	527 days	Asian
	С	115	36.0	64.0	62.6 ± 8.9	$PC \ge 3$ cycles				
[11]	E	86	31.4	68.6	64 (34-74)	G	Yes	Published	81 days	Asian
	С	86	30.2	69.8	64 (41-75)	$CD \times (3-6)$ cycles				
[16]	E	609	20.5	79.5	57 (24-84)	G	Yes	Published	5.6 months	Asian
	С	608	20.9	79.1	57 (25-84)	$PC \times 6$ cycles				
[15]	E	159	-	-	-	G	Yes	Abstract	-	Asian
	С	150				$GC \times 9$ cycles				
Gefitinib cor	mbine	d with	system	ic chemotl	herapy					
[10]	E ₁	365	72.1	27.9	61 (31-85)	$(GC + G) \times 6$ cycles,	No	Published	15.9 months	White
						then G				
	E_2	365	76.7	23.3	59 (34-83)	$(GC + G) \times 6$ cycles,				
						then G				
	С	363	72.2	27.8	61 (33-81)	$GC \times 6$ cycles				
[9]	E ₁	347	59.9	40.1	62 (26-82)	$(PC + G) \times 6$ cycles,	No	Published	>12 months	White
						then G				
	E_2	345	57.7	42.3	61 (27-86)	$(PC + G) \times 6$ cycles,				
						then G				
	С	345	61.4	38.6	63 (31-85)	$PC \times 6$ cycles				
Gefitinib sec	quent	ial ther	apy afte	r chemoth	ierapy					
[13]	E	300	64.0	36.0	62 (25-74)	PD \times 3 cycles,	No	Published	2 years	Asian
						then G				
	С	298	64.1	35.5	63 (35-74)	$PD \times 6$ cycles				

G, continued gefitinib; PC, paclitaxel carboplatin; CD, cisplatin docetaxel; GC, gemcitabine cisplatin; PD, continued platinum-doublet chemotherapy. * Patients were selected molecularly or clinically. † Most patients.

		Hazard Ratio	Hazard Ratio
Study or Subgroup Ic	g[Hazard Ratio] SE	IV, Random, 95% Cl	IV, Random, 95% C
1.1.1 Patients with EGFR	a mutation treated with ge	fitinb monotherapy.	
Lee 2009	-0.4894 0.3514	0.61 [0.31, 1.22]	
Maemondo 2010	-1.204 0.1588	0.30 [0.22, 0.41]	
Mitsudomi 2010	-0.7154 0.1909	0.49 [0.34, 0.71]	
Tony S. 2009	-0.734 0.1468	0.48 [0.36, 0.64]	
Subtotal (95% CI)		0.43 [0.32, 0.58]	-
Heterogeneity: Tau ² = 0.05 Test for overall effect: Z =	5; Chi² = 7.11, df = 3 (P = 0. 5.64 (P < 0.00001)	07); l² = 58%	
1.1.2 Patients without EC	GFR mutation treated with	gefitinb monotherapy.	
Lee 2009	0.4167 0.2778	1.52 [0.88, 2.61]	+
Tony S. 2009	1.0473 0.1692	2.85 [2.05, 3.97]	
Subtotal (95% CI)		2.16 [1.17, 3.99]	
Heterogeneity: Tau ² = 0.15 Test for overall effect: Z =	5; Chi ² = 3.76, df = 1 (P = 0. 2.46 (P = 0.01)	05); l² = 73%	
1.1.3 Patients with lung a	adenocarcinoma		
Lee 2009	-0.207 0.1212	0.81 [0.64, 1.03]	
Takeda 2009	-0.5108 0.0965	0.60 [0.50, 0.72]	
Tony S. 2009	-0.2998 0.0665	0.74 [0.65, 0.84]	
Subtotal (95% CI)		0.71 [0.60, 0.83]	•
Test for overall effect: Z =	1; Chi ² = 4.70, df = 2 (P = 0. 4.19 (P < 0.0001)	10); l ² = 57%	
1.1.4 Patients with lung r	non-adenocarcinoma		
Takeda 2009	0.131 0.18	1.14 [0.80, 1.62]	
Subtotal (95% CI)		1.14 [0.80, 1.62]	+
Heterogeneity: Not applica Test for overall effect: Z =			
1.1.5 Unselected patients	s treated with combined g	efitinib with chemotherap	у
Giaccone 2004	0.0255 0.0847	1.03 [0.87, 1.21]	±
Herbst 2004	0.0257 0.0841	1.03 [0.87, 1.21]	Ŧ
Subtotal (95% CI)		1.03 [0.91, 1.15]	•
Heterogeneity: Tau ² = 0.00 Test for overall effect: Z =	0; Chi ² = 0.00, df = 1 (P = 1 0.43 (P = 0.67)	00); l ² = 0%	
			0.2 0.5 1 2
			Favours gefitinib Favours
os			

	Hazard Ratio Hazard Ratio
	Study or Subgroup log[Hazard Ratio] SE Weight IV. Random. 95% CI IV. Random. 95% CI
	Lee 2009 -0.1948 0.433 8.9% 0.82 [0.35, 1.92]
	Maemondo 2010 -0.1902 0.1873 47.4% 0.83 [0.57, 1.19]
	Mitsudomi 2010 0.4935 0.3992 10.4% 1.64 [0.75, 3.58] Tony S. 2009 -0.2485 0.2233 33.3% 0.78 [0.50, 1.21]
	Subtotal (95% Cl) 100.0% 0.87 [0.68, 1.12]
	Heterogeneity: Tau ² = 0.00; Chi ² = 2.84, df = 3 (P = 0.42); l ² = 0% Test for overall effect: Z = 1.08 (P = 0.28)
	1.2.2 Patients without EGFR mutation treated with gefitinb monotherapy. Lee 2009 0.1815 0.3793 23.1% 1.20 [0.57, 2.52]
	Tony S. 2009 0.3221 0.2081 76.9% 1.38 [0.92, 2.08]
	Subtotal (95% Cl) 100.0% 1.34 [0.93, 1.91] Heterogeneity: Tau ² = 0.00; Chi ² = 0.11, df = 1 (P = 0.75); l ² = 0% Test for overall effect: Z = 1.59 (P = 0.11)
	1.2.3 Patients with lung adenocarcinoma
	Herbst 2004 -0.0834 0.0854 35.5% 0.92 [0.78, 1.09] Lee 2009 0.003 0.149 11.7% 1.00 [0.75, 1.34]
	Takeda 2009 -0.2357 0.1047 23.6% 0.79 [0.64, 0.97]
	Tony S. 2009 -0.0943 0.0943 29.1% 0.91 [0.76, 1.09] Subtotal (95% Cl) 100.0% 0.89 [0.81, 0.99] ●
	Heterogeneity: Tau ² = 0.00; Chi ² = 2.14, df = 3 (P = 0.54); l ² = 0% Test for overall effect: Z = 2.21 (P = 0.03)
	1.2.4 Patients with lung non-adenocarcinoma
	Takeda 2009 0.2151 0.19 100.0% 1.24 [0.85, 1.80] Subtotal (95% Cl) 100.0% 1.24 [0.85, 1.80] Television
	Heterogeneity: Not applicable Test for overall effect: Z = 1.13 (P = 0.26)
	1.2.5 Unselected patients treated with combined gefitinib with chemotherapy
	Giaccone 2004 0.0585 0.0785 50.2% 1.06 [0.91, 1.24] Herbst 2004 0.037 0.0788 49.8% 1.04 [0.89, 1.21]
	Subtotal (95% Cl) 100.0% 1.05 [0.94, 1.17]
	Heterogeneity: Tau ² = 0.00; Chi ² = 0.04, df = 1 (P = 0.85); l ² = 0% Test for overall effect: Z = 0.86 (P = 0.39)
	Favours gefitinib Favours control
	4. Anmerkungen/Fazit der Autoren
	In conclusion, first-line treatment with gefitinib conferred prolonged
	progression-free survival than treatment with systemic chemotherapy in a
	molecularly or histologically defined population of patients with non-small
	cell lung cancer, and improved survival in the subgroup of patients with lung
	adenocarcinoma.
Petrelli F et	1. Fragestellung
al., 2012 [30].	Advanced non-small-cell lung cancer (NSCLC) harboring activating
· • •	mutations of epidermal growth factor receptor (EGFR) are particularly
Efficacy of	sensitive to tyrosine kinase inhibitors (TKIs), namely erlotinib and
EGFR	
Tyrosine	gefitinib. The purpose of this metaanalysis was to evaluate the benefit of
•	EGFR TKIs in EGFR-mutated NSCLCs.
Kinase	
Inhibitors in	2. Methodik
Patients With	Population: previously untreated or pretreated patients with advanced/
EGFR-Mutated	
	metastatic NSCLC;
Non–Small-	subpopulation of patients carrying an activating EGFR mutation (mainly
Cell Lung	exon 19 deletions or exon 21 point mutations)
Cancer: A	Intervention: gefitinib or erlotinib (either in the first-line setting or in
Meta-Analysis	subsequent treatment settings)
of 13	Komparator: chemotherapy, placebo, or best supportive care
0113	
Randomized Trials	Endpunkte: primär: objective response rate, PFS, and OS Suchzeitraum: bis 08/2011

			ng d	er Stu	dier	n ke			
			-		dier	n ke			
	Heteroger	nitätsun	tersi				eine Angabe	en	
				ICNUN	gen	: l ² s	tatistic		
3.	Ergebnisda	arstellu	ng						
Stu	udiencharakt	eristika	vgl. A	Anlage					
OF	RR (all trials	and tre	atme	ont line	2)				
A		Experimental	atine	Contr	-		Risk Ratio		Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	7.3.2 meta-analysis of RR Eberhard 2005	for response rat 8	e 15	3	14	3.3%	2.49 [0.82, 7.55]	2005	
	Bell 2005	17	23	4	9	6.1%	1.66 [0.77, 3.59]	2005	+
	Kris ISEL 2009	8	21	0 7	5	0.6% 8.0%	4.64 [0.31, 69.37]	2009 2009	
	Kris V 15-32 2009 Mok IPASS 2009	11 94	16 132	61	15 129	8.0% 20.6%	1.47 [0.78, 2.78] 1.51 [1.22, 1.86]	2009 2009	-
	Douillard INTEREST 2009	9	22	5	22	4.6%	1.80 [0.72, 4.52]	2009	
	Maemondo 2010	84 68	114 82	35 26	114	17.3%	2.40 [1.78, 3.23]	2010	-
	Zhou 2010 Mitsudomi 2010	36	82 58	26 19	72 59	16.4% 13.0%	2.30 [1.66, 3.17] 1.93 [1.26, 2.94]	2010 2010	
	Rosell EURTAC 2011	50	86	13	87	10.1%	3.89 [2.28, 6.63]	2011	
	Subtotal (95% CI) Total events	385	569	173	526	100.0%	2.06 [1.66, 2.56]		•
	Heterogeneity: $\tau^2 = 0.05$; χ		$(p = .04); I^2$						
	Test for overall effect: $Z = 6$								
	Total (95% CI)		569	170	526	100.0%	2.06 [1.66, 2.56]		♦
	Total events Heterogeneity: $\tau^2 = 0.05$; χ^2	385 ² = 17.40, df = 9	(p = .04); l ²	173 = 48%				+	, ,
	Test for overall effect: $Z = 6$ Test for subgroup difference	.53 (p < .00001)).1 1 10 s control Favors experin
	root for outgroup unrerence	Experimental					Diek Datio	and	
							Risk Ratio		Risk Ratio M-H, Fixed, 95% Cl
B	Study or Subgroup	-	Total	Cont Events		Weight	M-H, Fixed, 95% Cl	Year	
В	Study or Subgroup 7.3.1 meta-analysis of RF	Events R for response ra		Events trials)	Total	Weight	M-H, Fixed, 95% Cl	Year	
В	7.3.1 meta-analysis of RI Eberhard 2005	Events R for response ra 8	te (1st-line 15	Events trials) 3	Total 14	1.7%	2.49 [0.82, 7.55]	2005	
B	7.3.1 meta-analysis of RF	Events R for response ra	te (1st-line	Events trials)	Total	-			
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010	Events 8 for response ra 8 17 94 84	te (1st-line 15 23 132 114	Events trials) 3 4 61 35	Total 14 9 129 114	1.7% 3.2% 34.7% 19.7%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23]	2005 2005 2009 2010	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010	Events 8 for response ra 8 17 94 84 68	te (1st-line 15 23 132 114 82	Events 3 4 61 35 26	Total 14 9 129 114 72	1.7% 3.2% 34.7% 19.7% 15.6%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17]	2005 2005 2009 2010 2010	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010	Events 8 for response ra 8 17 94 84	te (1st-line 15 23 132 114	Events trials) 3 4 61 35	Total 14 9 129 114	1.7% 3.2% 34.7% 19.7% 15.6% 10.6%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94]	2005 2005 2009 2010	
B	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010 Rosell EURTAC 2011	Events R for response ra 8 17 94 84 68 36	te (1st-line 15 23 132 114 82 58	Events 3 4 61 35 26 19	Total 14 9 129 114 72 59	1.7% 3.2% 34.7% 19.7% 15.6%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63]	2005 2005 2009 2010 2010 2010	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$,	Events 1 for response ra 8 17 94 84 68 36 50 357 df = 6 (p = .01);	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%	Events 3 4 61 35 26 19	Total 14 9 129 114 72 59	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94]	2005 2005 2009 2010 2010 2010	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: Z =	Events It for response ra 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001)	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%)	Events trials) 3 4 61 35 26 19 13 161	Total 14 9 129 114 72 59	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63]	2005 2005 2009 2010 2010 2010	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Misudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogenelity: $\chi^2 = 16.11$, Test for overall effect: Z = 7.3.2 meta-analysis of RF	Events It for response ra 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-lin	Events trials) 3 4 61 35 26 19 13 161 e trials)	Total 14 9 129 114 72 59 87 484	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39]	2005 2005 2009 2010 2010 2010 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: 2 = 7.3.2 meta-analysis of RF Douillard INTEREST 2009	Events It for response ra 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-line 22	Events trials) 3 4 61 35 26 19 13 161 e trials) 5	Total 14 9 129 114 72 59 87 484	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39]	2005 2009 2010 2010 2010 2011 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Misudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogenelity: $\chi^2 = 16.11$, Test for overall effect: Z = 7.3.2 meta-analysis of RF	Events It for response ra 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-lin	Events trials) 3 4 61 35 26 19 13 161 e trials)	Total 14 9 129 114 72 59 87 484	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39]	2005 2005 2009 2010 2010 2010 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: Z = 7.3.2 meta-analysis of RF Douillard INTEREST 2009 Kris ISEL 2009 Subtotal (95% CI)	Events I for response ra 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-lin 22 16	Events trials) 3 4 61 35 26 19 13 161 161 • trials) 5 7 0	Total 14 9 129 114 72 59 87 484 22 15	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39] 1.80 [0.72, 4.52] 1.47 [0.78, 2.78]	2005 2009 2010 2010 2010 2011 2011 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: Z = 7.3.2 meta-analysis of RF Douillard INTEREST 2009 Kris V 15-32 2009 Kris V 15-32 2009 Subtotal (95% CI) Total events	Events For response ra A for response ra A for response ra A for esponse ra A for esponse ra A for esponse ra A for response ra A for esponse ra A	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-line 21 59	Events trials) 3 4 61 35 26 13 13 161	Total 14 9 129 114 72 59 87 484 222 15 5	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7% 2.8% 4.1% 0.4%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39] 1.80 [0.72, 4.52] 1.47 [0.78, 2.78] 4.64 [0.31, 69.37]	2005 2009 2010 2010 2010 2011 2011 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: Z = 7.3.2 meta-analysis of RF Douillard INTEREST 2009 Kris ISEL 2009 Subtotal (95% CI)	Events It for response rate 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-line 21 59	Events trials) 3 4 61 35 26 19 13 161 161 • trials) 5 7 0	Total 14 9 129 114 72 59 87 484 222 15 5	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7% 2.8% 4.1% 0.4%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39] 1.80 [0.72, 4.52] 1.47 [0.78, 2.78] 4.64 [0.31, 69.37]	2005 2009 2010 2010 2010 2011 2011 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Misudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: $Z = 1$ 7.3.2 meta-analysis of RF Douillard INTEREST 2009 Kris V 15-32 2009 Kris V 15-32 2009 Kris ISEL 2009 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 0.84$, (Test for overall effect: $Z = 1$ Total (95% CI) Total events Heterogeneity: $\chi^2 = 0.84$, (Events 8 for response rate 8 for response rate 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-line 21 59	Events trials) 3 4 61 35 26 19 13 161 161 a trials) 5 7 0 12 12	Total 14 9 129 114 72 59 87 484 222 15 5 42	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7% 2.8% 4.1% 0.4% 7.3%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39] 1.80 [0.72, 4.52] 1.47 [0.78, 2.78] 4.64 [0.31, 69.37]	2005 2009 2010 2010 2010 2011 2011 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Mitsudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: Z = 7.3.2 meta-analysis of RF Douillard INTEREST 2009 Krils V15.32 2009 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 0.84$, ζ Test for overall effect: Z = : Total events	Events It for response rate 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-line 21 59 = 0% 569	Events trials) 3 4 61 35 26 19 13 161 161 • trials) 5 7 0	Total 14 9 129 114 72 59 87 484 222 15 5 42	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7% 2.8% 4.1% 0.4% 7.3%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39] 1.80 [0.72, 4.52] 1.47 [0.78, 2.78] 4.64 [0.31, 69.37] 1.79 [1.04, 3.09]	2005 2009 2010 2010 2010 2011 2011 2011	
В	7.3.1 meta-analysis of RF Eberhard 2005 Bell 2005 Mok IPASS 2009 Maemondo 2010 Zhou 2010 Misudomi 2010 Rosell EURTAC 2011 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 16.11$, Test for overall effect: $Z = 1$ 7.3.2 meta-analysis of RF Douillard INTEREST 2009 Kris V 15-32 2009 Kris V 15-32 2009 Kris ISEL 2009 Subtotal (95% CI) Total events Heterogeneity: $\chi^2 = 0.84$, (Test for overall effect: $Z = 1$ Total (95% CI) Total events Heterogeneity: $\chi^2 = 0.84$, (Events It for response rate 8 17 94 84 68 36 50 357 df = 6 (p = .01); 10.52 (p < .00001	te (1st-line 15 23 132 114 82 58 86 510 1 ² = 63%) te (2nd-line 21 59 = 0% 569 1 ² = 48%	Events trials) 3 4 61 35 26 19 13 161 161 a trials) 5 7 0 12 12	Total 14 9 129 114 72 59 87 484 222 15 5 42	1.7% 3.2% 34.7% 19.7% 15.6% 10.6% 7.3% 92.7% 2.8% 4.1% 0.4% 7.3%	2.49 [0.82, 7.55] 1.66 [0.77, 3.59] 1.51 [1.22, 1.86] 2.40 [1.78, 3.23] 2.30 [1.66, 3.17] 1.93 [1.26, 2.94] 3.89 [2.28, 6.63] 2.09 [1.82, 2.39] 1.80 [0.72, 4.52] 1.47 [0.78, 2.78] 4.64 [0.31, 69.37] 1.79 [1.04, 3.09]	2005 2009 2010 2010 2010 2011 2011 2009 2009	

					Hazard Ratio		Hazard Ratio
		Log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	Year	Stage IV, Random, 95% Cl
	7.2.1 meta-analysis of HR for PFS Bell 2005	-0.916	0.288	11.9%	0.40 [0.23, 0.70]	2005	
	Mok 2009	-0.734 -2.303	0.147	16.2% 7.5%	0.48 [0.36, 0.64]	2009 2010	-
	Cappuzzo 2010 Maemondo 2010	-1.204	0.468 0.159	15.9%	0.10 [0.04, 0.25] 0.30 [0.22, 0.41]	2010	
	Zhou 2010 Douillard 2010	-1.833 -1.833	0.244 0.582	13.2% 5.6%	0.16 [0.10, 0.26] 0.16 [0.05, 0.50]	2010 2010	
	Mitsudomi 2010	-0.715	0.191	14.9%	0.49 [0.34, 0.71]	2010	+
	Rosell EURTAC 2011	-0.994	0.196	14.7% 100.0%	0.37 [0.25, 0.54]	2011	+
	Subtotal (95% CI) Heterogeneity: $\tau^2 = 0.15$; $\chi^2 = 28.2$	1, df = 7 ($P = 0.0002$);	l ² = 75%	100.0%	0.30 [0.22, 0.42]		•
	Test for overall effect: Z = 7.19 (P <						
	Total (95% Cl) Heterogeneity: $\tau^2 = 0.15$; $\chi^2 = 28.2$	$f(t) = \frac{1}{2} (B - 0.0002)$	12 - 75%	100.0%	0.30 [0.22, 0.42]		•
	Test for overall effect: $Z = 7.19$ ($P < Test$ for subgroup differences: Not a	0.0001)					0.05 0.2 1 5 20 Favors experimental Favors control
	OS						
	Study or Subgroup	Log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% Cl	Year	Hazard Ratio Stage IV, Fixed, 95% Cl
	7.1.2 meta-analysis of HR for OS Tsao 2005	-0.261	0.337	12.2%	0.77 [0.40 1.40]	2005	
	Bell 2005	0.571	0.644	3.3%	0.77 [0.40, 1.49] 1.77 [0.50, 6.25]	2005	
	Cappuzzo 2010 Douillard 2010	-0.186 -0.186	0.455 0.358	6.7% 10.8%	0.83 [0.34, 2.03] 0.83 [0.41, 1.67]	2010 2010	
	Yang IPASS 2010	0.002	0.144	66.9%	1.00 [0.76, 1.33]	2010	
	Subtotal (95% CI) Heterogeneity: $\chi^2 = 1.68$, df = 4 (P	- 0 70) 12 - 0%		100.0%	0.96 [0.76, 1.21]		•
	Test for overall effect: $Z = 0.37$ (P =						
	Total (95% CI)			100.0%	0.96 [0.76, 1.21]		•
	Heterogeneity: $\chi^2 = 1.68$, df = 4 (P Test for overall effect: Z = 0.37 (P =					0.2	0.5 1 2 5
	Test for subgroup differences: Not a						experimental Favors control
	not increase OS treatments that front treatment i chemotherapy to	SCLCs ha gefitinib th s of therap nee and re formally al n this setti o molecula <i>FR</i> mutati e treated v ng the nat	motherapy, ents double of progress ely to be influ survival gain shifted from erapies. All analysis in f R TKI (accore	either i the cha ion by lenced . The p plating patient act sho ding to	n first-line or ance of an about 70% but do by crossover paradigm of up- um-based s affected by puld be offered the		
	Keine Angaben	zur metho	disch	en Bew	vertung der F	Primärs	studien
OuYang P-Y	1. Fragestellu	ng					
et al., 2013	Controversv	continues	redai	dina th	e role of the	additic	on of EGFR–TKIs
	•		•	•			iducted this meta-
[28].	•	•		• •			
O analai di di	analysis to c	omprehen	sively	estima	te the treatn	nent ef	tect of the
Combination of	combined re	gimen on	PFS a	and ove	rall survival	(OS) b	ased on
EGFR-TKIs		-				, -	
and	characteristic	s or pare	1115.				
Chemotherapy as First-Line	2. Methodik						

Therapy for Advanced NSCLC: A Meta-Analysis	Population: advanced NSCLC, Intervention: EGFR–TKI monotherapy Komparator: EGFR–TKI and chemotherapy Endpunkte: OS, PFS Suchzeitraum: k.A. Anzahl eingeschlossene Studien/Ptienten (Gesamt): 4 Qualitätsbewertung der Studien: Jadad Heterogenitätsuntersuchungen: square test and I ²
	3. Ergebnisdarstellung Overall, these studies were of high quality – blinding, showing randomization procedure, conducting estimation of sample size, mostly reporting dropout and following the principle of intentionto- treat analysis

	ight EGFR mutation positive	2v55	7 49vs48	23vs9 ^{&}		NA	15vs14	33vs33	6vs9	s, vs = the combined regimen
	Never/light smoker	24vs28	112vs107	NA	NA	8vs10	72v544	100vs81	NA	sry four weeks
	Race (% Asian)	93vs95	100vs100	1.6vs0.8	NA	3vs4	3.9vs2.4	8vs6	6vs12	itabine, q4w = ev
	Female	9) 22vs24) 94vs85	85vs101	146vs133	125vs142	217vs207	58vs49	31vs44	irve, GEM = gemo
	Median age (range)	57.5(33-79) vs57.0(27-79)	59.0(31-96)v557.3(37-88) 94vs85	59(34-83)vs61(33-81)	61(27-86)vs63(31-85)	61(26-82)v560(28-84)	63(24-84)vs63(26-84)	60(34-81)vs58(32-78)	NA	latin, AUC = area under the cutration as the other trials.
	Patients analyzed	76vs78	226vs225	365vs363	345vs345	580vs579	539vs540	100vs81	71vs72	latin, CBP = carbop) concurrent adminis
Table 1. Baseline characteristics of the included trials in the meta-analysis.	chemotherapy (dose*cycles)	DDP(75 mg/m²,d1)/CBP(AUC = 5,d1)+GEM1250(mg/ m²,d1,8),q4w*6	DDP(75 mg/m ² ,d1)/CBP(AUC = 5,d1)+GEM1250(mg/ m ² ,d1,8),q4w*6	DDP(80 mg/m ² ,d1)+GEM(1250 mg/m ² d1,8),q3w*6	CBP(AUC = 6)+TAX(225 mg/m ²),q3w*6	DDP(80 mg/m ² ,d1)+GEM(1250 mg/m ² d1,8),q3w*6	CBP(AUC = 6)+TAX(200 mg/m ²),q3w*6	CBP(AUC = 6)+TAX(200 mg/m ²),q3w*6	CBP(AUC = 6)+TAX(200 mg/m ²),q3w*4	Mae: TMS = tyrosine kinase inhibitos. PS = performance status, E = edotinib, G = gerifarinib, DDP = cisplatin, GP = carboplatin, AUC = area under the curve, GEM = gerifabine, q4w = every four weeks, vs = the combined regiment servers draministration of reformib following generatization. TXX=pacificael. Sequencing administration of reformib following generative/platinum chemotherapy, rather than concurrent administration as the other trials. Tooply included patients researd with gerifinib 250 mg/d. Pban from trials INTACT land 2 together.
aracteristic	TKIs	μ	ц,	ţ	G‡	ш	ш	w	w	i inhibitors, PS of enfotinitis for cated with gef and 2 togethe
e 1. Baseline ch	Frials(year)	FASTACT(2009) [13]	FASTACT-II (2013) [14]	INTACT 1(2004) [7] [17]	INTACT 2(2004) [8] [17]	[7] [9] [9] [9]	TRIBUTE(2005) [10] [18]	CALGB30406(2012) [12]	Hirsch et al.2011 [11]	Note: TKIs = tyrosine kinase inhibitors, PS = performanc versus chemotherapy, NH = not a "Sequential administration of elocinib following gemo "Sondy included patients treated with gefittinb 250 mg/ "Data from trials INTACT 1 and 2 together.

EGFR-mutation negative patients could only be calculated in the
FASTACT-II [14], INTACT 1 and 2 [17], TALENT [9], TRIBUTE [18] and trial
by Hirsch et al [11]. In the EGFR-mutation positive cohort, the combined
regimen was superior over chemotherapy or TKIs monotherapy with a
significant improvement in PFS (HR= 0.48, 95% CI 0.28–0.83, P = 0.009;
Figure 3a). Interestingly, the combined regimen also showed significant PFS
benefit in the EGFR-mutation negative cohort, compared with chemotherapy
or TKIs monotherapy (HR =0.84, 95% CI 0.72–0.98, P = 0.02; Figure 3a).
Certainly, the magnitude of PFS improvement resulted from the combined
regimen in the EGFR-mutation positive cohort was marginally larger than
that in the EGFR-mutation negative cohort ($P = 0.05$). In terms of OS, the
combined regimen marginally enhanced OS of EGFR-mutation positive
patients (HR =0.67, 95% CI 0.44–1.00, P = 0.05), but not EGFR-mutation
negative patients (HR =0.91, 95% CI 0.77–1.08, P =0.27).
B Hazard Ratio Hazard Ratio

В			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE Weight	IV. Fixed, 95% CI	IV. Fixed. 95% Cl
EGFR-mutation positive	9			
CALGB 30406(2012)	-0.2814 0.4	378 3.3%	0.75 [0.32, 1.78]	
FASTACT-II(2013)	-0.7418 0.2	2895 7.6%	0.48 [0.27, 0.84]	
INTACT1 and 2	0.5697 0.6	6443 1.5%	1.77 [0.50, 6.25]	
TALENT(2007)	-0.0545 0.8	3195 1.0%	0.95 [0.19, 4.72]	
TRIBUTE(2005)	-0.1242 0.7	7578 1.1%	0.88 [0.20, 3.90]	
Subtotal (95% CI)		14.6%	0.67 [0.44, 1.00]	
EGFR-mutation negativ	e			
FASTACT-II(2013)	-0.2653 0.1	1886 18.0%	0.77 [0.53, 1.11]	
Hirsch et al.(2011)	0.0893 0.2		1.09 [0.61, 1.96]	
INTACT1 and 2		.155 26.6%	0.91 [0.67, 1.23]	
TALENT(2007)	0.1386 0	.191 17.5%	1.15 [0.79, 1.67]	
TRIBUTE(2005)	-0.2432 0.1	1998 16.0%	0.78 [0.53, 1.16]	
Subtotal (95% CI)		85.4%	0.91 [0.77, 1.08]	•
Heterogeneity: Chi ² = 3.	24, df = 4 (P = 0.52); l2 =	= 0%		
Test for overall effect: Z	= 1.11 (P = 0.27)			0.2 0.5 1 2 5
Test for subgroup differ	ences: Chi2 = 1.87, df =	1 (P = 0.17), I	² = 46.5%	Favours TKIs plus CT Favours CT or TKIs alone

PFS

Study or Subgroup			Hazard Ratio	Hazard Ratio
	log[Hazard Ratio]	SE Weight	IV, Random, 95% CI	IV. Random. 95% Cl
GFR-mutation positive				
CALGB 30406(2012)	-0.178 0.33	51 8.3%	0.84 [0.43, 1.61]	
ASTACT-II(2013)	-1.3871 0.22	73 11.4%	0.25 [0.16, 0.39]	
NTACT1 and 2	-0.5954 0.54	36 4.6%	0.55 [0.19, 1.60]	
ALENT(2007)	-0.5239 0.5	29 4.8%	0.59 [0.21, 1.67]	
RIBUTE(2005)	-0.7136 0.45	71 5.8%	0.49 [0.20, 1.20]	
Subtotal (95% CI)		34.9%	0.48 [0.28, 0.83]	
Heterogeneity: Tau ² = 0.2	3; Chi ² = 10.22, df = 4 (F	P = 0.04); I ² =	= 61%	
Test for overall effect: Z =	2.61 (P = 0.009)			
GFR-mutation negative	1			
ASTACT-II(2013)	-0.0318 0.17	31 13.1%	0.97 [0.69, 1.36]	
Hirsch et al.(2011)	-0.2471 0.22	76 11.4%	0.78 [0.50, 1.22]	
NTACT1 and 2	-0.3125 0.16	45 13.4%	0.73 [0.53, 1.01]	
TALENT(2007)	-0.054 0.16	92 13.3%	0.95 [0.68, 1.32]	
TRIBUTE(2005)	-0.2216 0.14	76 13.9%	0.80 [0.60, 1.07]	
Subtotal (95% CI)		65.1%	0.84 [0.72, 0.98]	•
Heterogeneity: Tau ² = 0.0	0; Chi ² = 2.09, df = 4 (P	= 0.72); I ² =	0%	
Test for overall effect: Z =	2.25 (P = 0.02)			
				0.2 0.5 1 2 5
Fact for subgroup differen	nces: Chi ² = 3.71, df = 1	$P = 0.05$), I^2	= 73.1%	Favours TKIs plus CT Favours CT or TKIs alon

	4. Anmerkung	en/Fazit der Aut	oren
	survival, irrespect Severe anorexia = 2.70, 95% Cl 1 regimen arm. The deserved to be c	tive of ethnicity, o (RR = 2.01, 95%) .94–3.76; P<0.00 is strategy of com	then had no significant impact on overall dose schedules or EGFR-mutation status. CI 1.11–3.63; P = 0.02) and diarrhea (RR 01) were more frequent in the combined abining EGFR–TKIs and chemotherapy future, although it is not approved for
Ku GY et al., 2011 [18]. Gefitinib vs. chemotherapy as first-line therapy in advanced non- small cell lung cancer: Meta- analysis of phase III trials	studies to bet over chemoth 2. Methodik Population status Intervention Komparato Endpunkte Suchzeitrat Anzahl eing 969 / Chem Qualitätsbe Heterogeni 3. Ergebnisdat – Qualitat Patient demographics. Characteristic	form a meta-analy ter quantify the to herapy. advanced NSCL n: Gefitinib r: Chemotherapie inicht präspezifiz um: k.A. geschlossene St otherapie 960) ewertung der Stu tätsuntersuchur	tiert Fudien/Ptienten (Gesamt): 4 (ca. Gefitinib Fidien: k.A.
	Complete demograpi Japan and IPASS studies. 3.2. EGFR muta Both the North-E	267 (33%) 480 (59%) 62 (8%) 175 (22%) 634 (78%) 0 perative Oncology Group/ hic data are available only tions	692 (86%) 116 (14%) 270 (33%) 471 (58%) 67 (8%) 174 (22%) 633 (78%) 1 (0%) World Health Organization. y for the North-East Japan, West
	•		prior to study entry. The IPASS and first- or neversmokers (≤10 pack-years) with

adenocarcinoma histology and subsequently analyzed available tumor tissue from consenting patients for EGFR mutations. The IPASS study recruited in East and South-east Asia (but not Korea) while the first-SIGNAL study exclusively enrolled Korean patients. In the IPASS study, analysis was performed on 36% of patients; of these patients, 57% were found to have activating EGFR mutations. In the first-SIGNAL study, 31% of patients had analyzable tumors; activating mutations were found in 44%. From the four studies, data on specific activating EGFR mutations are available for 650 patients. Fifty-three percent were deletions in exon 19, 45% were the L858R mutation in exon 21 and 4% were other mutations (some tumor samples had multiple mutations). Of note, 11 of 437 samples (2.5%) analyzed in the IPASS study were found to contain the exon 20 T790M mutation, which is known to confer resistance to EGFR TKIs.

3.3. Toxicities

Toxicities reported on these trials are consistent with the known toxicities of gefitinib and the respective chemotherapy regimens. Representative toxicities include fatigue, which was significantly more common in the chemotherapy arms. In the North-East Japan, West Japan and IPASS studies, the cumulative incidence of fatigue of any grade in the gefitinib arms was 18% (148 of 808) vs. 46% (363 of 790) in the chemotherapy arms (odds ratio 0.24, p < 10-15). Nausea was also more common in the chemotherapy arms of the North-East Japan and IPASS trials, where 51% (344 of 677) of the patients experienced any grade nausea vs. 17% (116 of 694) in the gefitinib arms (odds ratio 0.19, p < 10-15). Patients receiving chemotherapy also experienced significantly more myelosuppression. As an example, the incidence of all-grade and grade \geq 3 neutropenia was much less common in the gefitinib arms (7% vs. 84% and 3% vs. 69%, respectively). Across the studies, the odds ratio for grade \geq 3 neutropenia for gefitinib vs. chemotherapy was 0.01 (p < 10-15). On the other hand, rash and diarrhea were more common in the gefitinib arms. Sixty-nine percent (557 of 808) of patients in the gefitinib arms experienced any-grade rash vs. 21% (164 of 790) of patients in the chemotherapy arms (odds ratio 8.19, p < 10–15). There was a similarly increased incidence of grade \geq 3 rash for the gefitinib arms (3% vs. 1% odds ratio 3.39, p = 0.003). Any-grade diarrhea occurred in 46% (369 of 808) of the gefitinib-treated patients vs. 22% (170 of 790) of patients who received chemotherapy (odds ratio 3.15, p < 10–15); grade \geq 3 diarrhea was also more common (3% vs. 1%, odds ratio 3.12, p = 0.006). Pneumonitis, a rare but serious toxicity associated with gefitinib, was reported in the North-East Japan study in 5% (6 of 114) of gefitinib-treated patients vs. 0 of 113 patients in the chemotherapy arm (odds ratio ∞ , p = 0.03). In the IPASS study, interstitial lung disease events (which included pneumonitis) occurred in 2.6% of gefitinib treated patients vs. 1.4% of those who received chemotherapy (odds ratio 1.97, p = 0.15).

4. Anmerkungen/Fazit der Autoren

This meta-analysis confirms the results of each individual study and narrows

the confidence intervals of these results. In patients with known EGFR mutations or whose tumors are likely to harbor a mutation, upfront gefitinib or chemotherapy are associated with similar OS. Gefitinib is associated with less fatigue, myelosuppression and nausea than chemotherapy (but produces more skin rash, diarrhea and pneumonitis). Patients receiving gefitinib have improved quality-of-life compared to those receiving chemotherapy, making it an appropriate first-line choice.
5. Hinweis der FBMed
Dieses Review wurde trotz methodischer Mängel eingeschlossen, weil es die Mutation T790M thematisiert. Die methodischen Mängel sind:
 Vermischung zwischen Methoden und Ergebnissen, fehlende Angabe zum Suchzeitraum fehlende Studienbewertung keine Angaben zu eingesetzten Methoden der Heterogenitätsanalyse Einbeziehung von auch Primärstudien, deren Publikation nicht als Volltext vorgelegen hat
Es wurden nur die Ergebnisse der zur Mutation T790M extrahiert.

b) TKI-vorbehandelte Patienten

Es wurden keine Systematischen Reviews gefunden.

Leitlinien

Australian Government, Cancer Council Australia, 2015 [2]. Clinical practice guidelines for the treatment of lung cancer	patients with s chemotherapy stage IV inoper regimen is bes monotherapy combination the chemotherapy stage IV inoper regimens as e IV inoperable superior to che stage IV inoper overall quality NSCLC? What inoperable NS patients with s therapy regiments stage IV inoper in selected patients with stage IV inoper in selected patients therapy regiments stage IV inoper in selected patients Konsensuspro	g What is the optimal first-line chemotherapy regimen in stage IV inoperable NSCLC? Is carboplatin based v as effective as cisplatin based chemotherapy for treatment erable NSCLC? Which new agent or platinum combination at for treatment of stage IV inoperable NSCLC? Is with new third generation (3G) agents as effective as plat herapy for treatment of stage IV inoperable NSCLC? Are v agents better than two chemotherapy agents for treatment erable NSCLC? Are non-platinum doublet chemotherapy effective as platinum doublet regimens for treatment of stage NSCLC? Is chemotherapy with a biologic or targeted there enotherapy alone in unselected patients for treatment of erable NSCLC? What is the optimal chemotherapy regime of life for patients in the treatment of stage IV inoperable at is the optimal second-line therapy in patients with stage SCLC? What is the optimal third-line therapy in unselected stage IV inoperable NSCLC? What is the optimal systemic en for patients with poor performance status for treatment erable NSCLC? What is the optimal systemic therapy regi- tients for treatment of stage IV inoperable stage IV inoperable NSCLC? What is the optimal systemic en for patients with poor performance status for treatment erable NSCLC? What is the optimal systemic therapy regi- tients for treatment of stage IV inoperable NSCLC? undlage der Leitlinie: Systematischer Review und ozess über Empfehlungen. Alle Aussagen sind mit in (Meta-Analysen oder RCTs) belegt. Suchzeitraum: bis	n three ent of age rapy en for t of imen 2012			
	LoE (nur die hier benötigten): I: A systematic review of level II studies II: A randomised controlled trial GoR:					
	Grade of					
	recommendation	Description				
	B	Body of evidence can be trusted to guide practice Body of evidence can be trusted to guide practice in most situations				
	с	Body of evidence provides some support for recommendation(s) but care should be taken in its application				
	D	Body of evidence is weak and recommendation must be applied with caution				
	PP (practice point)	Where no good-quality evidence is available but there is consensus among Guideline committee members, consensus-based guidance points are given, these are called "Practice points"				
	Empfehlunge	en Stage IV inoperable Chemotherapy				
	Evidence sum	mary	LoE			
	compared with clinical trials co 0-1, no unstab	ed chemotherapy improves survival in stage IV NSCLC in best supportive care. Note that this evidence is based on onducted in fit patients, with predominant performance status ble co-morbidities, adequate organ function and without rain metastases.	I			
	Recommenda		Grade			
	Platinum-base	ed chemotherapy can be used to extend survival in newly ients with stage IV NSCLC.	A			
	Practice piont(-				
	The decision to patient should	o undertake empirical platinum-based chemotherapy in a giver consider factors such as patient performance status (0,1 versu morbidities, their disease extent and symptoms, proposed treat	us 2 or			

rı		
	toxicity and their individual preferences for benefit from specific treatment(s) toxicities.	and
	Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a analysis using updated data on individual patients from 52 randomised clinical trials. BMJ 1995;311(7010):899-909 Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. Cochrane Database Syst Rev 2010 May 12;(5):CD007309	meta-
	Evidence summary	LoE
	First-line chemotherapy involving cisplatin results in a slightly higher likelihood of tumour response than the same chemotherapy with carboplatin.	I
	There is no definite overall survival difference between cisplatin or carboplatin based first-line chemotherapy.	Ι
	Cisplatin-based chemotherapy is associated with more severe nausea and vomiting and nephrotoxicity; severe thrombocytopaenia is more frequent during carboplatin-based chemotherapy.	I
	Recommendation	Grade
	In patients with high tumour burden and symptoms from stage IV NSCLC cisplatin based chemotherapy may be used in preference to carboplatin for the purpose of inducing a response, however, this benefit may be offset by its greater risk of toxicity.	В
	Practice piont(s)	
	The choice of cisplatin versus carboplatin in a given patient may consider the balance between perceived benefit (in tumour response) versus known toxici whilst considering patient preferences.	
	Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M, Tanimoto M. Role of adjuvant chemotherapy in p with resected non-small-cell lung cancer: reappraisal with a meta-analysis of randomized controlled trials. J Clin Oncol 2004 Oct 1;22(19):3860-7 Ardizzoni A, Boni L, Tiseo M, Fossella FV, Schiller V Paesmans M, et al. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of ad non-small-cell lung cancer: an individual patient data meta-analysis. J Natl Cancer Inst 2007 Jun 6;99(11):847-57 Jiang J, Liang X, Zhou X, Huang R, Chu Z. A meta-analysis of randomized contr trials comparing carboplatin-based to cisplatin-based chemotherapy in advanced non-small cell lu cancer. Lung Cancer 2007 Sep;57(3):348-58	ed JH, vanced rolled
	Evidence summary	LoE
	3G platinum-based chemotherapy (vinorelbine, paclitaxel, docetaxel or gemcitabine) is associated with higher response ratio than older 2G platinum-based chemotherapy.	I
	No 3G platinum-based chemotherapy regimen (vinorelbine, paclitaxel, docetaxel or gemcitabine) has been shown to be superior to another. In first-line empirical treatment of advanced NSCLC, chemotherapy with	Ι
	cisplatin and pemetrexed is superior to cisplatin/gemcitabine in patients with non-squamous cell carcinoma histology. In first-line empirical treatment of advanced NSCLC, chemotherapy with	
	cisplatin and pemetrexed is inferior to cisplatin/gemcitabine in patients with SCC histology.	II
	Recommendation	Grade
	In the first-line setting, chemotherapy with cisplatin and gemcitabine is recommended in preference to cisplatin and pemetrexed in patients with squamous cell carcinoma histology.	В
	3G platinum-based chemotherapy (with vinorelbine, paclitaxel, docetaxel or gemcitabine) is a standard of care as first-line chemotherapy in fit patients with stage IV NSCLC.	A
	In the first-line setting, chemotherapy with cisplatin and pemetrexed is recommended in preference to cisplatin and gemcitabine in patients with non-squamous cell carcinoma histology.	В

Practice piont(s)	
The choice of first-line platinum combination chemotherapy in a given patient mayconsider patient performance status and co-morbidities, the proposed treat toxicity, treatment scheduling and individual patient preferences.	
Baggstrom MQ, Stinchcombe TE, Fried DB, Poole C, Hensing TA, Socinski MA. Third-generation chemotherapy agents in the treatment of advanced non-small cell lung cancer: a meta-analysis. J Thorac Oncol 2007 Sep;2(9):845-53 Gao G, Jiang J, Liang X, Zhou X, Huang R, Chu Z, et al. A r analysis of platinum plus gemcitabine or vinorelbine in the treatment of advanced non-small-cell luc cancer. Lung Cancer 2009 Sep;65(3):339-44 Grossi F, Aita M, Defferrari C, Rosetti F, Brianti A, F G, et al. Impact of third-generation drugs on the activity of first-line chemotherapy in advanced no cell lung cancer: a meta-analytical approach. Oncologist 2009 May;14(5):497-510 Scagliotti GV, F P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplati gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage small-cell lung cancer. J Clin Oncol 2008 Jul 20;26(21):3543-51	neta- ung Fasola n-small Parikh n plus
Evidence summary	LoE
3G platinum-based combination chemotherapy (vinorelbine, paclitaxel,	
docetaxel, irinotecan or gemcitabine) is superior to 3G agent monotherapy. 3G platinum-based monotherapy (vinorelbine, paclitaxel, docetaxel, or gemcitabine) improves survival compared with best supportive care.	I
Recommendation	Grade
Patients fit for chemotherapy should be offered 3G platinum-based combination chemotherapy (vinorelbine, paclitaxel, docetaxel, irinotecan or gemcitabine) in preference to 3G agent monotherapy, as it is more effective.	A
Patients unfit for combination chemotherapy could be considered for 3G monotherapy with vinorelbine, paclitaxel, docetaxel or gemcitabine.	A
Hotta K, et al. 2004 Baggstrom MQ, et al. 2007 Delbaldo C, Michiels S, Rolland E, Syz N, Soria J Chevalier T, et al. Second or third additional chemotherapy drug for non-small cell lung cancer in patients with advanced disease. Cochrane Database Syst Rev 2007 Oct 17;(4):CD004569	C, Le
Evidence summary	LoE
Triplet chemotherapy regimens are associated with higher response rate, but no improvement in survival. Triplet chemotherapy regimens are associated with greater grade 3 /4	1
toxicities.	-
	Grade
Triplet chemotherapy regimens are not recommended, as benefit in responserate does not outweigh extra toxicity.	A
Delbaldo C, et al. 2007 Baggstrom MQ, et al. 2007	
Evidence summary	LoE
Platinum-based doublet 3G chemotherapy is associated with a higher response rate and slightly higher one-year survival than non-platinum doublet chemotherapy.	I
Platinum-based doublet 3G chemotherapy is associated with greater risk of anaemia and thrombocytopaenia than non-platinum combination therapy.	I
Gemcitabine and paclitaxel improves response ratio without added toxicity, compared with gemcitabine or paclitexel and carboplatin combinations.	I
Recommendation	Grade
Non-platinum 3G doublet chemotherapy is an effective alternative option for patients unsuitable for platinum-based therapy.	A
D'Addario G, Pintilie M, Leighl NB, Feld R, Cerny T, Shepherd FA. Platinum-based versus non-pla based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published lit J Clin Oncol 2005 May 1;23(13):2926-36 Rajeswaran A, Trojan A, Burnand B, Giannelli M. Efficar side effects of cisplatin- and carboplatin-based doublet chemotherapeutic regimens versus non- platinum-based doublet chemotherapeutic regimens as first line treatment of metastatic non-small	erature. cy and

lung carcinoma: a systematic review of randomized controlled trials. Lung Cancer 2008 Jan;59(1) Li C, Sun Y, Pan Y, Wang Q, Yang S, Chen H. Gemcitabine plus paclitaxel versus carboplatin plu either gemcitabine or paclitaxel in advanced non-small-cell lung cancer: a literature-based meta- analysis. Lung 2010 Oct;188(5):359-64	
Evidence summary	LoE
In carefully selected ^{**} patients with advanced NSCLC, high dose bevacizumab improves tumour response rate and progression free survival. **Patients with the following criteria were excluded from the trials: SCC histologic type, brain metastases, clinically significant haemoptysis, inadequate organ function, ECOG PS of 1, therapeutic anticoagulation, clinically significant cardiovascular disease, or medically uncontrolled hypertension.	I
In carefully selected** patients with advanced NSCLC, treatment with high dose bevacizumab is associated with an increase in treatment related deaths.	I
Recommendation	Grade
High dose bevacizumab (15 mg/kg three-weekly) may be considered in addition to chemotherapy (carboplatin/paclitaxel or cisplatin/gemcitabine) in carefully selected** patients with non-squamous cell carcinoma.	В
Yang K, Wang YJ, Chen XR, Chen HN. Effectiveness and safety of bevacizumab for unresectable small-cell lung cancer: a meta-analysis. Clin Drug Investig 2010;30(4):229-41 Botrel TE, Clark O, L, Paladini L, Faleiros E, Pegoretti B. Efficacy of bevacizumab (Bev) plus chemotherapy (CT) com to CT alone in previously untreated locally advanced or metastatic non-small cell lung cancer (NS systematic review and meta-analysis. Lung Cancer 2011 Oct;74(1):89-97	Clark npared
Evidence summary	LoE
The addition of the EGFR TKIs gefitinib or erlotinib to a standard chemotherapy regimen does not improve outcomes (OS, RR or time to progression (TTP)) compared with chemotherapy alone.	II
Recommendation	Grade
The first generation EGFR TKIs gefitinib or erlotinib should not be used in unselected patients in combination with standard chemotherapy.	А
Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, et al. Gefitinib in combination gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trialINTACT 1. J C Oncol 2004 Mar 1;22(5):777-84 Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manego et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer phase III trialINTACT 2. J Clin Oncol 2004 Mar 1;22(5):785-94 Herbst RS, Prager D, Hermann F Fehrenbacher L, Johnson BE, Sandler A, et al. TRIBUTE: a phase III trial of erlotinib hydrochlorid 774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung can Clin Oncol 2005 Sep 1;23(25):5892-9 Gatzemeier U, Pluzanska A, Szczesna A, Kaukel E, Roube Rosa F, et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 2007 Apr 20;25(12):1545-52	clin old C, cer: a R, le (OSI- lec J, De
Evidence summary	LoE
In patients with advanced NSCLC (selected by the presence of EGFR- positive tumour as measured by immunohistochemistry), the addition of cetuximab to chemotherapy increases response rate and improves overall survival. This overall benefit was modest and observed only in the phase III trial using cisplatin/vinorelbine.	I
Recommendation	Grade
In patients with advanced NSCLC whose tumours have been shown to express EGFR by immunohistochemistry, cetuximab may be considered in addition to cisplatin/vinorelbine chemotherapy to improve response rate and overall survival.	В
Lin H, Jiang J, Liang X, Zhou X, Huang R. Chemotherapy with cetuximab or chemotherapy alone untreated advanced non-small-cell lung cancer: a systematic review and meta-analysis. Lung Car 2010 Oct;70(1):57-62 Ibrahim EM, Abouelkhair KM, Al-Masri OA, Chaudry NC, Kazkaz GA. Cetu	ncer

based therapy is effective in chemotherapy-naïve patients with advanced and metastatic non-sma	all-cell
lung cancer: a meta-analysis of randomized controlled trials. Lung 2011 Jun;189(3):193-8	
Practice point(s)	
As overall quality of life does not seem to differ across the different chemotherapy regimens, the choice of chemotherapy in an individual may involve discussion regarding expected toxicities and the patient's preferences.	•
Evidence summary	LoE
In <u>previously treated patients</u> with advanced NSCLC, single agent docetaxel 75 mg/m2 improves survival compared with best supportive care or vinorelbine and ifosfamide.	II
In previously treated patients with advanced NSCLC, single agent pemetrexed has similar efficacy but fewer side effects than three-weekly docetaxel.	II
In previously treated patients with advanced NSCLC, compared with docetaxel, pemetrexed appears to have greater efficacy in non-squamous cell carcinoma histology, and inferior efficacy in squamous cell carcinoma.	
Recommendation	Grade
In unselected patients previously treated for advanced NSCLC, chemotherapy with docetaxel or pemetrexed may be used as second-line therapy. Pemetrexed is preferred in non-squamous cell carcinoma	В
histology, and docetaxel is preferred in squamous cell carcinoma.	
Shepherd FA, Dancey J, Ramlau R, Mattson K, Gralla R, O'Rourke M, et al. Prospective randomi trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previousl treated with platinum-based chemotherapy. J Clin Oncol 2000 May;18(10):2095-103 Fossella FV. DeVore R, Kerr RN, Crawford J, Natale RR, Dunphy F, et al. Randomized phase III trial of docetax versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously t with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Stu Group. J Clin Oncol 2000 Jun;18(12):2354-62 Hanna N, Shepherd FA, Fossella FV, Pereira JR, I Marinis F, von Pawel J, et al. Randomized phase III trial of pemetrexed versus docetaxel in patier non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 2004 May 1;22(9): 97 Standfield L, Weston AR, Barraclough H, Van Kooten M, Pavlakis N. Histology as a treatment modifier in advanced non-small cell lung cancer: a systematic review of the evidence. Respirology Nov;16(8):1210-20	y ixel reated dy De nts with 1589- effect y 2011
Evidence summary	LoE
In unselected previously treated patients with advanced NSCLC single agent erlotinib150 mg per day orally as second-line therapy improves survival compared with placebo.	II
In unselected previously treated patients with advanced NSCLC, single agent gefitinib 250 mg per day orally does not improve survival compared with placebo.	II
In unselected previously treated patients with advanced NSCLC, gefitinib 250 mg per day orally is equivalent to three-weekly docetaxel chemotherapy.	II
In unselected patients with advanced NSCLC, progressing after first-line platinum-based chemotherapy, there is no difference in survival between erlotinib 150 mg daily or chemotherapy (either pemetrexed or docetaxel).	II
Recommendation	Grade
In unselected patients previously treated for advanced NSCLC, erlotinib 150 mg per day orally can be used as second-line therapy, instead of chemotherapy.	В
Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, et al. Gefitinib plus supportive care in previously treated patients with refractory advanced non-small-cell lung cancer	

results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in L	
Cancer). Lancet 2005 Oct;366(9496):1527-37 Shepherd FA, Rodrigues Pereira J, Ciuleanu T, T Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl 2005 Jul 14;353(2):123-32 Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R, Wu YL, et al. Gefit versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised pl trial. Lancet 2008 Nov 22;372(9652):1809-18 Ciuleanu T, Stelmakh L, Cicenas S, Miliauskas S, Grigorescu AC, Hillenbach C, et al. Efficacy and safety of erlotinib versus chemotherapy in seco treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study. Lancet Oncol 2012 Mar;13(3):300-8	an EH, J Med inib nase III
Evidence summary	LoE
Doublet therapy as second-line treatment of advanced NSCLC increases response rate and progression free survival, but is more toxic and does not improve overall survival compared with single agent chemotherapy.	I
Recommendation	Grade
Doublet therapy is not recommended as second-line treatment of advanced NSCLC .	В
Di Maio M, Chiodini P, Georgoulias V, Hatzidaki D, Takeda K, Wachters FM, et al. Meta-analysi single-agent chemotherapy compared with combination chemotherapy as second-line treatment advanced non-small-cell lung cancer. J Clin Oncol 2009 Apr 10;27(11):1836-43 Qi WX, Tang LN AN, Shen Z, Yao Y. Effectiveness and safety of pemetrexed-based doublet versus pemetrexed second-line treatment for advanced non-small-cell lung cancer: a systematic review and meta-a J Cancer Res Clin Oncol 2012 Jan 19	∶of I, He alone as
Evidence summary	LoE
In unselected previously treated patients with advanced NSCLC who have received two lines of therapy, single agent erlotinib 150 mg per day orally as third-line therapy improves survival compared with placebo.	П
Recommendation	Grade
In unselected patients having previously received two lines of treatment for advanced NSCLC, erlotinib 150 mg per day orally can be used as third-line therapy.	В
Shepherd FA, et al. 2005	
Evidence summary	LoE
In patients with poor performance status (PS 2), first-line monotherapy with 3G chemotherapy (vinorelbine, gemcitabine, paclitaxel or docetaxel) may improve survival and/or quality of life.	I, II
Recommendation	Grade
First-line monotherapy with 3G chemotherapy could be offered to selected patients with PS2 for symptom improvement and possible survival gain, who are willing to accept treatment toxicity.	В
Baggstrom MQ, et al. 2007 Crawford J, O'Rourke M, Schiller JH, Spiridonidis CH, Yanovich S, C et al. Randomized trial of vinorelbine compared with fluorouracil plus leucovorin in patients with non-small-cell lung cancer. J Clin Oncol 1996 Oct;14(10):2774-84 Effects of vinorelbine on quali and survival of elderly patients with advanced non-small-cell lung cancer. The Elderly Lung Can Vinorelbine Italian Study Group. J Natl Cancer Inst 1999 Jan 6;91(1):66-72 Anderson H, Hopwo Stephens RJ, Thatcher N, Cottier B, Nicholson M, et al. Gemcitabine plus best supportive care (BSC in inoperable non-small cell lung cancera randomized trial with quality of life as the prima outcome. UK NSCLC Gemcitabine Group. Non-Small Cell Lung Cancer. Br J Cancer 2000 Aug;83(4):447-53 Anderson H, Hopwood P, Stephens RJ, Thatcher N, Cottier B, Nicholson M, et Gemcitabine plus best supportive care (BSC) vs BSC in inoperable non-small cell lung cancer randomized trial with quality of life as the primary outcome. UK NSCLC Gemcitabine Group. No Cell Lung Cancer. Br J Cancer 2000 Aug;83(4):447-53 Roszkowski K, Pluzanska A, Krzakowski Smith AP, Saigi E, Aasebo U, et al. A multicenter, randomized, phase III study of docetaxel plus supportive care versus best supportive care in chemotherapy-naive patients with metastatic or n resectable localized non-small cell lung cancer (NSCLC). Lung Cancer 2000 Mar;27(3):145-57	stage IV ty of life cer od P, BSC) vs ry et al. a n-Small M, best ion-
Evidence summary	LoE

 There is ovidence for bonefit with erletinik 150 mg deily as accord at	
There is evidence for benefit with erlotinib 150 mg daily as second or third-line therapy in unselected poor performance status patients (PS2 or 3).	II
Recommendation	Grade
Poor performance status patients having received 1 or 2 lines of prior therapy, may be offered erlotinib 150 mg daily.	В
Practice point(s)	
Decision-making on treatment in poor performance status patients may we benefits against toxicity and patient preferences. Whilst a single agent 3G chemotherapy is an option in unselected patients, patients with known activ EGFR MTs should be considered for first line EGFR TKIs as the magnitude benefit is greater and toxicity profile more favourable.	vating
Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotini previously treated non-small-cell lung cancer. N Engl J Med 2005 Jul 14;353(2):123-32	b in
Evidence summary	LoE
First-line single agent vinorelbine (30 mg/m2 on days one and eight, Q3 weekly) in patients over 70 years of age improves survival and reduces disease related symptoms.	II
In patients over 70 years of age, first line single agent docetaxel 60 mg/m2 (day one) compared to vinorelbine 25 mg/m2 (days one and eight) every 21 days, improves response rate, progression free survival and disease related symptoms, but not overall survival and is associated with more G3/4 neutropaenia.	II
In patients over 65 years of age, gemcitabine doublet chemotherapy improves response rate compared with single agent 3G chemotherapy, but does not improve survival and is associated with greater thrombocytopaenia.	I
In patients over 70 years of age, first-line carboplatin/weekly paclitaxel combination improves survival compared with 3G monotherapy (weekly vinorelbine or gemcitabine) but, is associated with more neutropaenia.	II
Recommendation	Grade
Suitably fit patients over 65 years of age, can be offered first-line mono- chemotherapy with a 3G single agent (vinorelbine (25-30 mg/ m2 day one, eight Q3 weekly), docetaxel (60 mg/m2 day one, Q3 weekly) or gemcitabine (1150 mg/m2 days one and eight, Q3 weekly).	В
In elderly patients, first-line gemcitabine doublet chemotherapy is not recommended. In fit elderly patients, first-line carboplatin/weekly paclitaxel may be offered	B B
instead of 3G monotherapy, but at the expense of greater neutropaenia.	D
Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small- cancer. The Elderly Lung Cancer Vinorelbine Italian Study Group. J Natl Cancer Inst 1999 Jan 6;91(1):66-72 Kudoh S, Takeda K, Nakagawa K, Takada M, Katakami N, Matsui K, et al. Phase of docetaxel compared with vinorelbine in elderly patients with advanced non-small-cell lung ca results of the West Japan Thoracic Oncology Group Trial (WJTOG 9904). J Clin Oncol 2006 Au 1;24(22):3657-63 Russo A, Rizzo S, Fulfaro F, Adamo V, Santini D, Vincenzi B, et al. Gemcitate based doublets versus single-agent therapy for elderly patients with advanced nonsmall cell lun a Literature-based Meta-analysis. Cancer 2009 May 1;115(9):1924-31 Quoix E, Zalcman G, Os Westeel V, Pichon E, Lavolé A, et al. Carboplatin and weekly paclitaxel doublet chemotherapy compared with monotherapy in elderly patients with advanced non-small-cell lung cancer: IFCT randomised, phase 3 trial. Lancet 2011 Sep 17;378(9796):1079-88	e III study ncer: Ig ine- Ig cancer: ter JP,
Evidence summary	LoE
Histology (non-squamous cell carcinoma versus squamous cell carcinoma) is associated with a significant treatment modifying effect for patients treated with pemetrexed based chemotherapy, with superior survival effect	Ι

Due to the therapeutic implications, it is important to classify the histologic subtype of NSCLC on diagnostic specimens as accurately as possible, particularly to enable accurate distinction between the key histologic subtypes: adenocarcinoma and squamous cell carcinoma. A Practice point(s) Given the importance of accurate histologic diagnosis and the potential need to have sufficient tissue for subsequent molecular testing, it is important to obtain as much tissue as possible at initial diagnosis in patients suspected to have NSCLC. multidisciplinary team discussion may be required in order to decide on the most appropriate diagnostic method to obtain adequate tissue. Standfield L, et al. 2011 Evidence summary LoE In caucasian patients with advanced NSCLC and known activating EGFR GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with erlotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based chemotherapy. Recommendation Grac Patients with known activating gene mutations (exon-19 deletions or exon-21 point mutations) to EGFR should be treated with an EGFR TKI. A on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pneumo-Cancérologie and the Associazione Italian Oncologia Toracica, Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuil B, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 Evidence summary LoE <t< th=""><th> </th><th></th></t<>	 	
Due to the therapeutic implications, it is important to classify the histologic subtype of NSCLC on diagnostic specimens as accurately as possible, particularly to enable accurate distinction between the key histologic subtypes: adenocarcinoma and squamous cell carcinoma. A Practice point(s) Given the importance of accurate histologic diagnosis and the potential need to have sufficient tissue for subsequent molecular testing, it is important to obtain as much tissue as possible at initial diagnosis in patients suspected to have NSCLC. multidisciplinary team discussion may be required in order to decide on the most appropriate diagnostic method to obtain adequate tissue. Standfield L, et al. 2011 Evidence summary LOE In caucasian patients with davanced NSCLC and known activating EGFR GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with erotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based othermotherapy. Recommendation Grace Recommendation Grace Stradie diagnostic progression free survival and increases inst-line treatment for European patients with advanced EGFR mutation-positive non-emati-cell lung cancer (EURTAC): a multicente, open-label, randomised pase 3 trial. Lancet Oncol 2012 Mar:13(3):232-426 Evidence summary LOE Progression free survival is significantly longer among patients treated with initial chemotherapy. Than those treated with gelfithib in patients II Recommendation Grace Evidence summary LOE Progression free	inferior survival effect observed in squamous cell carcinoma histology, compared with other standard regimens when pemetrexed is used first-line,	
subtype of NSCLC on diagnostic specimen's as accurately is possible, particularly to enable accurate distinction between the key histologic subtypes: adenocarcinoma and squamous cell carcinoma. A Practice point(5) Given the importance of accurate histologic diagnosis and the potential need to have sufficient tissue for subsequent molecular testing, it is important to obtain as much tissue as possible at initial diagnosis in patients suspected to have NSCLC. multidisciplinary tream discussion may be required in order to decide on the most appropriate diagnostic method to obtain adequate tissue. Standlieid L, et al. 2011 Evidence summary LOE In caucasian patients with advanced NSCLC and known activating EGFR GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with eriorithin significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based chemotherapy. Grad Recommendation Grad Patients with known activating gene mutations (exon-19 deletions or exon-21 point mutations) to EGFR should be treated with an EGFR TKI. A on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Finance de Preumo-Cancercologie and the Associaton tailian Oncologia Torace, Rosell R, Carcereny E, Gervais R, Vergreenger A, Massu B, et al. Elforith versus standard tenemotherapy as instheline treatment for European patients with advanced GFR mutation-positive non-small-cell lung cancer (EURTAC), a mutations. LOE Progression free survival is significantly longer among patients treated with standard chemotherapy. LoE Progression free surviva	Recommendation	Grade
Given the importance of accurate histologic diagnosis and the potential need to have sufficient tissue for subsequent molecular testing, it is important to obtain as much tissue as possible at initial diagnosis in patients subpected to have NSCLC. multidisciplinary team discussion may be required in order to decide on the most appropriate diagnosit method to obtain adequate tissue. Standfield L, et al. 2011 Evidence summary LoE In caucasian patients with advanced NSCLC and known activating EGFR GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with eriotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based chemotherapy. III Recommendation Gract Patients with known activating gene mutations (exon-19 deletions or exon-21 point mutations) to EGFR should be treated with an EGFR TKI. A on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pleumo-Cancerologie and the Associazione Italiana Oncologia Toracias, Reseal III, qacner (EURTAC): a multicentre, open-tabel, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 LoE Evidence summary LoE Progression free survival is significantly longer among patients treated with thinitial chemotherapy. than those treated with gefitinib in patients II Recommendation Grade Where EGFR mutations. B Progression free survival is significantly longer among patients treated with thild chemotherapy. The evidence in support of large treatment benefits with firs	subtype of NSCLC on diagnostic specimens as accurately as possible, particularly to enable accurate distinction between the key histologic subtypes: adenocarcinoma and squamous cell carcinoma.	A
have sufficient tissue for subsequent molecular festing, it is important to obtain as much tissue as possible at initial diagnosis in patients suspected to have NSCLC. multidisciplinary team discussion may be required in order to decide on the most appropriate diagnostic method to obtain adequate tissue. Standfield L, et al. 2011 Evidence summary LOE In caucasian patients with advanced NSCLC and known activating EGFR GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with erlotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based chemotherapy. Grad Recommendation Grad Patients with known activating gene mutations (exon-19 deletions or exon-21 point mutations) to EGFR should be treated with an EGFR TKI. On behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pneumo-Cancerdogie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcerarvi E, Gervais R, Vergneerge A, Massut B, et al. Erioniho versus standard chemotherapy as first-line teartement for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 Evidence summary LOE Progression free survival is significantly longer among patients treated with initial chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing of the p	Practice point(s)	
Evidence summary LoE In caucasian patients with advanced NSCLC and known activating EGFR GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with erlotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based chemotherapy. II Recommendation Grad Patients with known activating gene mutations (exon-19 deletions or exon- 21 point mutations) to EGFR should be treated with an EGFR TKI. Grad on behalf of the Spanish Lug Cancer Group in collaboration with the Groupe Français de Pneumo- Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E, Gervais R, Vergenegre A, Massuit B, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 LoE Evidence summary LoE Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gelftinib in patients II Known not to have EGFR mutations. Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR TKIs versue empirical therapy, bearing i	have sufficient tissue for subsequent molecular testing, it is important to obta much tissue as possible at initial diagnosis in patients suspected to have NS multidisciplinary team discussion may be required in order to decide on the	ain as SCLC. A
In caucasian patients with advanced NSCLC and known activating EGFR GMS (exon-19 deletions or exon-21 point mutations), first-line therapy with erlotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based chemotherapy. Recommendation Grac Patients with known activating gene mutations (exon-19 deletions or exon- 21 point mutations) to EGFR should be treated with an EGFR TKI. on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pneumo- Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 Evidence summary LoE Progression free survival is significantly longer among patients treated with initial chemotherapy. than those treated with gefitinib in patients II known not to have EGFR mutations. Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs dees not appear to be compromised, as long the go on to receive EGFR TKIs fater chemotherapy. Mok TS, Wu YL, Thongpraset S, Yang CH, Chu DT, Sajio N, et al. Gefittinib or carboptatin-pacilitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN Guidelines Functional Comprehensive Cancer Network Hier: Empfehlungen zu TKI-vorbehandelten Patienten	Standfield L, et al. 2011	
GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with erlotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based chemotherapy. II Recommendation Grad Crace Patients with known activating gene mutations (exon-19 deletions or exon- 21 point mutations) to EGFR should be treated with an EGFR TKI. A In behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pneumo- Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuit B, et al. Erfonith versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 Evidence summary LoE Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients II known not to have EGFR mutations. Recommendation Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR Gene mutations. This will enable clinicians to offer pati	Evidence summary	LoE
Patients with known activating gene mutations (exon-19 deletions or exon- 21 point mutations) to EGFR should be treated with an EGFR TKI. A 21 point mutations) to EGFR should be treated with an EGFR TKI. on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pneumo- Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E, Gervais R, Vergnenerge A, Massuti B, et al. Enfoitib versus standard chemotrapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 Evidence summary LoE Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients II Known not to have EGFR mutations. Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR GMT + patients does not appear to be compromised, as long the g o on to receive EGFR TKIs after chemotherapy. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Geflinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN Guidelines – Leitlinie des National Comprehensive	GMs (exon-19 deletions or exon-21 point mutations), first-line therapy with erlotinib significantly prolongs progression free survival and increases overall response rate, compared with standard platinum based	II
21 point mutations) to EGFR should be treated with an EGFR TKI. on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pneumo- Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, et al. Entolinib versus standard chemotrapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 Evidence summary LoE Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients II Known not to have EGFR mutations. Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs difter chemotherapy. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN, 2015 [23]. – Leitlinie des National Comprehensiv	Recommendation	Grade
Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012 Mar;13(3):239-246 Evidence summary LoE Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients II known not to have EGFR mutations. Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs after chemotherapy. Mok TS, Wu YL, Thongpraset S, Yang CH, Chu DT, Sajio N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN Guidelines – Leitlinie des National Comprehensive Cancer Network Hier: Empfehlungen zu TKI-vorbehandelten Patienten		А
Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients II known not to have EGFR mutations. Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs after chemotherapy. Mok TS, Wu YL, Thongpraset S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN, 2015 [23]. – Leitlinie des National Comprehensive Cancer Network Hier: Empfehlungen zu TKI-vorbehandelten Patienten	Cancérologie and the Associazione Italiana Oncologia Toracica, Rosell R, Carcereny E, Gervais Vergnenegre A, Massuti B, et al. Erlotinib versus standard chemotherapy as first-line treatment f European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC)	R, or
Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients II known not to have EGFR mutations. Recommendation Grade Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs after chemotherapy. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN, 2015 [23]. – Leitlinie des National Comprehensive Cancer Network Hier: Empfehlungen zu TKI-vorbehandelten Patienten	Evidence summary	LoE
Where EGFR mutation status is negative or unknown, patients should be treated with standard chemotherapy. B Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs after chemotherapy. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN, 2015 [23]. NCCN Guidelines Version Version	Progression free survival is significantly longer among patients treated with initial chemotherapy, than those treated with gefitinib in patients	
b treated with standard chemotherapy. Practice point(s) Practice point(s) The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs after chemotherapy. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN, 2015 [23]. – Leitlinie des National Comprehensive Cancer Network Hier: Empfehlungen zu TKI-vorbehandelten Patienten	Recommendation	Grade
The evidence in support of large treatment benefits with first-line EGFR TKIs in response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs after chemotherapy.Nccn, 2015 [23]. NCCN Guidelines Version- Leitlinie des National Comprehensive Cancer Network Hier: Empfehlungen zu TKI-vorbehandelten Patienten		В
 response rate and progression free survival argues for consideration of obtaining adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to offer patients initial EGFR TKIs versus empirical therapy, bearing in mind that overall survival for EGFT GMT + patients does not appear to be compromised, as long the go on to receive EGFR TKIs after chemotherapy. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN, 2015 [23]. – Leitlinie des National Comprehensive Cancer Network Hier: Empfehlungen zu TKI-vorbehandelten Patienten 	Practice point(s)	
pulmonary adenocarcinoma. N Engl J Med 2009 Sep 3;361(10):947-57 NCCN, 2015 [23]. NCCN Guidelines Version Version	The evidence in support of large treatment benefits with first-line EGFR TKIs response rate and progression free survival argues for consideration of obta adequate tumour tissue where possible, to enable molecular testing for the presence of activating EGFR gene mutations. This will enable clinicians to o patients initial EGFR TKIs versus empirical therapy, bearing in mind that ove survival for EGFT GMT + patients does not appear to be compromised, as lo	ining ffer erall
NCCN Guidelines Empfehlungen zu TKI-vorbehandelten Patienten		axel in
Version Version	 ·	
Methodik Grundlage der Leitlinie Update 2015 Suchzeitraum 06/2013 –		
	Methodik Grundlage der Leitlinie Update 2015 Suchzeitraum 06/2013	3 –

activity of NSCLC Results:

based on 10/13 pts. (3 excluded [due to death (1) or back pain (1) after discontinuation or due to cough/dyspnea (1) after TKI retreatment but before everolimus] Clinical findings after discontinuation and reinitiation of gefitinib or erlotinib. increase in symptoms after discontinuing erlotinib or gefitinib in 7/10 patients; all 7 improved or stabilized symptoms after restarting of efitinib or erlotinib) after discontinuation: increase in tumor diameter in 8/10; increase in tumor volume in 9/10 patients Response to combined treatment with everolimus plus gefitinib or erlotinib 0/10 patient (95% CI 0-32%) had a confirmed partial response after combined treatment with 5 mg/d everolimus plus gefitinib or erlotinib Results with respect to tumor diameter and volume

Table 3. Changes in tumor on CT and FDG-PET

	After stopping gefitinib or erlotinib	After restarting gefitinib or erlotinib	3 wks after adding everolimus
Median change in tumor diameter	+9%	-1%	-8%
Mean change in tumor diameter	+9%	1%	-9%
Range in change in tumor diameter	-13% to +29%	-14% to +23%	-34% to +15%
Median change in tumor volume	+50%	-1%	-11%
Mean change in tumor volume	+61%	-4%	-10%
Range in change in tumor volume	-4% to +260%	-27% to 15%	-40% to +26%
Median change in SUV _{max}	+18%	-4%	-18%
Mean change in SUV _{max}	+23%	-11%	-11%
Range in change in SUVmax	-17% to +87%	-45% to +62%	-39% to +82%

Authors conclusion: in patients with acquired resistance, stopping of erlotinib or gefitinib therapy results in symptomatic progression; No responses were observed with combined everolimus and erlotinib or gefitinib Chaft et al. 2011 Observational, retrospective study (n=61) Study population: patients with EGFR-mutant lung cancer who participated in trials for patients with acquired resistance to erlotinib or gefitinib that mandated TKI discontinuation before administration of study therapy. Finding: 23 % (95% CI: 14–35) had a disease flare (hospitalization or death attributable to disease progression) after discontinuation of the TKI Zur EGFR-Mutation T790M

PRINCIPLES OF PATHOLOGIC REVIEW (3 of 4) Molecular Diagnostic Studies in Lung Cancer.

FR and KRAS

- EGR is normally found on the surface of epithelial cells and is often overexpressed in a variety of human malignancies. Presence of

- EGFR is normally found on the surface of epithelial cells and is often overexpressed in a variety of human malignancies. Presence of EGFR is normally found on the surface of epithelial cells and is often overexpressed in a variety of human malignancies. Presence of EGFR activating mutations represents a critical biological determinant for proper therapy selection in patients with lung cancer.
 There is a significant association between EGFR mutations—especially exon 19 deletion and exon 21 (L858R, L861), exon 18 (G719X, G719), and exon 20 (IS768I) mutations—and sensitivity to EGFR TKIs.¹⁶⁻¹⁹
 The exon 20 insertion mutation may predict resistance to clinically achievable levels of TKIs.^{20,21}
 Overlapping EGFR and KRAS mutations occur in <1% of patients with lung cancer.²²
 KRAS mutations are associated with intrinsic EGFR TKI resistance, and KRAS gene sequencing could be useful for the selection of patients as candidates for EGFR TKI therapy.²³ KRAS testing may identify patients who may not benefit from further molecular diagnostic testing.
 The prevalence of *EGFR* mutations in adenocarcinomas is 10% of Western and up to 50% of Asian patients, with higher *EGFR* mutation frequency in pon-smokers, women, and non-mucinous cancers. *KRAS* mutations are most common in non-Asians. Smokers.
- The prevalence of EGPR mutations in adenocarcinomas is 10% of western and up to 30% of Asian patients, with ingrer EGPR mutations frequency in non-smokers, word much and an in mucinous adenocarcinoma.²⁴ The most common EGFR mutations result in an arginine for leucine substitution at amino acid 858 in exon 21 (L858R) and in frame deletions at exon 19. Mutations are more common in non-mucinous lung adenocarcinoma with lepidic pattern (former BAC pattern) and in lung adenocarcinoma with papillary (and or micropapillary) pattern.
 Primary resistance to EGFR TKI therapy is associated with KRAS mutation. Acquired resistance is associated with second-site mutations
- within the *EGFR* kinase domain (such as **ITCOM**), amplification of alternative kinases (such as *MET*), histologic transformation from NSCLC to SCLC, and epithelial to mesenchymal transition (EMT).
- ALK Anaplastic lymphoma kinase (ALK) gene rearrangements represent the fusion between ALK and various partner genes, including echinoderm microtubule-associated protein-like 4 (EML4).²⁵ ALK fusions have been identified in a subset of patients with NSCLC and represent a unique subset of NSCLC patients for whom ALK inhibitors may represent a very effective therapeutic strategy.²⁶ Crizotinib and certifinib are oral ALK inhibitors that are approved by the FDA for patients with metastatic NSCLC who have the ALK gene rearrangement (in ALK certification)
 - (ie, ALK positive). ALK NSCLC occurs most commonly in a unique subgroup of NSCLC patients who share many of the clinical features of NSCLC patients likely to harbor *EGFR* mutations.^{27,28} However, for the most part, *ALK* translocations and *EGFR* mutations are mutually exclusive.^{27,29,31} The current standard method for detecting *ALK* NSCLC is fluorescence in situ hybridization (FISH), although other methods are currently being evaluated, including polymerase chain reaction (PCR) and IHC. The appropriate antibody and detection method for *ALK* protein
- expression can be used for rapid prescreening of ALK-rearranged lung adenocarcinomas and selection of cases that will subsequently be confirmed by FISH testing.³²

Masters GA et	TKI therapy and has been re disease progression after ini with sensitizing EGFR mutat gefitinib) after about 8 to 16 suggest the T790M mutation previously received TKI ther- associated with histologic tra with epithelial to mesenchym <i>Review</i> in the NCCN Guideli DNA mutational analysis is the status. ¹⁶⁹⁻¹⁷¹ Various DNA mu- determine the EGFR mutatio of DNA corresponding to example application are available. ^{153,170,172-174} Muta	s with metasta mutations. ^{151,1} tations are fou CLC and up to ns include poi ions and ALK on mutations a ported in about ial response to ions become in months of TKI or may also occo apy. ¹⁶³ Acquire innes for Non-S he preferred in tation detection on status in tur nos 18 to 21 (c roach; however titon screening AY® system, § R mutations. ¹³²	titic non-squamous NSCLC s2 and in approximately 10% of 50% of Asian patients. ¹⁵³ Int mutations at exon 21 resistance to TKI therapy is gene rearrangements. are also resistant to TKIs. ¹⁵⁵ ed with acquired resistance to ut 50% of patients with to erfotinib. ¹⁵⁹⁻¹⁶⁴ Most patients resistant to erfotinib (or therapy. ¹⁵⁹ However, studies cur in patients who have not ad resistance may be rom NSCLC to SCLC and see <i>Principles of Pathologic</i> imall Cell Lung Cancer). ¹⁶⁶⁻¹⁶⁸ nethod to assess for EGFR on assays can be used to mor cells. Direct sequencing or just testing for exons 19 ar, more sensitive methods g assays using multiplex PCR SNaPshot@ Multiplex System) ncluding EGFR. ¹³⁰ NGS can	The predictive effects of the drug-sensitive EGFR mutations— Exon19del (LREA deletion) and L858R—are well defined. Patients with these mutations have a significantly better response to erlotinib, gefitinib, or afatinib. ¹⁴⁸ Retrospective studies have shown an objective response rate of approximately 80% with a median progression-free survival (PFS) of 13 months to single-agent therapy in patients with a bronchioloalveolar variant of adenocarcinoma and a sensitizing EGFR mutation. ¹¹³ A prospective study has shown that the objective response rate in North American patients with non-squamous NSCLC and sensitizing EGFR mutations (53% Exon19del [LREA deletion], 26% L858R, 21% other mutations) is 55% with a median PFS of 9.2 months. ¹¹⁴ EGFR mutation testing is not usually recommended in patients with pure squamous cell carcinoma unless they never smoked, if only a small biopsy specimen (ie, not a surgical resection) was used to assess histology, or if the histology is mixed. ¹²⁴ Data suggest that EGFR mutations can occur in patients with adenosquamous carcinoma, which is harder to discriminate from squamous cell carcinoma in small specimens. ¹²⁴ Recent data suggest that erlotinib (or gefitinib) or afatinib (instead of standard first-line chemotherapy) should be used as first-line systemic therapy in patients with sensitizing EGFR mutations documented before first-line therapy. ^{132,175-140} Data show that PFS is improved with use of EGFR TKI in patients with sensitizing EGFR mutations when compared with standard chemotherapy, although overall survival is not statistically different. ^{132,175} Patients receiving erlotinib have fewer treatment-related severe side effects and deaths when compared with those receiving chemotherapy. ^{132,184} Based on this data and the FDA approval, erlotinib (or gefitinib) is recommended (category 1) as first-line systemic therapy in patients with sensitizing EGFR mutations. ¹⁷⁵ In a recent phase 3 randomized trial, patients receiving afatinib had decreased cough,
al., 2015 [22].			based recommer	ndations to update the American
Systemic	Society of Clin	ical On	cology guideline	on systemic therapy for stage IV
Therapy for	non-small-cell lung cancer (NSCLC).			
Stage IV Non-				
Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice	Methodik Update der LL von 2009 An Update Committee of the American Society of Clinical Oncology NSCLC Expert Panel based recommendation on a systematic review of randomized controlled trials from January 2007 to February 2014. LoE			
Guideline Update	Rating	Defini	tion	
	High Intermediate	magnit versus Interme magnit	ude and direction of harms) and further ediate confidence th ude and direction of	vailable evidence reflects the true the net effect (e.g., balance of benefits research is very unlikely to change either at the available evidence reflects the true the net effect. Further research is unlikely to t effect, however it might alter the magnitude
	Low	Low co	onfidence that the av	ailable evidence reflects the true magnitude
	Insufficient			ect. Further research may change the discern the true magnitude and direction of
	mount	the net	effect. Further rese	arch may better inform the topic. Reliance sperts may be reasonable to provide
	GoR			
	Type of Recommend	dation	Definition	
	Evidence-bas	sed		nt evidence from published studies to ndation to guide clinical practice.

	Formal Consensus	The available evidence was deemed insufficient to inform a recommendation to guide clinical practice. Therefore, the expert Panel used a formal consensus process to reach this recommendation, which is considered the best current guidance for practice. The Panel may choose to provide a rating for the strength of the recommendation (i.e., "strong,"
	Informal Consensus	The available evidence was deemed insufficient to inform a recommendation to guide clinical practice. The recommendation is considered the best current guidance for practice, based on informal consensus of the expert Panel. The Panel agreed that a formal consensus process was not necessary for reasons described in the literature review and
	No Recommendation	There is insufficient evidence, confidence, or agreement to provide a recommendation to guide clinical practice at this time. The Panel deemed the available evidence as insufficient and concluded it was unlikely that a formal
	Rating for	Definition
	Strength of	
	Recommendation	-
	Strong	There is high confidence that the recommendation reflects best practice. This is based on: a) strong evidence for a true net effect (e.g., benefits exceed harms); b) consistent results, with no or minor exceptions; c) minor or no concerns about study quality; and/or d) the extent of panelists' agreement. Other
	Moderate	There is moderate confidence that the recommendation reflects best practice. This is based on: a) good evidence for a true net effect (e.g., benefits exceed harms); b) consistent results, with minor and/or few exceptions; c) minor and/or few concerns about study quality; and/or d) the extent of panelists'
	Weak	There is some confidence that the recommendation offers the best current guidance for practice. This is based on: a) limited evidence for a true net effect (e.g., benefits exceed harms); b) consistent results, but with important exceptions; c) concerns about study quality; and/or d) the extent of panelists'
	Weitere Informationen	zur Leitlinienmethodik:
	http://www.instituteford	quality.org/guideline-development-process
_		
	Empfehlungen	
	First-Line Treatment	for Patients:
	With sensitizing EGFR mutations: afatinib, erlotinib, or gefitinib is recommended (evidence quality: high; strength of recommendation: strong for each).	
	With ALK gene rearrangements: crizotinib is recommended (evidence quality: intermediate; strength of recommendation: moderate).	
	With ROS1 rearrangement: crizotinib is recommended (type: informal consensus; evidence quality: low; strength of recommendation: weak).	
	-	motherapy should be stopped at disease progression batients with nonresponsive stable disease (no
	Performendation AA	If patients have stage IV NSCLC and a sensitizing

EGFR mutation, first-line afatinib (type: evidence based, benefits outweigh harms; evidence quality: high; strength of recommendation: strong), erlotinib (type: evidence based, benefits outweigh harms; evidence quality: high; strength of recommendation: strong), or gefitinib (type: evidence based, benefits outweigh harms; evidence quality: high; strength of recommendation: strong) is recommended.
violation of the proportional hazards assumption."(p4) Updated results of another trial discussed in the EGFR provisional clinical opinion that compared gefitinib versus carboplatin plus paclitaxel continued to show statistically significant outcomes for PFS but not OS and will not be further discussed here. Two studies of gefitinib as switch maintenance found PFS
but not OS benefits. <i>Clinical interpretation.</i> There is overwhelming and consistent evidence now from multiple trials that gefitinib, erlotinib, or

afatinib have greater activity than platinum-based chemotherapy in the firstline treatment of patients with advanced NSCLC with activating EGFR mutations. There have been significant improvements in response rate and TTP favoring gefitinib, erlotinib, or afatinib. These agents have more favorable toxicity profiles than platinum-based chemotherapy and have demonstrated improvements in QoL. Despite the absence of clear improvements in OS, gefitinib, erlotinib, or afatinib is a preferred treatment based on large improvements in other outcomes. The choice of whichEGFRTKI to recommend to patients should be based on the availability and toxicity of the individual agent. Whereas gefitinib is not licensed in the United States, it is still widely used in Asia and other regions. There are no results from direct comparative trials of different EGFR TKIs. Therefore, it is not possible to make a recommendation favoring one EGFR TKI over another. RCTs are ongoing, comparing gefitinib with afatinib, as well as gefitinib with dacomitinib, another pan-HER inhibitor. The results of these trials may help refine this recommendation in the future.

Second-Line Treatment for Patients:

With sensitizing *EGFR* mutations who did not respond to a first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI): combination cytotoxic chemotherapy is recommended for those with NSCC, as listed in under first-line treatment (type: informal consensus; evidence quality: intermediate; strength of recommendation: strong).

With sensitizing *EGFR* mutations who received a first-line EGFR TKI and experienced disease progression after an initial response: may be switched to chemotherapy or another EGFR TKI as second-line therapy (type: informal consensus; evidence quality: low; strength of recommendation: weak).

Vgl. Unten: B3.b With *ALK* rearrangement and progression after first-line crizotinib: chemotherapy or ceritinib may be offered (chemotherapy: evidence quality: high; strength of recommendation: strong; ceritinib: evidence quality: intermediate; strength of recommendation: moderate).

Third-Line

Treatment for Patients: Who have not received erlotinib or gefitinib and have PS 0 to 3: erlotinib may be recommended. Data are insufficient to recommend routine third-line cytotoxic drugs.

T790M

Recommendation B3.b Patients who received an EGFR TKI in the first-line setting, had an initial response, and subsequently experienced disease progression may be switched to chemotherapy or another EGFR TKI as secondline therapy (type: informal consensus, balance of benefits and harms; evidence quality: low; strength of recommendation: weak). *Literature review update and analysis.* Given that there were no data

meeting the inclusion criteria to inform this guestion, the Update Committee relied on clinical experience, training, and judgment to formulate this recommendation. Afatinib has shown preclinical activity in EGFR-mutant models with the exon 20 T790M mutation, which has been shown to confer resistance to EGFR-reversible TKIs.Aphase IIB/III randomized clinical trial (LUX-Lung 1) investigated the role of afatinib for patients whose disease had progressed with both chemotherapy and an EGFR inhibitor. This study included many participants whose tumors had developed resistance to treatment with an EGFR TKI; however, EGFR mutation status was not an eligibility criterion. The study found no improvement in the primary end point of OS between patients randomly assigned to afatinib and those randomly assigned to placebo, although PFS was longer in the afatinib group (3.3 v1.1 months; HR, 0.38; 95% CI, 0.31 to 0.48; P = .001). Response rate was 7% versus 0.5%. Ninety-six patients had tumors that were positive for EGFR mutations. Among these 96 patients, PFS was 3.3 months for those who received afatinib and 1.0 month for those who received placebo (HR, 0.55; 95% CI, 0.31 to 0.85; P = .009). In a prespecified analysis, participants with a complete or partial response to a first-line EGFR TKI whose tumors also had known EGFR mutation test results (58 [88%] of 66), the HR for PFS was significant (0.23), but the HR for OS was not (0.90) in the afatinib arm. Sixty-three percent of the patients in the afatinib group and 76% in the control group received \geq one subsequent regimen (all mutation statuses). Clinical interpretation. There is a lack of conclusive data for treating this population, especially with a second TKI. In the afatinib trial, response rates in both arms were lower than in studies with chemotherapy; however, given the longer PFS, afatinib after gefitinib or erlotinib in patients with EGFRsensitizing mutations who experienced an initial response may be an option. There are indications that it is not beneficial to continue an EGFR inhibitor after acquired resistance. European Society for Medical Oncology results from IMPRESS (Iressa Mutation Positive Multicenter Treatment Beyond Progression Study; ClinicalTrials.gov identifier NCT01544179), in which the control arm, composed of patients with resistance to an EGFR TKI (gefitinib) and chemotherapy, continued to receive an EGFR inhibitor with chemotherapy, the addition of (or continuation) of the TKI did not add efficacy or adverse event benefits. These results have not yet been released in a peer-reviewed publication. **Future directions** As a result of the lack of data in certain areas, the Update Committee hopes new results will inform future versions of this guideline, including in the following specific areas: Results of studies comparing gefitinib with afatinib and gefitinib with dacomitinib Further study of the optimal integration of chemotherapy and targeted agents in the treatment of patients with gene mutations in various lines of therapy Further study of third-line therapy Results from examples of ongoing studies on resistance mechanics and new agents (note this is not comprehensive list): Third-generation EGFR inhibitors, 154, 155 for example, AZD9291 (AURA3) trial [AZD9291 v platinum-based doublet chemotherapy in locally advanced or metastatic NSCLC]; ClinicalTrials.gov identifier NCT02151981) and

	CO1686, now in phase II trials (TIGER-2 [Open Label Safety and Efficacy Study of CO-1686 in Patients With T790M Positive NSCLC Who Have Failed One Previous EGFR-Directed TKI]; ClinicalTrials.gov identifier NCT0214799d0; TIGER-1 [Safety and Efficacy Study of Rociletinib (CO- 1686) or Erlotinib in Patients Eith EGFR Mutant NSCLC Who Have Not Had Any Previous EGFR Directed Therapy]; ClinicalTrials.gov identifier NCT02186301; and TIGER-X [Study to Evaluate Safety, Pharmacokinetics, and Efficacy of CO-1686 in Previously Treated Mutant Epidermal Growth Factor Receptor (EGFR) Non-Small Cell Lung Cancer (NSCLC)]; ClinicalTrials.gov NCT01526928) []
Scottish Intercollegiate Guidelines Network (SIGN), 2014 [33].	1. Fragestellung In patients with NSCLC (locally advanced or metastatic disease), what is the most effective anticancer therapy (chemotherapy, targeted therapy, EGFR Inhibitors)? Outcomes: Overall survival, progression-free survival, toxicity, quality of life
Management of lung cancer	 2. Methodik <i>Grundlage der Leitlinie:</i> systematische Recherche und Bewertung der Literatur, Entwicklung durch multidisziplinäre Gruppe von praktizierenden klinischen ExpertInnen, Expertenreview, öffentliche Konsultation Suchzeitraum: 2005 - 2012 LoE/GoR: Vgl. Anlage 1 dieser Synopse 3. Empfehlungen First line treatment Kernempfehlung Systemische Therapie:
	First line single agent tyrosine kinase inhibitors should be offered to patients with advanced NSCLC who have a sensitising <i>EGFR</i> mutation. Adding combination systemic anticancer therapy to a TKI confers no benefit and should not be used. (A)
	First line therapy for patients with stage IIIB and IV NSCLC Results from a meta-analysis and systematic review demonstrate the benefit of SACT for patients with advanced non-small cell lung cancer (absolute improvement in survival of 9% at 12 months versus control). (LoE 1++) Burdett S, Stephens R, Stewart L, Tierney J, Auperin A, Le Chevalier T, et al. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: A systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol 2008;26(28):4617-25. Four randomised trials of single agent SACT (gemcitabine, paclitaxel, docetaxel and vinorelbine) versus best supportive care (including radiotherapy) in
	patients with advanced NSCLC reveal a trend to improved quality of life with increased survival in three of the four studies. (LoE 1+) Anderson H, Hopwood P, Stephens RJ, Thatcher N, Cottier B, Nicholson M, et al. Gemcitabine plus best supportive care (BSC) vs BSC in inoperable non-small cell lung cancer - a randomised trial with quality of life as the primary outcome. UK NSCLC Gemcitabine Group. Non-Small Cell Lung Cancer. Br J Cancer 2000;83(4):447-53. Ranson M, Davidson N, Nicolson M, Falk S, Carmichael J, Lopez P, et al. Randomized trial of

paclitaxel plus supportive care versus supportive care for patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2000;92(13):1074-80. Roszkowski K, Pluzanska A, Krzakowski M, Smith AP, Saigi E, Aasebo U, et al. A multicenter, randomized, phase III study of docetaxel plus best supportive care versus best supportive care in chemotherapynaive patients with metastatic or non-resectable localized non-small cell lung cancer (NSCLC). Lung Cancer 2000;27(3):145-57. Gridelli C. The ELVIS trial: a phase III study of single-agent vinorelbine as first-line treatment in elderly patients with advanced non-small cell lung cancer. Elderly Lung Cancer Vinorelbine Italian Study. Oncologist 2001;6(Suppl 1):4-7. No particular combination of these agents in regimens with platinum has been shown to be more effective. (LOE 1+) Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced nonsmall-cell
lung cancer. N Engl J Med 2002;346(2):92-8.
Standard treatment is in four cycles, and exceptionally six cycles.
Continuing beyond four cycles may increase progression-free survival but at
the expense of an increase in toxicity and worse quality of life without any
significant gain in survival. (LoE 1+/1++) Goffin J, Lacchetti C, Ellis PM, Ung YC, Evans
WK. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: A
systematic review. J Thorac Oncol 2010;5(2):260-74. Lima JP, dos Santos LV, Sasse EC, Sasse AD.
Optimal duration of first-line chemotherapy for advanced non-small cell lung cancer: a systematic review with meta-analysis. Fur I Cancer 2009;45(4):601-7
with meta-analysis. Eur J Cancer 2009;45(4):601-7. In patients who have advanced disease and a performance status <2 at the time of diagnosis of NSCLC, first line treatment should be offered according
to histology. Patients with non-squamous histology demonstrated a superior survival when treated with cisplatin and pemetrexed compared with cisplatin and pemetrexed compared with cisplatin
and gemcitabine (hazard ratio (HR) 0.84, 95% CI 0.74 to 0.96, p=0.011). Patients with squamous histology do not benefit from pemetrexed/platinum
combination. (LoE 1+) Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J,
Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed
in chemotherapynaive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol
2008;26(21):3541-51. Scagliotti GV, Park K, Patil S, Rolski J, Goksel T, Martins R, et al. Survival without
toxicity for cisplatin plus pemetrexed versus cisplatin plus gemcitabine in chemonaïve patients with
advanced non-small cell lung cancer: a risk-benefit analysis of a large phase III study. Eur J Cancer 2009;45(13):2298-303.
In patients with adenocarcinoma, overall survival was statistically
superior for cisplatin/pemetrexed versus cisplatin/gemcitabine
(n=847; 12.6 v 10.9 months). (LoE 1+) Scagliotti GV, Park K, Patil S, Rolski J, Goksel
T, Martins R, et al. Survival without toxicity for cisplatin plus pemetrexed versus cisplatin plus
gemcitabine in chemonaïve patients with advanced non-small cell lung cancer: a risk-benefit analysis of
a large phase III study. Eur J Cancer 2009;45(13):2298-303. EGFR tyrosine kinase inhibitors (TKIs) are effective as first line treatment of
advanced NSCLC in patients with sensitising EGFR mutations. The
optimum treatment is orally delivered single agent therapy. TKIs
significantly increased progression-free survival (PFS) (HR 0.45, 95% CI
0.36 to 0.58, P<0.0001) over SACT.230 In a European trial, the median
PFS was 9.4 months in the erlotinib (TKI) group and 5.2 months in the
doublet SACT group, (HR 0.42, 95% Cl 0.27 to 0.64), p<0.0001. (LoE 1+)
Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard

chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non- small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13(3):239-46.
RecommendationsFirst line single agent tyrosine kinase inhibitors should be offered to patientswith advanced NSCLC who have a sensitising EGFR mutation. Addingcombination systemic anticancer therapy to a TKI confers no benefit andshould not be used. (A)Patients who have advanced disease, are performance status 0-1, havepredominantly nonsquamous NSCLC and are EGFR mutation negativeshould be offered combination systemic anticancer therapy with cisplatinand pemetrexed. (A)All other patients with NSCLC should be offered combination systemicanticancer therapy with cisplatin/carboplatin and a third generation agent(docetaxel, gemcitabine, paclitaxel or vinorelbine). (A)Platinum doublet systemic anticancer therapy should be given in four
cycles; it is not recommended that treatment extends beyond six cycles. (A) second line therapy In patients who are PS ≤ 2 at the time of progression of their advanced NSCLC, second line treatment with single agent docetaxel, erlotinib or PEM improve survival rates compared to BSC. (LoE 1+) Tassinari D, Scarpi E, Sartori S, Tamburini E, Santelmo C, Tombesi P, et al. Second-line treatments in non-small cell lung cancer. A systematic review of literature and metaanalysis of randomized clinical trials. Chest 2009;135(6):1596-609.
Second line docetaxel improved time to progression, survival and quality of life. Patient's opioid requirements and weight loss were reduced with docetaxel compared to BSC only. This was clearest in the patients who received 100 mg/m2 rather than 75 mg/m2 every three weeks, however the higher dose was associated with more overall toxicity, and is not recommended as standard. (LoE 1+) Shepherd FA, Dancey J, Ramlau R, Mattson K, Gralla R, O'Rourke M, et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 2000;18(10):2095-103. Fossella FV, DeVore R, Kerr RN, Crawford J, Natale RR, Dunphy F, et al. Randomised phase III trial of docetaxel versus vinorelbine or ifosfamide inpatients with advanced non-small cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol 2000;18(12):2354-62.
Weekly docetaxel is not recommended over three-weekly due to increased toxicity. (LoE 1+) Tassinari D, Carloni F, Santelmo C, Tamburini E, Agli LL, Tombesi P, et al. Second line treatments in advanced platinum-resistant non small cell lung cancer: A critical review of literature. Rev Recent Clin Trials 2009;4(1):27-33. Randomised evidence does not support the use of combination SACT as second line treatment for patients with advanced NSCLC based on an increase in toxicity without any gain in survival. (LoE 1++) Di Maio M, Chiodini P, Georgoulias V, Hatzidaki D, Takeda K, Wachters FM, et al. Meta-analysis of single-agent chemotherapy

Brodowicz T et
al., 2012 [7]. Third CECOG consensus on the systemic
treatment of non- small-cell lung
cancer

	disclosures given remaining authors have declared as conflicts of interest
	disclosures given, remaining authors have declared no conflicts of interest
	Freitext/Empfehlungen
	First line
	1 Platin-based doublets containing a third-generation cytotoxic drug is the treatment of choice in patients with advanced NSCLC, unless platinum is contraindicated [I,A].
	2 Cisplatin might be preferred in patients with good PS.
	3 Nonsquamous histology is a prerequisite for pemetrexed efficacy [I,B].
	4 Cisplatin doses of <75–80 mg/m2 every 3–4 weeks are recommended [I,B].
	5 Chemotherapy should be given for four to six cycles but stopped at disease progression [II,B].
	The addition of bevacizumab to first-line chemotherapy (either carboplatin– paclitaxel or cisplatin– gemcitabine) of advanced nonsquamous NSCLC provides benefit in patients with good PS and age < 70 [I,B]. The dose of bevacizumab may be either 7.5 or 15 mg/kg every 3 weeks depending on the chemotherapeutic backbone.
	It is strongly recommended to test for EGFR-activating mutations [I,A].
	2 In the absence of EGFR-activating mutations, chemotherapy remains the treatment of choice [I,A].
	3 In patients with EGFR-activating mutations, treatment with gefitinib is the preferred treatment option [I,A].
	second-line systemic therapy
	1 The data from RCTs on second-line therapy are sufficient to recommend either a cytotoxic agent (docetaxel for squamous NSCLC [II,B] or PEM for nonsquamous NSCLC [II,B]) or the EGFR TKI erlotinib [I,B].
	2 An EGFR TKI should be strongly considered in patients with EGFR- activating mutations in their tumors who have not received it as first-line treatment [II,B]. Sequencing of chemotherapy after EGFR TKIs has not been defined and remains an important open issue.
Socinski et al., 2013 [35].	Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines 1 .
Treatment of	Fragestellung
Stage IV Non-	to update the previous edition of the American College of Chest Physicians

small Cell Lung Cancer	treatable, but n	ot curable, clinic	IV non-small cell lung cal entity in patients give tatus (PS) remains goo	en the diagnosis at a			
	Methodik						
	-	A writing committee was assembled and approved according to ACCP policies as described in the methodology article of the lung cancer					
	Suchzeitraum: bis 12/2011						
	LoE nicht ausg (DART)	LoE nicht ausgeführt, lediglich: Documentation and Appraisal Review Tool (DART)					
	GoR ACCP Grading System Table 1—Strength of the Recommendations Grading System						
	Grade of Recommendation	Benefit vs Risk and Burdens	Methodologic Strength of Supporting Evidence	Implications			
	Strong recommendation, high-quality evidence (1A)	Benefits clearly outweigh risk and burdens or vice versa	Consistent evidence from randomized controlled trials without important limitations or exceptionally strong evidence from observational studies	Recommendation can apply to most patients in most circumstances. Further research is very unlikely to change our confidence in the estimate of effect.			
	Strong recommendation, moderate-quality evidence (1B)	Benefits clearly outweigh risk and burdens or vice versa	Evidence from randomized controlled trials with important limitations (inconsistent results, methodologic flaws, indirect or imprecise), or very strong evidence from observational studies	Recommendation can apply to most patients in most circumstances. Higher-quality research may well have an important impact on our confidence in the estimate of effect and may change the estimate.			
	Strong recommendation, low-quality evidence (1C)	Benefits clearly outweigh risk and burdens or vice versa	Evidence for at least one critical outcome from observational studies, case series, or from randomized controlled trials with serious flaws or indirect evidence	Recommendation can apply to most patients in many circumstances. Higher-quality research is likely to have an important impact on our confidence in the estimate of effect and may well change the estimate.			
	Weak recommendation, high-quality evidence (2A)	Benefits closely balanced with risks and burden	Consistent evidence from randomized controlled trials without important limitations or exceptionally strong evidence from observational studies	The best action may differ depending on circumstances or patients' or societal values. Further research is very unlikely to change our confidence in the estimate of effect.			
	Weak recommendation, moderate-quality evidence (2B)	Benefits closely balanced with risks and burden	Evidence from randomized controlled trials with important limitations (inconsistent results, methodologic flaws, indirect or imprecise), or very strong evidence from observational studies	Best action may differ depending on circumstances or patients' or societal values. Higher-quality research may well have an important impact on our confidence in the estimate of effect and may change the estimate.			
	Weak recommendation, low-quality evidence (2C)	Uncertainty in the estimates of benefits, risks, and burden; benefits, risk and burden may be closely balanced	Evidence for at least one critical outcome from observational studies, case series, or from randomized controlled trials with serious flaws or indirect evidence	Other alternatives may be equally reasonable. Higher-quality research is likely to have an important impact on our confidence in the estimate of effect and may well change the estimate.			
	lung cancer: diagn	osis and managem	arris DJ. Methodology for de ent of lung cancer, 3rd ed: A actice guidelines. <i>Chest</i> . 20	merican College of Chest			
	50S .						
	Literatursuche:						
	focused primarily on randomized trials, selected metaanalyses, practice guidelines, and reviews. In addition, phase 2 controlled studies that provided relevant information (eg, for toxicity or particular patient subgroups) were included.						
	Empfehlungen						
	General Approach						
	2.1.1. In patient	ts with a good p	erformance status (PS)) (ie, Eastern			

Cooperative Oncology Group [ECOG] level 0 or 1) and stage IV non-small cell lung cancer (NSCLC), a platinum-based chemotherapy regimen is recommended based on the survival advantage and improvement in quality of life (QOL) over best supportive care (BSC) **.(Grade 1A)** Remark: Patients may be treated with several chemotherapy regimens (carboplatin and cisplatin are acceptable, and can be combined with paclitaxel, docetaxel, gemcitabine, pemetrexed or vinorelbine)

2.2.2. In patients with stage IV NSCLC and a good PS, two-drug combination chemotherapy is recommended. The addition of a third cytotoxic chemotherapeutic agent is not recommended because it provides no survival benefit and may be harmful. **(Grade 1A)**

First Line Treatment

3.1.1.1. In patients receiving palliative chemotherapy for stage IV NSCLC, it is recommended that the choice of chemotherapy is guided by the histologic type of NSCLC (**Grade 1B**). *Remark:* The use of pemetrexed (either alone or in combination) should be limited to patients with nonsquamous NSCLC. *Remark:* Squamous histology has not been identified as predictive of better response to any particular chemotherapy agent.

3.2.1.1. In patients with known epidermal growth factor receptor (EGFR) mutations and stage IV NSCLC, first-line therapy with an EGFR tyrosine kinase inhibitor (gefitinib or erlotinib) is recommended based on superior response rates, progression-free survival and toxicity profiles compared with platinum-based doublets (Grade 1A).

3.3.1.1. Bevacizumab improves survival combined with carboplatin and paclitaxel in a clinically selected subset of patients with stage IV NSCLC and good PS (nonsquamous histology, lack of brain metastases, and no hemoptysis). In these patients, addition of bevacizumab to carboplatin and paclitaxel is recommended **(Grade 1A)**.

3.3.1.2. In patients with stage IV non-squamous NSCLC and treated, stable brain metastases, who are otherwise candidates for bevacizumab therapy, the addition of bevacizumab to firstline, platinum-based chemotherapy is a safe therapeutic option (**Grade 2B**). *Remark* : No recommendation can be given about the use of bevacizumab in patients receiving therapeutic anticoagulation or with an ECOG PS of 2.

Maintenance Therapy

3.4.4.1. In patients with stage IV non-squamous NSCLC who do not experience disease progression after 4 cycles of platinum-based therapy (which does not include pemetrexed), treatment with switch maintenance pemetrexed is suggested **(Grade 2B)**.

3.4.4.2. In patients with stage IV NSCLC, switch maintenance therapy with chemotherapy agents other than pemetrexed has not demonstrated an improvement in overall survival and is not recommended **(Grade 1B)**.

	3.4.4.3. In patients with stage IV non-squamous NSCLC who do not experience disease progression after 4 cycles of platinum-pemetrexed therapy, continuation pemetrexed maintenance therapy is suggested (Grade 2B) .
	3.4.4.4. In patients with stage IV NSCLC who do not experience disease progression after 4 cycles of platinum-based double agent chemotherapy, maintenance therapy with erlotinib is suggested (Grade 2B) .
	3.5.1.1. In patients with stage IV NSCLC the addition of cetuximab in combination with chemotherapy is suggested not to be used outside of a clinical trial (Grade 2B). Second and Third Line Treatment
	4.1.1. In patients with stage IV NSCLC who have good PS (ECOG 0-2), second-line treatment with erlotinib or docetaxel (or equivalent single-agent such as pemetrexed) is recommended (Grade 1A) .
	4.1.2. In patients with stage IV NSCLC who have good PS (ECOG 0-2), third-line treatment with erlotinib improves survival compared with BSC and is recommended (Grade 1B) . <i>Remark:</i> No recommendation can be given about the optimal chemotherapeutic strategy in patients with stage IV NSCLC who have received three prior regimens for advanced disease. <i>Special Patient Populations and Considerations</i>
	5.1.1. In elderly patients (age > 69–79 years) with stage IV NSCLC who have good PS and limited co-morbidities, treatment with the two drug combination of monthly carboplatin and weekly paclitaxel is recommended (Grade 1A) . <i>Remark:</i> In patients with stage IV NSCLC who are 80 years or over, the benefit of chemotherapy is unclear and should be decided based on individual circumstances.
	6.2.1.For patients with stage IV NSCLC with a PS of 2 in whom the PS is caused by the cancer itself, double agent chemotherapy is suggested over single agent chemotherapy (Grade 2B) .
	6.2.2. In patients with stage IV NSCLC who are an ECOG PS of 2 or greater, it is suggested not to add bevacizumab to chemotherapy outside of a clinical trial (Grade 2B) . 7.1.1. In patients with stage IV NSCLC early initiation of palliative care is suggested to improve both QOL and duration of survival (Grade 2B) .
Cancer Care Ontario, 2014	A Quality Initiative of the Program in Evidence-Based Care (PEBC), Cancer Care Ontario (CCO)
[9].	1. Fragestellungen
Use of the Epidermal Growth Factor Receptor Inhibitors Gefitinib (Iressa),	1. In patients with advanced non–small-cell lung cancer (NSCLC) who have not received any chemotherapy (chemo-naive), is first-line therapy with the epidermal growth factor receptor (EGFR) inhibitors gefitinib (Iressa®), erlotinib (Tarceva®), afatinib, dacomitinib or icotinib superior to platinum- based chemotherapy for clinical meaningful outcomes (overall survival, progression-free survival (PFS), response rate and quality of life)?

Erlotinib (Tarceva), Afatinib, Dacomitinib or Icotinib in the	2. In patients with advanced NSCLC who have progressed on platinum- based chemotherapy, does subsequent therapy with EGFR inhibitors gefitinib (Iressa®), erlotinib (Tarceva®), afatinib, dacomitinib or icotinib improve overall survival or PFS? Is there a preferred sequence for second- line therapy with an EGFR inhibitor or chemotherapy?
Treatment of Non-Small-Cell Lung Cancer: A Clinical Practice Guideline	3. In patients with advanced stage IIIB or IV NSCLC who have received initial first-line platinum-based chemotherapy, does maintenance therapy with erlotinib, gefitinib, afatinib, dacomitinib or icotinib improve overall survival or PFS?
	4. What are the toxicities associated with gefitinib (Iressa®), erlotinib (Tarceva®), afatinib, dacomitinib or icotinib?
	Empfehlungen
	Recommendation 1a
	First-line therapy with an EGFR tyrosine kinase inhibitor (TKI) is not recommended in unselected (patients who have not undergone mutation testing) or clinically selected populations of patients. Available data would suggest that first-line EGFR TKI is inferior to platinum-based chemotherapy in this group of NSCLC patients. The use of clinical characteristics such as Asian ethnicity, female sex, adenocarcinoma histology and light/never smoking status is not recommended to select patients for first-line EGFR TKI therapy, as this strategy does not reliably select patients who have mutations. <i>Key Evidence:</i> Twenty-six randomized first-line studies in unselected and clinically selected populations were used to formulate this recommendation. The results of these trials showed no benefit for the use of an EGFR inhibitor in unselected and clinically selected patients
	Recommendation 1b
	In patients with EGFR mutation-positive NSCLC, first-line therapy with an EGFR TKI such as gefitinib, erlotinib or afatinib is the preferred treatment compared to platinum-based therapies. There is no evidence to support one EGFR TKI over another, so the decision about which EGFR TKI to use should take into consideration the expected toxicity of the drug as well as the cost. EGFR TKI therapy is associated with higher response rates, longer PFS and improved quality of life. <i>Qualifying Statement:</i> There is no clear difference in overall survival. Many patients in these trials randomized to platinum-doublet chemotherapy, crossed over to an EGFR TKI as subsequent therapy. The likely effect of this cross-over is to dilute any survival difference between the groups, making comparison of overall survival less informative. <i>Key Evidence:</i> Seven randomized trials and two meta-analyses comprised the evidence base. The trials and meta-analyses based on data from these trials showed that PFS was prolonged in molecularly selected patients when an EGFR was used as first-line treatment. Six trials were included in the initial meta-analysis that showed a hazard ratio (HR) of 0.35 (95% confidence interval (CI), 0.28-0.45;

p<0.00001). A second meta-analysis done on PFS that included subsets of EGFR-positive patients from first-line trials had similar results with an HR of 0.38 (95% CI, 0.31-0.44; p<0.00001). All seven trials showed a decrease in adverse effects with an EGFR inhibitor compared to chemotherapy.

Recommendation 2

In patients well enough to consider second-line chemotherapy, an EGFR TKI can be recommended as second- or third-line therapy. There is insufficient evidence to recommend the use of a second EGFR TKI, such as afatinib, in patients whose disease has progressed following chemotherapy and gefitinib or erlotinib, as available data does not demonstrate any improvement in overall survival. Qualifying Statements: There are data to support the use of an EGFR TKI in patients who have progressed on platinum-based chemotherapy. Erlotinib is known to improve overall survival and quality of life when used as second- or third-line therapy, in comparison to best supportive care. However, available data would suggest that secondline therapy with either chemotherapy or an EGFR TKI results in similar PFS and overall survival. Available evidence would support the use of either erlotinib or gefitinib in this situation. Data from a randomized phase II trial suggests improved PFS for dacomitinib versus (vs) erlotinib, but these data require confirmation in a phase III trial. The Lux Lung 1 study failed to meet its primary outcome of improved overall survival. However, the study showed improved PFS for patients randomized to afatinib and was associated with improvements in lung cancer symptoms.

Key Evidence Three studies examined an EGFR inhibitor as a second-line treatment against a placebo and best supportive care. One study reported on the use of erlotinib and showed a significant improvement in PFS (p=0.001) and overall survival (p=0.001). The other two studies evaluated gefitinib, with one study finding significant results for response rate (p<0.0001) and the other for PFS (p=0.002). A meta-analysis done on seven second-line studies showed no improvement with EGFR TKIs vs chemotherapy for progression-free survival (HR, 0.99; 95% CI 0.86-1.12, p=0.67) and overall survival (HR, 1.02; 95% CI, 0.95-1.09, p=0.56) One phase II study that compared erlotinib to dacomitinib showed significant results for dacomitinib for response rate (p=0.011) and for PFS (p=0.012). The Lung Lux 1 study examined the use of afatinib in the third- and fourth-line setting against a placebo. This study showed improved PFS (HR, 0.38; 95% CI, 0.31-0.48, p<0.0001) but no difference in overall survival (HR, 1.08; 95% CI, 0.86-1.35, p=0.74).

Recommendation 3 An EGFR TKI is recommended as an option for maintenance therapy in patients who have not progressed after four cycles of a platinum-doublet chemotherapy. No recommendation can be made with respect to the choice of gefitinib or erlotinib.

Qualifying Statements Trials have evaluated both erlotinib and gefitinib, but no trials directly compare these two agents as maintenance therapy.

However, the strongest data would support the use of erlotinib in this setting, although the overall survival advantage is modest for both agents. There are competing strategies of maintenance chemotherapy without an EGFR TKI, such as pemetrexed, that are not addressed in this guideline. The recommendation for TKI above should not be taken as excluding these other strategies as reasonable options; as this evidence was not reviewed, no statement can be made for or against these other strategies. The Lung Disease Site Group (DSG) plans to develop a separate guideline on maintenance therapy as soon as possible. This recommendation applies to both EGFR mutation positive and wild-type patients.

Key Evidence Six studies evaluated the use of an EGFR inhibitor in the maintenance setting . Two of the trials reported a statistically significant survival benefit with erlotinib: one for response rate (p=0.0006) when compared to placebo and one for progression-free survival when combined with bevacizumab against bevacizumab alone (p<0.001) . One study comparing erlotinib and gemcitabine did not report significance but found a higher response rate with erlotinib (15% vs 7%) and 9.1 months vs 8.3 months for overall survival . Two trials evaluating gefitinib found a statistically significant benefit for PFS in the maintenance setting, p<0.001 when combined with chemotherapy and against chemotherapy and p<0.0001 compared to a placebo. Another trial evaluated gefitinib and showed a higher response rate, but this was not significant (p=0.369).

Recommendation 4

The most common toxicities from EGFR inhibitors were diarrhea and rash. Fatigue was also noted to be more prevalent with EGFR inhibitors. Rarer adverse events include interstitial lung disease (ILD). The newer TKIs (icotinib, dacomitinib and afatinib) were noted to have greater incidence of diarrhea, dermatitis and hepatotoxicity.

Key Evidence Two randomized phase II trials , each involving more than 200 patients randomized to either 250 mg or 500 mg of gefitinib daily, identified that grade 3 or 4 toxicity was higher with the higher dose gefitinib. Interstitial lung disease-type events occurred in only one of the two trials, and only with 500 mg/day gefitinib (1% of patients) . One study comparing dacomitinib to erlotinib identified a greater predilection to diarrhea, dermatitis and paronychia with dacomitinib. One study comparing icotinib to gefitinib identified a greater incidence of elevated liver transaminases with gefitinib (12.6% vs 8%).

T790M

Ongoing Trials

Genius Study to Compare Efficacy and Safety of Gefitinib/ Pemetrexed With Pemetrexed Alone as Maintenance Therapy in Patients With Stage IV EGFR Mutation Negative or T790M Single Mutation Who Respond to Pemetrexed/ Platinum as FirstThe study aims to randomize 122 patients with advanced (Stage IV) EGFR mutation negative nonsquamous non-small-cell lung cancer (NSCLC) who respond (CR/PR/SD) to 4 cycles of pemetrexed / cisplatin or pemetrexed/carboplatin as first-line

	line Therapytherapy. In order to achieve that, approximately 338 treatment naive patients with advanced non-squamous NSCLC need to be enrolled from around 5- 7 investigational sites in Taiwan that have expertise in lung cancer diagnosis.				
Alberta Provincial Thoracic Tumour Team, 2013 [1]. Non-small cell	 Fragestellungen 1. What are the recommended treatment options for patients with operable stage III non-small cell lung cancer? 2. What are the recommended treatment options with curative intent for patients with inoperable stage III non-small cell lung cancer? 3. When is palliation recommended, and what are the recommend Update der Version von 2008 				
lung cancer -	2. Methodik				
stage III. Alberta Health Services	<i>Grundlage der Leitlinie:</i> systematic literature search, evidence tables, AGREE used for retrieved guidelines, working group reviewed currency and acceptability of all relevant literature, then circulated a draft of the updated guideline to entire provincial tumour team for final feedback and approval				
	Population: NSCLC, adult patients over the age of 18 years				
	Suchzeitraum: bis 2013				
	LoE/GoR: no use of formal rating schemes for describing the strength of the recommendations, rather describes, in conventional and explicit language, the type and quality of the research and existing guidelines that were taken into consideration when formulating the recommendations				
	Sonstige methodische Hinweise				
	Kein formaler Konsensusprozess beschrieben Auswahl und Bewertung der Literatur nicht beschrieben no direct industry involvement in the development or dissemination of this guideline authors have not been remunerated for their contributions				
	4. Empfehlungen				
	2. Patients with a solitary metastasis as the basis for stage IV disease with good performance status and otherwise resectable and limited thoracic disease may benefit from more aggressive management, including surgical intervention and/or stereotactic radiotherapy.				
	3. Combination chemotherapy consisting of a platinum-based doublet is the standard of care for first-line treatment of advanced NSCLC (except for EGFR-positive patients; see recommendation 6 below). The combination of three chemotherapeutic agents for the first-line treatment of advanced NSCLC is not routinely recommended based on current evidence.				
	4. Therapy should be continued for four cycles in most patients, and not more than six cycles in responding patients.				

Acceptable alternatives to combination chemotherapy include non- platinum doublets or monotherapy:
• For patients with a borderline performance status (PS=2), single-agent chemotherapy with vinorelbine, gemcitabine, paclitaxel, docetaxel or pemetrexed (for non-squamous cell carcinoma patients only) is recommended over best supportive care alone.
• For elderly patients who cannot tolerate a platinum-based combination, single-agent chemotherapy with vinorelbine, gemcitabine, docetaxel, or pemetrexed (for non-squamous cell carcinoma patients only) is associated with improved survival and quality of life when compared to best supportive care alone. However, elderly patients with a good performance status (PS=0-1) should receive combination chemotherapy with a platinum-based doublet.
 First-line monotherapy with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib is recommended for patients with EGFR mutation-positive NSCLC.
7. Testing for EGFR mutations should take place for all eligible patients with advanced NSCLC and adenocarcinoma (including adenosquamous) histology who are being considered for first-line therapy with gefitinib, irrespective of their gender, ethnicity, and smoking status.
8. Second-line or subsequent chemotherapy options for advanced NSCLC include single-agent docetaxel or erlotinib for patients with squamous cell carcinoma histology, or single agent treatment with a drug that has not been previously used.
 9. Crizotinib has been approved for second-line treatment of patients who are positive for ALK-rearrangements from the pan-Canadian Oncology Drug Review (pCODR) and has also been approved for provincial coverage in Alberta.
10. Testing for ALK mutations should take place for all eligible patients with advanced NSCLC and adenocarcinoma (including adenosquamous) histology who are being considered for second line therapy with crizotinib.

	Table 1. Sum	mary of Phase	III Clinical T	rials A	ssessing First-Line M	onotherapy with Ge	fitinib or Erlotinib
					EGFR Mutational Sta Treatment		Median OS (months)
	Gefitinib Thera	ру					
	Mitsudomi, 2010 ⁶¹	CT-naïve, ≤75 years,	IIIB, IV, or post-op	88	gefitinib 250mg/day q21 days x 3-6 cycles	9.2	30.9
	(West Japan Oncology Group)	PS 0-1, Japanese, EGFR-positive	recurrence	89	cisplatin 80mg/m ² + docetaxel 60mg/m ² q21 days x 3-6 cycles	6.3 HR=0.489; 95% CI 0.336-0.71, p<0.001	not reached HR=1.638; 95% CI 0.749-3.582, p=0.211
	Maemondo, 2010 ⁶²	CT-naïve, ≤75 years,	IIIB, IV, or	114	gefitinib 250mg/day q21 days	10.8	30.5
	(North East Japan Study	PS 0-1, EGFR- positive	recurrence	114	carboplatin AUC6 + paclitaxel 200mg/m ² q21 days	5.4 HR=0.30; 95% CI	23.6 p=0.31
	Group) Mok, 2009 ⁶³	CT-naïve, adeno-	IIIB, IV	132*	gefitinib 250mg/day q21 days x 6 cycles	0.22-0.41, p<0.001 9.5	21.6
	(IPASS)	carcinoma, non- or former light smoker		129*	carboplatin AUC5-6 + paclitaxel 200mg/m ² q21 days x 6 cycles	6.3 HR= 0.45; 95% CI 0.36-0.64, p<0.001	21.9 HR=1.002; 95% CI 0.756-1.328, p=0.990
	Lee, 2009 ⁵⁹ (First SIGNAL)	CT-naïve, adeno- carcinoma, PS	IIIB, IV	26*	gefitinib 250mg/day	8.4	30.6
		0-2, never- smoker		16*	cisplatin 80mg/m ² day1, q21 days x 9 cycles + gemcitabine 1250mg/m ² days1,8	6.7 HR=0.613; 95% CI 0.308-1.221,	26.5 HR=0.823; 95% CI 0.352-1.922, p=0.648
	Erlotinib Thera					p=0.084	
	Rosell, 2011 ⁵⁸	CT-naïve, PS 0-2,	advanced	77	erlotinib	9.4	22.9
	(EURTAC)	Caucasian, EGFR-positive		76	platinum-based chemotherapy	5.2 HR=0.42; p<0.0001	18.8 HR=0.80; p=0.42
	Zhou, 2011 ⁶⁴	CT-naïve, EGFR-positive	IIIB, IV	82	erlotinib (150mg/d)	13.1	not reported
				72	gemcitabine + carboplatin	4.6 HR=0.16; p<0.0001	
	Zhou, 2010 ⁵⁷ (OPTIMAL)	CT-naïve, PS 0-2, EGFR- positive	advanced	82	erlotinib 150 mg/day until unacceptable toxicity or PD	13.1	not reported
				76	carboplatin AUC5 + gemcitabine 1000 mg/m ² days 1,8 q21 days x 4 cycles	4.6 HR=0.16; 95% CI 0.10-0.26, p<0.0001	
	ratio, CI=95% co. * Subset of patie	nfidence interval, A nts in trial with pos	AUC=area und	er the cu	all survival, CT=chemothei irve, PD=progressive dise status; patients not pre-se	ase.	
Azzoli et al.,	Fragestellun	g					
2010 [3].	To update its	recomme	ndation	s on	the use of che	motherapy fo	or advanced
American	stage non-sr	nall-cell lu	ng canc	er (N	SCLC), ASCO	D convened a	an Update
Society of	J		0	•			Expert Panel.
Clinical Oncology					this topic in 1		•
Clinical Practice	•		0		treatment with	•	
						•	•
Guideline Update on	•••				ers for stage l Igh May 2009.		
Chemotherapy	Methodik						
for Stage IV	The recomm	andations	in this a	uido	line were dow	loned primar	ilv on the
Non–Small-Cell Lung Cancer	The recommendations in this guideline were developed primarily on the basis of statistically significant improvements in overall survival (OS) documented in prospective RCTs. Treatment strategies demonstrated to						
	improve only progression-free survival (PFS) prompted greater scrutiny regarding issues such as toxicity and quality of life.						
	Suchzeitraum: 2002 bis 07/2008						
	GoR, LoE Keine Angabe in der zusammenfassenden Darstellung (vgl.						
	Anlage 3)						
	Empfehlungen						

 T
The recommendations are designated as follows: First-line therapy recommendations begin with A, second-line recommendations with B, third-line recommendations with C, and molecular analysis recommendations with D.
First-Line Chemotherapy In this summary, the term chemotherapy refers to any anticancer drug, regardless of its mechanism of action (ie, cytotoxic and biologic drugs are included).
Recommendation A1. Evidence supports the use of chemotherapy in patients with stage IV non–small-cell lung cancer with Eastern Cooperative Oncology Group (ECOG)/Zubrod PS 0, 1, and possibly 2. (Note: Stage IV as defined by the International Association for the Study of Lung Cancer Lung Cancer Staging Project, for the seventh edition of the TNM Classification of Malignant Tumors.)
Recommendation A2. In patients with PS 0 or 1, evidence supports using a combination of two cytotoxic drugs for firstline therapy. Platinum combinations are preferred over nonplatinum combinations because they are superior in response rate, and marginally superior in OS. Nonplatinum therapy combinations are reasonable in patients who have contraindications to platinum therapy. Recommendations A8 and A9 address whether to add bevacizumab or cetuximab to first-line cytotoxic therapy.
Recommendation A3. Available data support use of singleagent chemotherapy in patients with a PS of 2. Data are insufficient to make a recommendation for or against using a combination of two cytotoxic drugs in patients with a PS of 2. Comment. PS is the most important prognostic factor for patients with stage IV NSCLC; patients with a PS of 0 to 1 live longer than patients with a PS of 2, regardless of therapy. Use of single- agent vinorelbine, docetaxel, or paclitaxel has led to improved survival in phase III comparisons versus best supportive care in patients with a PS of 0 to 2. Because of concerns about toxicity and drug tolerance, patients with stage IV NSCLC and a PS of 2 are routinely excluded from prospective trials of novel
Recommendation A4. The evidence does not support the selection of a specific first-line chemotherapy drug or combination based on age alone. Comment. Clinical trial data since the 2003 update reinforce the recommendation that age alone should not be used to select chemotherapy for patients with stage IV NSCLC. Older patients may experience more toxicity from cytotoxic chemotherapy than younger patients but may garner an equal amount of benefit. The guideline emphasizes that physiologic age and PS are more important in treatment selection.
Recommendation A5. The choice of either cisplatin or carboplatin is acceptable. Drugs that may be combined with platinum include the third-generation cytotoxic drugs docetaxel, gemcitabine, irinotecan, paclitaxel, pemetrexed, and vinorelbine. The evidence suggests that cisplatin combinations have a higher response rate than carboplatin and may

improve survival when combined with third-generation agents. Carboplatin is less likely to cause nausea, nephrotoxicity, and neurotoxicity than cisplatin but more likely to cause thrombocytopenia. **Comment.** Cisplatin is slightly more effective than carboplatin but also has more adverse effects. Therefore, either is acceptable, depending on the individual.

Recommendation A6. In patients with stage IV NSCLC, first-line cytotoxic chemotherapy should be stopped at disease progression or after four cycles in patients whose disease is not responding to treatment. Two-drug cytotoxic combinations should be administered for no more than six cycles. For patients who have stable disease or who respond to first-line therapy, evidence does not support the continuation of cytotoxic chemotherapy until disease progression or the initiation of a different chemotherapy before disease progression. Comment. With the advent of drugs that improve survival for patients with progressive cancer after first-line chemotherapy (ie, second-line drugs), there is renewed interest in whether initiation of a noncross-resistant drug immediately after completion of first-line therapy may improve survival. There have been some preliminary results on such a strategy, but until more mature data are presented showing a survival benefit, these results suggest that PFS, but not OS, may be improved either by continuing an effective chemotherapy beyond four cycles or by immediately initiating alternative chemotherapy. The improvement in PFS is tempered by an increase in adverse effects from additional cytotoxic chemotherapy. Special announcement: The FDA approved a new indication for pemetrexed for maintenance therapy in patients with advanced NSCLC on July 2, 2009, when this guideline went to press. The data supporting this change were recently presented and were outside the scope of the comprehensive data review for this guideline. The recommendation recommendation on maintenance therapy in this guideline will be updated pending consideration of recently published relevant data.

Recommendation A7. In unselected patients, erlotinib or gefitinib should not be used in combination with cytotoxic chemotherapy as first-line therapy. In unselected patients, evidence is insufficient to recommend single-agent erlotinib or gefitinib as first-line therapy. The first-line use of gefitinib may be recommended for patients with activating EGFR mutations. If EGFR mutation status is negative or unknown, then cytotoxic chemotherapy is preferred (see Recommendation A2). Comment. There is no current evidence that adding an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor to cytotoxic chemotherapy as first-line treatment is beneficial. In addition, there is no current evidence that erlotinib monotherapy is beneficial in the first-line setting in unselected patients. There is evidence that first-line gefitinib monotherapy improves PFS and has less adverse events compared with carboplatin and paclitaxel in patients of Asian ethnicity who are former or light smokers or have never smoked. In a recent trial, patients with tumors with EGFR mutations receiving gefitinib experienced longer PFS, and those whose tumors lacked

EGFR mutations had longer PFS with chemotherapy. The *EGFR* mutation status of most patients' tumors, however, is negative or unknown. Current evidence is insufficient to recommend the routine use of molecular markers to select systemic treatment for patients with metastatic NSCLC (Recommendation D1). In cases in which the *EGFR* mutation status is negative or unknown, cytotoxic chemotherapy is preferred.

Recommendation A8. Based on the results of one large phase III RCT, the Update Committee recommends the addition of bevacizumab, 15 mg/kg every 3 weeks, to carboplatin/ paclitaxel, except for patients with squamous cell carcinoma histologic type, brain metastases, clinically significant hemoptysis, inadequate organ function, ECOG PS greater than 1, therapeutic anticoagulation, clinically significant cardiovascular disease, or medically uncontrolled hypertension. Bevacizumab may be continued, as tolerated, until disease progression. **Comment.** Because of bleeding events and deaths observed in earlier clinical trials using bevacizumab for NSCLC, use of this drug was restricted in phase III testing, which informed the list of exclusion criteria in the recommendation. A recent trial suggested that there may be differences in outcomes depending on which chemotherapy regimen is combined with bevacizumab and also suggested that a lower dose of bevacizumab may be as effective as a high dose; however, OS benefit has not yet been shown from combining bevacizumab with other cytotoxic chemotherapy regimens. The duration recommendation is based on the design of RCTs of bevacizumab. The optimal duration of bevacizumab beyond chemotherapy has not yet been determined.

Recommendation A9. On the basis of the results of one large phase III RCT, clinicians may consider the addition of cetuximab to cisplatin/ vinorelbine in first-line therapy in patients with an EGFR-positive tumor as measured by immuno- histochemistry. Cetuximab may be continued, as tolerated, until disease progression. **Comment.** Eligibility for this phase III RCT required that all patients have their tumor tested for EGFR expression by immunohistochemistry and that at least one tumor cell stained positive. This trial showed a benefit in OS and response rate with the addition of cetuximab to this chemotherapy doublet. The OS benefit may not directly translate to all chemotherapy regimens. The duration recommendation is based on the design of RCTs on cetuximab. However, the optimal duration of treatment with cetuximab beyond chemotherapy is not known.

Second-Line Chemotherapy Recommendation B1. Docetaxel, erlotinib, gefitinib, or pemetrexed is acceptable as second-line therapy for patients with advanced NSCLC with adequate PS when the disease has progressed during or after first-line, platinum-based therapy. **Comment.** In addition to considering optimal regimen, the guideline evaluated data on schedules of administration for second- line therapy, which were available only for docetaxel. These data do not show any differences in efficacy of docetaxel based on schedule. A weekly schedule appears less toxic than a schedule of every 3 weeks, especially for hematologic toxicities. The data on

	combination biologic therapy as second-line therapy are limited to the combination of bevacizumab and erlotinib. At publication time, there were no published RCTs with positive results for OS using this combination. There are no data available on the optimal duration of second-line therapy. Phase III clinical trials of docetaxel, erlotinib, gefitinib, and pemetrexed allowed patients to continue chemotherapy, as tolerated, until disease progression.
	Recommendation B2. The evidence does not support the selection of a specific second-line chemotherapy drug or combination based on age alone. Comment. There is a paucity of research on people considered elderly who are receiving second-line therapy. The available evidence shows that benefits and toxicity do not differ by age.
	Third-Line Chemotherapy
	Recommendation C1. When disease progresses on or after second-line chemotherapy, treatment with erlotinib may be recommended as third-line therapy for patients with PS of 0 to 3 who have not received prior erlotinib or gefitinib. Comment. This recommendation is based on the registration trial for erlotinib (Recommendation B1). This trial included participants who had received one or two prior regimens, and an analysis of survival showed no significant difference between prior numbers of regimens.
	Recommendation C2. The data are not sufficient to make a recommendation for or against using a cytotoxic drug as thirdline therapy. These patients should consider experimental treatment, clinical trials, and best supportive care. Comment. Only a retrospective analysis was available on this issue. It found survival and response rates decreased with each subsequent regimen. Patients receiving third- and fourth fourthline cytotoxic therapy have infrequent responses, the responses are of short duration, and the toxicities are considerable.
Azzoli et al.,	Fragestellung
2012 [4]. American Society of Clinical Oncology Clinical Practice Guideline Update	An American Society of Clinical Oncology (ASCO) focused update updates a single recommendation (or subset of recommendations) in advance of a regularly scheduled guideline update. This document updates one recommendation of the ASCO Guideline Update on Chemotherapy for Stage IV Non–Small-Cell Lung Cancer (NSCLC) regarding switch maintenance chemotherapy.
on Chemotherapy	Methodik focused update: zu Azzoli et al. 2010 S
for Stage IV	Suchzeitraum: bis 11/2009
Non–Small-Cell Lung Cancer	Empfehlungen Intervention
	Switch maintenance (alternative therapy administered to patients who have undergone first-line therapy for specified number of cycles [usually four to six] and experienced response or achieved stable disease).
	Recommendation In patients with stage IV NSCLC, first-line cytotoxic chemotherapy should be stopped at disease progression or after four cycles

	in patients whose disease is stable but not responding to treatment. Two- drug cytotoxic combinations should be administered for no more than six cycles. For patients with stable disease or response after four cycles, immediate treatment with an alternative, single-agent chemotherapy such as pemetrexed in patients with nonsquamous histology, docetaxel in unselected patients, or erlotinib in unselected patients may be considered. Limitations of these data are such that a break from cytotoxic chemotherapy after a fixed course is also acceptable, with initiation of secondline chemotherapy at disease progression. Zusammenfassung der aktualisierten Empfehlungen (2011): Vgl. <i>Anlage</i> dieser Synopse
de Marinis F et al., 2011 [11]. Treatment of advanced non- small-cell-lung cancer: Italian Association of Thoracic Oncology (AIOT) clinical practice guidelines	 1. Fragestellung AIOT (Italian Association of Thoracic Oncology) produces up-to-date, clinical practice guidelines for the management of lung cancer in Italy. Guidelines were developed by answerlog clinical relevant questions. Here we report only major clinical issues concerning the management of advanced non-small cell lung cancer (NSCLC). Here we report only eight clinical questions regarding the management of advanced non-small-cell lung cancer (NSCLC) which have been subsequently updated for this manuscript on December 2010. 2. Methodik Systematische Literatursuche und formaler Konsensusprozess Suchzeitraum: 2004 bis 2009 LoE, GoR INNEL
	Level of evidence and strength of recommendation. Level of evidence Strength of recommendation
	ia Evidence from systematic reviews and meta-analysis of randomized controlled trials A
	Ib Evidence from at least one randomized controlled trial IIa Evidence from at least one controlled study without randomization B
	IIb Evidence from at least one other type of quasi-experimental study III Evidence from at least one other type of quasi-experimental study
	III Evidence from observational studies
	IV Evidence from expert committee reports or experts C
	 Empfehlungen Platinum-based (cisplatin or carboplatin) chemotherapy is the standard treatment for adult patients with advanced NSCLC, with good peformance status (PS 0-1). Chemotherapy should be stopped at disease pragression or after 4 cycles in patients who do not obtain an objective response, and continued for maximum 6 cycles in patients achieving an objective response. Treatment options are different according to tumour histotype (squamous versus non squamous). A. Treatment options for patients with squamous tumour Patients with advanced squamous NSCLC are eligible for firstline platinum-based doublets with a third-generation drug, with the exception of pemetrexed. B. Treatment options for patients with non-squamous tumours

Patients with advanced non-squamous NSCLC are eligile for first-line
platinum-based doublets with a third-generation drug, including
pemetrexed. Bevacizumab in combination with carboplatin plus
paclitaxel or cisplatin plus gemicitabine is a further option for patients
considered eligible to this therapy. Carboplatin plus paclitaxel should be
considered the chemotherapy backbone [or bevacizumab. (LoE IA
GoR A)
3.2. Question 2, Cisplatin or carboplatin for first-line treatment?
Several randomized trials compared cisplatin-versus carboplatin-based
chemotherapy in advanced NSCLC. Those trials were included in two
meta-analyses. The one based on individual patient data showed a
statistically significant increase in objective response rate with cisplatin.
Difference in overall sutvival between the two drugs did not reach
statistical significance, although carboplatin was associated with a
statistically significant increase in mortallty In patients with non-
squamous tumours andin patients receiving third-generation regimens.
As expected, cispiatin was associated with higher Incidence of nausea,
vomiting and renal toxicity, whilst carboplatin was associated with
higher incidence of thrombocytopenia. Based on these data, cispiatin-
containing third-generation regimens represent the standard treatment
for patients with advanced NSCLC.
3.2.1. Recommendations Third-generation cisplatin-based regimens are
recommended for the treatment of advanced NSCLC patients, with PS
0-1 and without major co-morbidities. Where the use of cisplatin is
contra-indicated third-generation carboplatin-based regimens are a
valid therapeutic option. (LoE IA, GoR A)
3.3.1. Recommendations Gefitinib is recommended as first-line therapy of
patients with EGFR mutat!on positive NSCLC EGFR analysis is
recommended, if adequate tumoursample is available, espedaily in
patients selected on the basis of clinical and/or pathological
charaeteristics known to be assodated with higher frequency of EGFR
mutation (never or former smokers, adenocardnoma). (Loe IB, GoR A)
3.4.1. Recommendations in patients with advanced non-squamoiis
NSCLCwho have an objective response or a stable disease after
completing first-line treatment consisting of 4 cycles of platinum-based
chemotherapy, notincluding pemetrexed, maintenance therapy with
pemetrexed can be considered (if allowed by reimbursement
procedures) and discussed with patients. (LoE B, GoR A) in patients
with a/1 histotypes advanced NSCLC who have stable disease after
completing first-line chemotherapy consisting of 4 eycles of platinum-
based chemotherapy, maintenance therapy w!th erlotinlb can be
considered (if allowed by reimbursement procedures) and discussed
with patients. (LoE B, GoR A)
3.5.1. Recommendations In elderly patients (older than 70 years) with
advanced NSCLC, single-ogent treatment with a third-generation drug
is the recommended optionfor clinIcal practice. (LoE IA, GoR A) In

 of evidence, the degree of consensus". Bei niedriger Evidenzqualität bzw. fehlender Evidenz informale Konsentierung. "To avoid giving the impression that higher grade recommendations are of higher priority for implementation, NICE no longer assigns grades to recommendations." Sonstige Hinweise: At the start of the guideline development process all GDG members' interests were recorded on a standard declaration form that covered consultancies, fee-paid work, share-holdings, fellowships and support from the healthcare industry. At all subsequent GDG members which
were always recorded
3. Freitext/Empfehlungen/Hinweise
6 Chemotherapy for NSCLC
Recommendations
 Chemotherapy should be offered to patients with stage III or IV NSCLC and good performance status (WHO 0, 1 or a Karnofsky score of 80–100), to improve survival, disease control and quality of life. [2005]
• Chemotherapy for advanced NSCLC should be a combination of a single third generation drug (docetaxel, gemcitabine, paclitaxel or vinorelbine) plus a platinum drug. Either carboplatin or cisplatin may be administered, taking account of their toxicities, efficacy and convenience. [2005]
• Patients who are unable to tolerate a platinum combination may be offered single-agent chemotherapy with a third-generation drug. [2005]
• Docetaxel monotherapy should be considered if second-line treatment is appropriate for patients with locally advanced or metastatic NSCLC in whom relapse has occurred after previous chemotherapy. [2005]
<u>Gefitinib</u>
• Refer to 'Gefitinib for the first-line treatment of locally advanced or metastatic non-small-cell lung cancer' (NICE technology appraisal guidance 192 [2010]), available at www.nice.org.uk/guidance/TA192 Pemetrexed
• Refer to 'Pemetrexed for the first-line treatment of non-small-cell lung cancer' (NICE technology appraisal guidance 181 [2010]), available at www.nice.org.uk/guidance/TA181
<u>Erlotinib</u>
 Refer to 'Erlotinib for the treatment of non-small-cell lung cancer' (NICE technology appraisal guidance 162 [2008]), available at www.nice.org.uk/guidance/TA162

Groophalah Lot	Fragastallung
Greenhalgh J et	Fragestellung HTA
al. 2015 [15].	Methodik
Erlotinib and	Population: advanced NSCLC
	Intervention: Gefitinib, Erlotinib
gefitinib for	Komparator: gegeneinander, gegen Docetexal oder BSC
treating non-	Endpunkte: ORR, OS, PFS, QoL
small cell lung	Suchzeitraum: bis 03 /2013
cancer that has	Anzahl eingeschlossene Studien/Patienten (Gesamt): 12 (Erlotinib vs.
progressed	Chemo = 3; Erlotinib vs. BSC = 1; Gefitinib vs. Erlotinib = 1; Gefitinib
follow ing prior	vs. Chemo = 6; Gefitinib vs. BSC = 1)
chemotherapy	Ergebnisdarstellung
(review of NICE	No trials were identified that were conduded in a population of solely
technology	EGFR M + patients. Limited EGFR mutation Status data were
appraisals 162	retrospectively derived from relatively small rubgroup analyses of RCTs
and 175): a	that induded patients of unknown EGFR mutation Status at the time of
systematic	randomisation. Four Studies reported OS outcomes none of which was
review and	statistically significantly different for anyof the comparissonsdescribed. Five Studies reported PFS, but only one trial found a statistically
economic	significant improvement for any comparison considered, and the results
	favoured gefitinib over docetaxel.
evaluation	Anmerkungen/Fazit der Autoren Ihe lack of dinical data available for
	distinct patient populations limited the condusions of the assesssment.
	Future trials should distinguish between patients with B3FR M + and
	B3FR M- diease.
Breuer J et al.,	Institute for Health Technology Assessment Ludwig Boltzmann
2013 [5].	Gesellschaft Afatinib (Giotrif®) as monotherapy is indicated for the
	treatment of EGFR TKI-naïve adult patients with locally advanced or
Afatinib (Giotrif®)	metastatic non-small cell lung cancer (NSCLC) with activating EGFR
for the treatment of	mutations.
EGFR TKI-naïve	Current treatment Modalities for the treatment of NSCLC which are generally used are surgery, radiation therapy, chemotherapy and
adult patients with	targeted therapy. Depending on disease status, Eastern Cooperative
locally advanced	Oncology Group (ECOG) performance status and prognostic factors,
or metastatic non-	these treatments can be used either alone or in combination [12]. First-
small cell lung	line therapy of advanced NSCLC depends on a number of factors, such
cancer (NSCLC)	as tumour stage, histo-pathological subtype and performance status.
with activating	Current treatment options for the first-line therapy of patients with
EGFR mutation(s)	advanced or metastatic lung cancer are: double-agent chemotherapy
	regimen based on a platinum compound (cisplatin, carboplatin) in
	addition to one out of numerous other substances (paclitaxel,
	gemcitabine, vinorelbine or docetaxel and pemetrexed) \Box other
	chemotherapy regimens: due to the toxicity of platinum-based
	regimens, other drug combinations can be used (gemcitabine +
	docetaxel/paclitaxel/vinorelbine/pemtrexed, paclitaxel + vinorelbine)
	single-agent chemotherapy as first-line treatment may be used for
	elderly patients
	gefitinib), monoclonal antibodies (bevacizumab) \Box a combined
	modality approach.
	If patients are EGFR mutational status positive, EGFR-TK inhibitors

r	
NICE, 2014 [24]. Afatinib for treating epidermal growth factor receptor mutation-positive locally advanced or metastatic non- small-cell lung cancer, TA 310.	 (e.g. erlotinib, gefitinib) are increasingly used as standard first-line therapy, whereas patients with either unknown EGFR status or without EGFR mutation receive chemotherapy doublets, either alone or in combination with a monoclonal antibody (bevacizumab). If patients with driver mutations have initially been treated with chemotherapy, targeted therapy with a specific inhibitor is indicated after progression on the initial chemotherapy [15, 16]. [10] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Non-Small Cell Lung Cancer (V 2.2013). 2013 [24.09.2013]: Available from: http://www.ncon.org/professionals/physician_gls/pdf/nscl.pdf. [12] Lilenbaum R. Overview of the treatment of advanced non-small cell lung cancer. 2013 [26.09.2013]: Available from: http://www.uptodate.com/contents/overview-of-the-treatment-of-advanced-non-small-cell-lung: cancer/delectedLanguage=nd&source=search result&search=therapy+nsclc&selected Titles-3-150&provider. [15] Lilenbaum R. Systemic therapy for advanced non-small cell lung cancer with an activating mutation in the epidemal growth factor receptor.2013 [26.09.2013]; Available from: http://www.uptodate.com/contents/systemic-therapy-for-advanced-non-small-cell-lung-cancer-with-an-activating-mutation-in-the-epidemal-growth-factor: receptor/detectedLinguage=en&source=search result&search=first-line+therapy-trad c&selectedTitle=3-150&provider-noProvider. [17] WU YL, Zhou C, Hu CP, Feng JF, Lu S, Huang Y, et al. LUX-Lung 6: A randomized, open-label, phase III study of afatinib (A) versus gemcitabine/cisplatin (GC) as first-line treatment for Asian patients (pits) with EGFR mutation-positive (EGFR M+) advanced adenocarionom at the lung. Journal of Clinical Oncology. 2013;31(15). Guidance Afatinib is recommended as an option, within its marketing authorisation, for treating apidermal growth factor receptor mutation positive locally advanced or metastatic non-small-cell lung cancer.
cancer, TA 310.	Review Group. Because there was no head-to-head randomised controlled trial comparing the effectiveness of afatinib with erlotinib or gefitinib for progression-free survival or overall survival, the manufacturer presented a mixed treatment comparison. This was based on a previous mixed treatment comparison conducted for Gefitinib for the first-line
	(NICE technology appraisal guidance 192), which was adapted to include data on the effectiveness of afatinib based on the LUXLung 3 and 6 studies and erlotinib. The studies used to populate the mixed treatment comparison were identified through systematic review. The manufacturer identified 20 randomised controlled trials, 4 of which included gefitinib (first
	SIGNAL trial, IPASS trial, Mitsudomi 2010, Maemondo 2010) and 1 that included erlotinib (EURTAC trial). <i>Clinical effectiveness</i> The Committee discussed current clinical practice for treating EGFR mutationpositive locally advanced or metastatic NSCLC. The clinical specialists highlighted that the standard first choice of treatment for NSCLC with EGFR positive tyrosine kinase mutations was a
	tyrosine kinase inhibitor, which is in line with Erlotinib for the first-line treatment of locally advanced or metastatic EGFR-TK mutation-positive non-small-cell lung cancer (NICE technology appraisal guidance 258) and Gefitinib for the first-line treatment of locally advanced or metastatic non- small-cell lung cancer (NICE technology appraisal guidance 192). The

NICE 2015 [26].	Committee was also aware of evidence presented in the manufacturer's submission which stated that 99% of eligible patients receive either erlotinib or gefitinib as a first-line treatment. The Committee concluded that treatment with erlotinib and gefitinib is standard practice for most people presenting with EGFR mutation-positive locally advanced or metastatic NSCLC. Conclusion: The Committee concluded that on balance afatinib is likely to have similar clinical efficacy to erlotinib and gefitinib. This guidance replaces TA175 and TA162.
Erlotinib and gefinitib for treating nonsmall-cell lung cancer that has progressed after prior chemotherapy. Technology appraisal guidance	 1.1 Erlotinib is recommended as an option for treating locally advanced or metastatic non-small-cell lung cancer that has progressed in people who have had non-targeted chemotherapy because of delayed confirmation that their tumour is epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation-positive, only if the company provides erlotinib with the discount agreed in the patient access scheme revised in the context of NICE technology appraisal guidance 258. 1.2 Erlotinib is recommended as an option for treating locally advanced or metastatic non-small-cell lung cancer that has progressed after non-targeted chemotherapy in people with tumours of unknown EGFR-TK mutation status, only if: the result of an EGFR-TK mutation diagnostic test is unobtainable because of an inadequate tissue sample or poor-quality DNA and the treating clinician considers that the tumour is very likely to be EGFR-TK mutation-positive and the person's disease responds to the first 2 cycles of treatment with erlotinib and the company provides erlotinib with the discount agreed in the patient access scheme revised in the context of NICE technology appraisal guidance 258. 1.3 Erlotinib is not recommended for treating locally advanced or metastatic non-small-cell lung cancer that has progressed after nontargeted chemotherapy in people with tumours that are EGFR-TK mutation-negative. 1.4 Gefitinib is not recommended for treating locally advanced or metastatic non-small-cell lung cancer that has progressed after nontargeted chemotherapy in people with tumours that are EGFR-TK mutation-positive. 1.5 People whose treatment with erlotinib or gefitinib is not recommended in this NICE guidance, but was started within the NHS before this guidance was published, should be able to continue treatment until they and their NHS clinician consider it appropriate to stop.

Recherchestrategien

Cochrane Library (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Health Technology Assessment Database) **am 12.10.2015**

#	Suchfrage	
1	MeSH descriptor: [Carcinoma, Non-Small-Cell Lung] explode all trees	
2	((non next small) or nonsmall) next cell next lung:ti,ab,kw	
3	tumor* or tumour* or carcinoma* or adenocarcinoma* or neoplasm* or sarcoma* or cancer*:ti,ab,kw	
4	advanced:ti,ab,kw or metastat*:ti,ab,kw or metastas*:ti,ab,kw or recurren*:ti,ab,kw or relaps*:ti,ab,kw	
5	#2 and #3 and #4	
6	nsclc*:ti,ab,kw	
7	#1 or #5 or #6	
8	#7 from 2010 to 2015	

SR, HTAs in Medline (PubMed) am 13.10.2015

#	Suchfrage
1	Carcinoma, Non-Small-Cell Lung[MeSH]
2	(((non[Title/Abstract]) AND small[Title/Abstract]) AND cell[Title/Abstract]) AND
	lung[Title/Abstract]
3	((((((tumor*[Title/Abstract]) OR tumour*[Title/Abstract]) OR carcinoma*[Title/Abstract]) OR
	adenocarcinoma*[Title/Abstract]) OR neoplasm*[Title/Abstract]) OR
	sarcoma*[Title/Abstract]) OR cancer*[Title/Abstract]
4	#2 AND #3
5	#1 OR #4
6	(((advanced[Title/Abstract]) OR metastat*[Title/Abstract]) OR metastas*[Title/Abstract]) OR
	recurren*[Title/Abstract]
7	#5 AND #6
8	(((((drug[Title/Abstract]) OR (drug therap*)[Title/Abstract]) OR therapy[Title/Abstract]) OR
	therapies[Title/Abstract]) OR treat[Title/Abstract]) OR treatment*[Title/Abstract]
9	#7 AND #8
10	(#9) AND (Meta-Analysis[ptyp] OR systematic[sb] OR Technical Report[ptyp])
11	(#9) AND (((((trials[Title/Abstract] OR studies[Title/Abstract] OR database*[Title/Abstract]
	OR literature[Title/Abstract] OR publication*[Title/Abstract] OR Medline[Title/Abstract] OR
	Embase[Title/Abstract] OR Cochrane[Title/Abstract] OR Pubmed[Title/Abstract])) AND
	systematic*[Title/Abstract] AND (search*[Title/Abstract] OR research*[Title/Abstract]))) OR
	(((((((((HTA[Title/Abstract]) OR technology assessment*[Title/Abstract]) OR technology
	report*[Title/Abstract]) OR (systematic*[Title/Abstract] AND review*[Title/Abstract])) OR
	(systematic*[Title/Abstract] AND overview*[Title/Abstract])) OR meta-analy*[Title/Abstract])
	OR (meta[Title/Abstract] AND analyz*[Title/Abstract])) OR (meta[Title/Abstract] AND
	analys*[Title/Abstract])) OR (meta[Title/Abstract] AND analyt*[Title/Abstract]))) OR
	(((review*[Title/Abstract]) OR overview*[Title/Abstract]) AND ((evidence[Title/Abstract]) AND
	based[Title/Abstract])))
12	#10 OR #11
13	(#12) AND ("2010/10/01"[PDAT] : "2015/10/13"[PDAT])

Leitlinien in Medline (PubMed) am 13.10.2015

#	Suchfrage
1	Carcinoma, Non-Small-Cell Lung[MeSH]
2	(((non[Title/Abstract]) AND small[Title/Abstract]) AND cell[Title/Abstract]) AND lung[Title/Abstract]
3	((((((tumor*[Title/Abstract]) OR tumour*[Title/Abstract]) OR carcinoma*[Title/Abstract]) OR adenocarcinoma*[Title/Abstract]) OR neoplasm*[Title/Abstract]) OR sarcoma*[Title/Abstract]) OR cancer*[Title/Abstract]
4	#2 AND #3
5	#1 OR #4
6	(#5) AND (Guideline[ptyp] OR Practice Guideline[ptyp] or guideline*[Title] OR Consensus
	Development Conference[ptyp])
7	(#6) AND ("2010/10/01"[PDAT] : "2015/10/13"[PDAT])

Anlagen

Anlage 1: Levels of Evidence and Grades of Recommendation, aus: SIGN 2014

KET	TO EVIDENCE STATEMENTS AND GRADES OF RECOMMENDATIONS
LEVEL	S OF EVIDENCE
1++	High quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias
1+	Well conducted meta-analyses, systematic reviews, or RCTs with a low risk of bias
1-	Meta-analyses, systematic reviews, or RCTs with a high risk of bias
	High quality systematic reviews of case control or cohort studies
2++	High quality case control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal
2+	Well conducted case control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal
2-	Case control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal
3	Non-analytic studies, eg case reports, case series
4	Expert opinion
GRAD	DES OF RECOMMENDATION
	The grade of recommendation relates to the strength of the evidence on which the recommendation is based. It does not reflect the al importance of the recommendation.
	At least one meta-analysis, systematic review, or RCT rated as 1 ⁺⁺ , and directly applicable to the target population; <i>or</i>
A	A body of evidence consisting principally of studies rated as 1 ⁺ , directly applicable to the target population, and demonstrating overall consistency of results
в	A body of evidence including studies rated as 2 ⁺⁺ , directly applicable to the target population, and demonstrating overall consistency of results; <i>or</i>
	Extrapolated evidence from studies rated as 1 ⁺⁺ or 1 ⁺
с	A body of evidence including studies rated as 2 ⁺ , directly applicable to the target population and demonstrating overall consistency of results; <i>or</i>
	Extrapolated evidence from studies rated as 2 ⁺⁺
D	Evidence level 3 or 4; or
U	Extrapolated evidence from studies rated as 2+
GOC	DD PRACTICE POINTS
✓	Recommended best practice based on the clinical experience of the guideline development group

Anlage 2: Standard Treatment Options for NSCLC aus: National Cancer Institut 2014

Stogo (TNM Stoging Cuitonia)		Enlarge	
Stage (<u>TNM Staging Criteria</u>)		Standard Treatment Options	
Occult NSCLC Stage 0 NSCLC		Surgery	
		Surgery	
		Endobronchial therapies	
Stages IA and	IB NSCLC	Surgery	
		Radiation therapy	
Stages IIA and	IIB NSCLC	Surgery	
		Neoadjuvant chemotherapy	
		Adjuvant chemotherapy	
		Radiation therapy	
Stage IIIA NSCLC	Resected or resectable disease	Surgery	
NSCLU	uisease	Neoadjuvant therapy	
		Adjuvant therapy	
	Unresectable disease	Radiation therapy	
		Chemoradiation therapy	
	Superior sulcus tumors	Radiation therapy alone	
		Radiation therapy and surgery	
		Concurrent chemotherapy with radiation therapy and surgery	
		Surgery alone (for selected patients)	
	Tumors that invade the chest wall	Surgery	
		Surgery and radiation therapy	
		Radiation therapy alone	
		Chemotherapy combined with radiation therapy and/or surgery	
Stage IIIB NS	CLC	Sequential or concurrent chemotherapy and radiation therapy	
		Chemotherapy followed by surgery (for selected patients)	
		Radiation therapy alone	
Stage IV NSCLC		Cytotoxic combination chemotherapy (first line)	
		Combination chemotherapy with bevacizumab or cetuximab	
		EGFR tyrosine kinase inhibitors (first line)	
		EML4-ALK inhibitors in patients with EML-ALK translocations	

Table 11. Standard Treatment Options for NSCLC

Stage (TNM Staging Criteria)	Standard Treatment Options
	Maintenance therapy following first-line chemotherapy
	Endobronchial laser therapy and/or brachytherapy (for obstructing lesions)
	External-beam radiation therapy (primarily for palliation of local symptomatic tumor growth)
Recurrent NSCLC	Radiation therapy (for palliation)
	Chemotherapy or kinase inhibitors alone
	EGFR inhibitors in patients with/without EGFR mutations
	EML4-ALK inhibitors in patients with EML-ALK translocations
	Surgical resection of isolated cerebral metastasis (for highly selected patients)
	Laser therapy or interstitial radiation therapy (for endobronchial lesions)
	Stereotactic radiation surgery (for highly selected patients)

Anlage 3: Summary of Recommendations aus Azzoli et. al 2011

Recommendation	Summary		
A. First-line chemotherat			
A1	Evidence supports use of chemotherapy in patients with stage IV* NSCLC with ECOG/Zubrod performance status of 0, 1, possibly		
A2	In patients with performance status of 0 or 1, evidence supports using combination of two cytotoxic drugs for first-line therapy; platinum combinations are preferred over nonplatinum combinations because they are superior in response rate and marginally superior in OS; nonplatinum therapy combinations are reasonable in patients who have contraindications to platinum therapy; recommendations A8 and A9 address whether to add bevacizumab or cetuximab to first-line cytotoxic therapy		
A3	Available data support use of single-agent chemotherapy in patients with performance status of 2; data are insufficient to make recommendation for or against using combination of two cytotoxic drugs in patients with performance status of 2		
A4	Evidence does not support selection of specific first-line chemotherapy drug or combination based on age alone		
A5	Choice of either cisplatin or carboplatin is acceptable; drugs that may be combined with platinum include third-generation cytotoxic drugs docetaxel, gemcitabine, irinotecan, paclitaxel, pemetrexed, and vinorelbine; evidence suggests cisplatin combinations resu in higher response rates than carboplatin and may improve survival when combined with third-generation agents; carboplatin is less likely to cause nausea, nephrotoxicity, and neurotoxicity than cisplatin but more likely to cause thrombocytopenia		
A6	In patients with stage IV NSCLC, first-line cytotoxic chemotherapy should be stopped at disease progression or after four cycles in patients whose disease is stable but not responding to treatment; two-drug cytotoxic combinations should be administered for no more than six cycles; for patients with stable disease or response after four cycles, immediate treatment with alternative, single-agent chemotherapy such as pemetrexed in patients with nonsquamous histology, docetaxel in unselected patients, or erlotinib in unselected patients may be considered; limitations of this data are such that break from cytotoxic chemotherapy after fixed course is also acceptable, with initiation of second-line chemotherapy at disease progression		
A7	In unselected patients, erlotinib or gefitinib should not be used in combination with cytotoxic chemotherapy as first-line therapy; in unselected patients, evidence is insufficient to recommend single-agent erlotinib or gefitinib as first-line therapy; first-line use of gefitinib may be recommended for patients with activating EGFR mutations; if EGFR mutation status is negative or unknown, cytotoxic chemotherapy is preferred (see A2)		
A8	On basis of results of one large phase III RCT, update committee recommends addition of bevacizumab (15 mg/kg every 3 weeks) to carboplatin/pacitiaxel, except for patients with squamous cell carcinoma histologic type, brain metastases, clinically significant hemoptysis, inadequate organ function, ECOG performance status > 1, therapeutic anticoagulation, clinically significant cardiovascular disease, or medica uncontrolled hypertension; bevacizumab may be continued as tolerated until disease progression		
A9	On basis of results of one large phase III RCT, clinicians may consider addition of cetuximab to cisplatin/vinorelbine in first-line therapy in patients with EGFR-positive tumor as measured by immunohistochemistry; cetuximab may be continued as tolerated until disease progression		
B. Second-line chemotherapy			
B1	Docetaxel, erlotinib, gefitinib, or pemetrexed is acceptable as second-line therapy for patients with advanced NSCLC with adequate performance status when disease has progressed during or after first-line platinum-based therapy		
B2	Evidence does not support selection of specific second-line chemotherapy drug or combination based on age alone		
C. Third-line chemotherapy			
C1	When disease progresses on or after second-line chemotherapy, treatment with erlotinib may be recommended as third-line therap for patients with performance status of 0 to 3 who have not received prior erlotinib or gefitinib		
C2	Data are not sufficient to make recommendation for or against using cytotoxic drug as third-line therapy; these patients should consider experimental treatment, clinical trials, and best supportive care		
D. Molecular analysis			
D1	Evidence is insufficient to recommend routine use of molecular markerst to select systemic treatment in patients with metastatic NSCLC		
D2	To obtain tissue for more accurate histologic classification or investigational purposes, update committee supports reasonable efforts to obtain more tissue than that contained in routine cytology specimen		

Aboreviators: ASCO, American Society of Clinical Oncology, ECOG, Eastern Cooperative Oncology Group, EGPA, epidermal growth factor receptor, NSCLC, non–small-cell lung cancer; OS, overall survival; RCT, randomized clinical trial; TKI, tyrosine kinase inhibitor. "As defined by the International Association for the Study of Lung Cancer Staging Project, for the 7th edition of the TNM Classification of Malignant tumors.^{10a} th April 2011, ASCO issued a Provisional Clinical Opinion regarding EGFR testing; it will be incorporated into future updates of NSCLC guideline: On the basis of the results of five phase III RCTs, patients with NSCLC who are being considered for first-line therapy with an EGFR TKI (patients who have not previously received chemotherapy or an EGFR TKI) should have their tumor tested for *EGFR* mutations to determine whether an EGFR TKI or chemotherapy is appropriate first-line therapy (http://www.asco.org/pco/egfr).

Anlage 4 Ergebnisse zu PFS und OS aus Liu et al., 2015

Fig. 2 Meta-analysis of the treatment effects on progression-free survival (PFS) in molecularly selected patients with advanced non-small cell lung cancer. a EGFR-TKIs vs. chemotherapy in patients with mutant EGFR. b EGFR-TKIs vs. chemotherapy in patients with wild-type EGFR. c EGFR-TKIs vs. placebo in patients with mutant EGFR. d EGFR-TKIs vs. placebo in patients with mutant EGFR. d EGFR-TKIs vs. placebo in patients with mutant EGFR. d EGFR-TKIs vs. placebo in patients with mutant EGFR. f EGFR-TKIs + chemotherapy vs. chemotherapy in patients with wild-type EGFR. HR, Hazard Ratio; CI, 95 % confidence interval; Random, random-effects model

Fig. 3 Meta-analysis of the treatment effects on overall survival (OS) in molecularly selected patients with advanced non-small cell lung cancer. A EGFR-TKIs vs. chemotherapy in patients with mutant EGFR. b EGFRTKIs vs. chemotherapy in patients with wild-type EGFR. c EGFR-TKIs vs. placebo in patients with mutant EGFR. d EGFR-TKIs vs. placebo in patients with wild-type EGFR. e EGFR-TKIs + chemotherapy vs. chemotherapy in patients with mutant EGFR. f EGFR-TKIs + chemotherapy vs. chemotherapy in patients with wild-type EGFR. HR, Hazard Ratio; CI, 95 % confidence interval; Random, random-effects model

Anlage 5 Studiencharakteristika der Primärstudien in Petrelli er al., 2012
--

Table 1 Characteristics of the 11 Randomized Trials Included in the Metanalysis										
Study author–year (ref.)	Trial N° enrolled pts PS 0-1/ median age	ADK Histology (%)	Treatment arms	Crossover to TKI (%)	EGFR mut screened pts	tot. EGFR mut. pts exp + control arms N° (%)	% EGFR mut. 19-21	Response rate % exp/control RR (p)	PFS mo (exp/control) HR (p)	OS mo (exp/ control) HR (p)
Mok TS–2009 (19) Yang CH–2010 (28)	IPASS 1217 90%/57	96,3%	A: Gefitinib 250 mg/day B: CBDCA AUC 5-6+Paclitaxel 200 mg/m ² BSA	39,5%	437	261 (59,7%)	96,1%	71,2%/47,3% RR 1.51 (p<0.001)	9,5/6,3 HR 0.48 (p<0.001)	mo N.A. HR 1.002 (p=0.990)
Maemondo M–2010 (22)	228 98,7%/63	93,4%	A: Gefitinib 250 mg/day B: CBDCA AUC 6 +Paclitaxel 200 mg/m ² BSA	94,6%	228 (all enrolled pts)	228 (100%)	93,8%	73,7%/30,7% RR 2.4 (p< 0.001)	10.8/5.4 HR 0.3 (p<0,001)	30.5/23.6 HR N.A. (p=0.31)
Douillard JY–2010 (23)	INTEREST 1466 88,4%/60,5	56,6%	A: Gefitinib 250 mg/day B: Docetaxel 75 mg/m ² BSA (2 nd line)	37%	297	44 (15%)	86%	42,1%/21,1% RR 2 (p=0.04)	7/4.1 HR 0.16 (p=0.001)	14,2/16,6 HR 0,83 (p=0,59)
Mitsudomi T–2010 (24)	WJTOG3405 172 100%/64	83,5%	A: Gefitinib 250 mg/day B: Docetaxel 60 mg/m ² BSA- CDDP 80 mg/m ² BSA	59,3%	172 (all enrolled pts)	172 (100%)	100%	62,1%/32,2% RR 1.93 (n=117 with measurable disease) (p<0.0001)	9.2/6.3 HR 0.489 (p<0.0001)	N.A.
Cappuzzo F–2010 (25)	SATURN 889 100%/60	45,3%	A: Erlotinib 150 mg/day B: Placebo	67%	518	58 (11,1%)	84,4%	N.A.	mo N.A. HR 0.10 (p< 0.0001)	mo N.A. HR 0.83 (p=0.6810)
Tsao MS-2005 (26)	BR.21 731 66%/61	50%	A: Erlotinib 150 mg/day B: Placebo	7,4%	177	40 (22,6%)	80%	N.A.	N.A.	mo N.A. HR 0.77 (p=0.54)
Bell DW-2005 (27)	INTACT 1 INTACT 2 2130 90%/60,6	52,3%	A: CDDP 80 mg/m ² BSA + GEM 1250 mg/m ² BSA +/- Gefitinib 250 mg/day B: CBDCA AUC 6 + Paclitaxel 200 mg/m ² BSA +/- Gefitinib 500 mg/day	N.A.	312	32 (10%)	87,5%	72%/40% RR 1,81 (p=0,3)	6.7/4.5 HR 0.4 (p=N.A.)	то N.A. HR 1.77 (р=N.A.)
Zhou C-2010 (29)	optimal 165 N.A./N.A.	87%	A: CBDCA AUC 5-GEM 1000 mg/m ² BSA B: Erlotinib 150 mg/day	N.A.	165 (all enrolled pts)	165 (100%)	91%	83%/36% RR 2.3 (p 0,0000)	13.1/4.6 HR 0.16 (p < 0.0001)	N.A.
Kris MG–2009 (31)	ISEL 1692 66,5%/61,8	45%	A: Gefitinib 250 mg/day B: Placebo (pretreated)	3%	215	26 (12%)	82%	37.5%/0% RR N.A.	10.8/3.8 HR N.A.	N.A.
Maruyama R–2008 (46) Kris MG–2009 (31)	V 15-32 490 95,7%/56% <64y	77,7%	A: Gefitinib 250 mg/day B: Docetaxel 60 mg/m ² BSA (2 nd line)	53%	57	31 (54,4%)	96%	66.7%/45.4% RR N.A.	7.5/9.0 HR N.A.	N.A.
Eberhard DA–2005 (33)	TRIBUTE 1079 99,9%/62,6	61%	A: CBDCA AUC 6 +Paclitaxel 200 mg/m ² BSA + Erlotinib 150 mg/day B: CBDCA AUC 6 +Paclitaxel 200 mg/m ² BSA + Placebo	N.A.	228	29 (12,7%)	86,2%	53%/21% RR 2.5 (p=0,13)	N.A.	mo N.A. HR N.A. (p=0.96)
Rosell R (45)	EURTAC 174/ 86%/ 66	N.A.	A: erlotinib 150 mg/day B: cisplatinum-based doublets	N.A.	1,227	174 (14.1%)	100%	58%/15% RR 3.89 (p=N.A.)	5.2/9.7 HR 0.37 (p<0.0001)	NA for updated analysis

Ref.: reference; n°=number; Pts=patients; PS=performance status; ADK=adenocarcinoma; TKIs=tyrosine kinase inhibitors; EGFR=epidermal growth factor receptor; mut=mutatated; RR= risk ratio; PFS=progression free survival; OS=overall survival; mo=months; N.A.=data not available; CBDCA=carboplatin; CDDP=clsplatin; GEM=gemcitabine.

Literatur:

- 1. Alberta Provincial Thoracic Tumour Team. Non-small cell lung cancer stage IV [online]. Edmonton (CAN): Alberta Health Services (AHS); 2013. [Zugriff: 05.01.2016]. (Clinical practice guideline; Band LU-004). URL: http://www.albertahealthservices.ca/hp/if-hp-cancer-guide-lu004-nsclc-stage4.pdf.
- Australian Government Cancer Council Australia. Clinical practice guidelines for the 2. treatment of lung cancer [online]. 04.2015. Sydney (AUS): Cancer Council Australia; 2015. [Zugriff: 07.01.2015]. URL: http://wiki.cancer.org.au/australiawiki/index.php?title=Guidelines:Lung_cancer/Treatment /Non small-cell/Summary of recommendations&printable=ves.
- 3. Azzoli CG, Giaccone G, Temin S. American Society of Clinical Oncology Clinical Practice Guideline Update on Chemotherapy for Stage IV Non-Small-Cell Lung Cancer. J Oncol Pract 2010;6(1):39-43.
- Azzoli CG, Temin S, Giaccone G. 2011 Focused Update of 2009 American Society of 4. Clinical Oncology Clinical Practice Guideline Update on Chemotherapy for Stage IV Non-Small-Cell Lung Cancer. J Oncol Pract. 2012;8(1):63-66.
- 5. Breuer J, Nachtnebel A. Afatinib (Giotrif) for the treatment of EGFR TKI-na patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with activating EGFR mutation(s) [online]. Ludwig Boltzmann Institut für Health Technology Assessment (LBIHTA); 2013. [Zugriff: 07.01.2016]. (Wien (AUT). URL: http://eprints.hta.lbg.ac.at/1020/1/DSD HSO Nr.41.pdf
- 6. Bria E, Milella M, Cuppone F, Novello S, Ceribelli A, Vaccaro V, et al. Outcome of advanced NSCLC patients harboring sensitizing EGFR mutations randomized to EGFR tyrosine kinase inhibitors or chemotherapy as first-line treatment: a meta-analysis. Ann Oncol 2011;22(10):2277-2285.
- 7. Brodowicz T, Ciuleanu T, Crawford J, Filipits M, Fischer JR, Georgoulias V, et al. Third CECOG consensus on the systemic treatment of non-small-cell lung cancer. Annals of Oncology 2012;23(5):1223-1229.
- 8. Burotto M, Manasanch EE, Wilkerson J, Fojo T. Gefitinib and erlotinib in metastatic non-small cell lung cancer: a meta-analysis of toxicity and efficacy of randomized clinical trials. The Oncologist 2015:20(4):400-410.
- 9. Cancer Care O. Use of the Epidermal Growth Factor Receptor Inhibitors Gefitinib (Iressa), Erlotinib (Tarceva), Afatinib, Dacomitinib or Icotinib in the Treatment of Non-Small-Cell Lung Cancer: A Clinical Practice Guideline. Toronto (CAN): Cancer Care Ontario 2014: (Evidence-Based Series 7-9, Version 2).
- 10. Cui J, Cai X, Zhu M, Liu T, Zhao N. The efficacy of bevacizumab compared with other targeted drugs for patients with advanced NSCLC: a meta-analysis from 30 randomized controlled clinical trials. PLoS One 2013;8(4):e62038.
- de Marinis F. Rossi A. Di Maio M. Ricciardi S. Gridelli C. Treatment of advanced non-11. small-cell lung cancer: Italian Association of Thoracic Oncology (AIOT) clinical practice guidelines. Lung Cancer 2011;73(1):1-10.
- 12. Ellis PM, Coakley N, Feld R, Kuruvilla S, Ung YC. Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. Curr Oncol 2015;22(3):e183-e215.
- 13. Gao H, Ding X, Wei D, Cheng P, Su X, Liu H, et al. Erlotinib in patients with advanced non-small-cell lung cancer: A meta-analysis. Transl.Lung Cancer Res 2012;1(2):129-144.
- Gemeinsamer Bundesausschuss (G-BA). Beschluss über eine Änderung der 14. Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V - Afatinib vom 5. November 2015 [online]. 2015. [Zugriff: 07.01.2016]. (Berlin (GER): G-BA. URL: https://www.gba.de/downloads/39-261-2375/2015-11-05 AM-TL-XII Afatinib 2015-05-15-D-163.pdf.

□ve adult

- 15. **Greenhalgh J, Bagust A, Boland A, Dwan K, Beale S, Hockenhull J, et al.** Erlotinib and gefitinib for treating non-small cell lung cancer that has progressed following prior chemotherapy (review of NICE technology appraisals 162 and 175): a systematic review and economic evaluation. Health Technol Assess 2015;19(47):1-134.
- 16. **Haaland B, Tan PS, de CG, Jr., Lopes G.** Meta-analysis of first-line therapies in advanced non-small-cell lung cancer harboring EGFR-activating mutations. J Thorac.Oncol 2014;9(6):805-811.
- Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG). Afatinib -Nutzenbewertung gemäß § 35a SGB V Auftrag A15-17 [online]. (IQWiG-Berichte Nr. 318). Köln (GER): IQWIG; 2015. [Zugriff: 06.01.2016]. (IQWiG-Berichte. URL: https://www.igwig.de/download/A13-41 Afatinib Nutzenbewertung-35a-SGB-V.pdf.
- 18. **Ku GY, Haaland BA, de Lima LG, Jr.** Gefitinib vs. chemotherapy as first-line therapy in advanced non-small cell lung cancer: meta-analysis of phase III trials. Lung Cancer 2011;74(3):469-473.
- 19. Lee CK, Wu YL, Ding PN, Lord SJ, Inoue A, Zhou C, et al. Impact of Specific Epidermal Growth Factor Receptor (EGFR) Mutations and Clinical Characteristics on Outcomes After Treatment With EGFR Tyrosine Kinase Inhibitors Versus Chemotherapy in EGFR-Mutant Lung Cancer: A Meta-Analysis. J Clin Oncol 2015.
- 20. Liang W, Wu X, Fang W, Zhao Y, Yang Y, Hu Z, et al. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations. PLoS One 2014;9(2):e85245.
- 21. Liu J, Sheng Z, Zhang Y, Li G. The Efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Molecularly Selected Patients with Non-Small Cell Lung Cancer: A Meta-Analysis of 30 Randomized Controlled Trials. Target.Oncol 2015.
- 22. **Masters GA, Temin S, Azzoli CG, Giaccone G, Baker S, Jr., Brahmer JR, et al.** Systemic Therapy for Stage IV Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 2015.
- 23. **National Comprehensive Cancer N.** Non-Small Cell Lung Cancer [online]. 07:2015. Fort Washington (USA): NCCN; 2015. [Zugriff: 07.01.2016]. URL: <u>http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf</u>
- 24. **National Institute for Health and Care Excellence (NICE).** Afatinib for treating epidermal growth factor receptor mutation-positive locally advanced or metastatic non-small-cell lung cancer [online]. London (UK): NICE; 2014. [Zugriff: 07.01.2016]. (NICE technology appraisal guidance Band 310). URL: <u>http://www.nice.org.uk/guidance/ta310</u>
- 25. **National Institute for Health and Care Excellence (NICE).** The diagnosis and treatment of lung cancer [online]. London (UK): NICE; 2011. [Zugriff: 07.01.2016]. (Clinical Guidelines; Band 121). URL: <u>http://www.nice.org.uk/guidance/cg121</u>.
- 26. **National Institute for Health and Care Excellence (NICE).** Erlotinib and gefitinib for treating non-small-cell lung cancer that has progressed after prior chemotherapy [online]. 12.2015. London (GBR): NICE; 2015. [Zugriff: 06.01.2016]. (NICE technology appraisal guidance Band 374). URL: www.nice.org.uk/guidance/ta309.
- 27. **Normando SR, Cruz FM, Del GA.** Cumulative meta-analysis of epidermal growth factor receptor-tyrosine kinase inhibitors as first-line therapy in metastatic non-small-cell lung cancer. Anticancer Drugs 2015;26(9):995-1003.
- 28. **OuYang PY, Su Z, Mao YP, Deng W, Xie FY.** Combination of EGFR-TKIs and chemotherapy as first-line therapy for advanced NSCLC: a meta-analysis. PLoS One 2013;8(11):e79000.
- 29. **Pan G, Ke S, Zhao J.** Comparison of the efficacy and safety of single-agent erlotinib and doublet molecular targeted agents based on erlotinib in advanced non-small cell lung cancer (NSCLC): a systematic review and meta-analysis. Target.Oncol 2013;8(2):107-116.
- 30. **Petrelli F, Borgonovo K, Cabiddu M, Barni S.** Efficacy of EGFR tyrosine kinase inhibitors in patients with EGFR-mutated non-small-cell lung cancer: a meta-analysis of 13 randomized trials. Clin Lung Cancer 2012;13(2):107-114.

- 31. **Pilkington G, Boland A, Brown T, Oyee J, Bagust A, Dickson R.** A systematic review of the clinical effectiveness of first-line chemotherapy for adult patients with locally advanced or metastatic non-small cell lung cancer. Thorax 2015;70(4):359-367.
- 32. **Qi WX, Wang Q, Jiang YL, Sun YJ, Tang LN, He AN, et al.** Overall survival benefits for combining targeted therapy as second-line treatment for advanced non-small-cell-lung cancer: a meta-analysis of published data. PLoS One 2013;8(2):e55637.
- 33. Scottish Intercollegiate Guidelines Network (SIGN). Management of lung cancer. A national clinical guideline [online]. 02.2014. Edinburgh (GBR): SIGN; 2014. [Zugriff: 07.01.2016]. (SIGN publication; Band 137). URL: http://www.sign.ac.uk/pdf/SIGN137.pdf.
- 34. **Sheng Z, Zhang Y.** EGFR-TKIs combined with chemotherapy versus EGFR-TKIs single agent as first-line treatment for molecularly selected patients with non-small cell lung cancer. Med Oncol 2015;32(1):420.
- 35. Socinski MA, Evans T, Gettinger S, Hensing TA, Sequist LV, Ireland B, et al. Treatment of stage IV non-small cell lung cancer: Diagnosis and management of lung cancer. 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143(5 Suppl):e341S-e368S.
- 36. **Tan PS, Lopes G, Acharyya S, Bilger M, Haaland B.** Bayesian network metacomparison of maintenance treatments for stage IIIb/IV non-small-cell lung cancer (NSCLC) patients with good performance status not progressing after first-line induction chemotherapy: Results by performance status, EGFR mutation, histology and response to previous induction. Eur J Cancer 2015.
- 37. Vale CL, Burdett S, Fisher DJ, Navani N, Parmar MK, Copas AJ, et al. Should Tyrosine Kinase Inhibitors Be Considered for Advanced Non-Small-Cell Lung Cancer Patients With Wild Type EGFR? Two Systematic Reviews and Meta-Analyses of Randomized Trials. Clin Lung Cancer 2015;16(3):173-182.
- 38. **Wang F, Wang LD, Li B, Sheng ZX.** Gefitinib compared with systemic chemotherapy as first-line treatment for chemotherapy-naive patients with advanced non-small cell lung cancer: a meta-analysis of randomised controlled trials. Clin Oncol (R.Coll Radiol.) 2012;24(6):396-401.
- 39. Xu JL, Jin B, Ren ZH, Lou YQ, Zhou ZR, Yang QZ, et al. Chemotherapy plus Erlotinib versus Chemotherapy Alone for Treating Advanced Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS One 2015;10(7):e0131278.
- 40. **Zhang J, Zhang W, Huang S, Li H, Li Y, Chen H, et al.** Maintenance erlotinib improves clinical outcomes of unresectable advanced non-small cell lung cancer: A meta-analysis of randomized controlled trials. Exp.Ther.Med 2012;4(5):849-858.
- 41. **Zhou JG, Tian X, Wang X, Tian JH, Wang Y, Wang F, et al.** Treatment on advanced NSCLC: platinum-based chemotherapy plus erlotinib or platinum-based chemotherapy alone? A systematic review and meta-analysis of randomised controlled trials. Med Oncol 2015;32(2):471.