Dokumentvorlage, Version vom 16.03.2018

Dossier zur Nutzenbewertung gemäß § 35a SGB V

Lenvatinib (*Kisplyx*[®])

Eisai GmbH

Modul 2

Allgemeine Angaben zum Arzneimittel, zugelassene Anwendungsgebiete

Inhaltsverzeichnis

	Seite
Tabellenverzeichnis	2
Abbildungsverzeichnis	
Abkürzungsverzeichnis	
2 Modul 2 – allgemeine Informationen	6
2.1 Allgemeine Angaben zum Arzneimittel	6
2.1.1 Administrative Angaben zum Arzneimittel	
2.1.2 Angaben zum Wirkmechanismus des Arzneimittels	7
2.2 Zugelassene Anwendungsgebiete	
2.2.1 Anwendungsgebiete, auf die sich das Dossier bezieht	14
2.2.2 Weitere in Deutschland zugelassene Anwendungsgebiete	14
2.3 Beschreibung der Informationsbeschaffung für Modul 2	15
2.4 Referenzliste für Modul 2	

Tabellenverzeichnis

Se	eite
Tabelle 2-1: Allgemeine Angaben zum zu bewertenden Arzneimittel	6
Tabelle 2-2: Pharmazentralnummern und Zulassungsnummern für das zu bewertende Arzneimittel	7
Tabelle 2-3: Zugelassene Anwendungsgebiete, auf die sich das Dossier bezieht	. 14
Tabelle 2-4: Weitere in Deutschland zugelassene Anwendungsgebiete des zu bewertenden Arzneimittels	

Dossier zur Nutzenbewertung – Modul 2	Dossier	zur Nutze	enbewertung	- Modul
---------------------------------------	---------	-----------	-------------	---------

Abbildungsverzeichnis

	Seite
Abbildung 2-1: Wirkmechanismus der Kombinationstherapie Lenvatinib und	
Pembrolizumab	13

Abkürzungsverzeichnis

Abkürzung	Bedeutung
Akt	Kinase mit Pleckstrin-Homologie-Domäne
ATC-Code	Anatomisch-Therapeutisch-Chemischer Code
ATP	Adenosintriphosphat
AWG	Anwendungsgebiet
c-KIT	Tyrosinkinase KIT
EU	Europäische Union
FGF	Fibroblast Growth Factor
FGFR	Fibroblast Growth Factor Receptor
FGFR1	Fibroblast Growth Factor Receptor 1
FGFR2	Fibroblast Growth Factor Receptor 2
FGFR3	Fibroblast Growth Factor Receptor 3
FGFR4	Fibroblast Growth Factor Receptor 4
GzmB	Granzym B
HIF	Hypoxia-Inducible Factor
ICI	Immun-Checkpoint-Inhibitor
IFNγ	Interferon gamma
IL-10	Interleukin-10
MAPK	Mitogen-Activated Protein Kinase
MDSC	Myeloid-Derived Suppressor Cell
mg	Milligramm
PD-1	Programmed Cell Death 1
PD-L1	Programmed Cell Death Ligand 1
PD-L2	Programmed Cell Death Ligand 2
PDGF	Platelet-Derived Growth Factor
PDGFA	Platelet-Derived Growth Factor Subunit A
PDGFB	Platelet-Derived Growth Factor Subunit B
PDGFC	Platelet-Derived Growth Factor Subunit C
PDGFD	Platelet-Derived Growth Factor Subunit D
PDGFR	Platelet-Derived Growth Factor Receptor
PDGFRα	Platelet-Derived Growth Factor Receptor alpha

PDGFRβ	Platelet-Derived Growth Factor Receptor beta
PI3K	Phosphatidyl-Inositol-3-Kinase
PZN	Pharmazentralnummer
RCC	Renal Cell Carcinoma (Nierenzellkarzinom)
RET	Rearranged During Transfection
TAM	Tumorassoziierter Makrophage
TGFß	Transforming Growth Factor beta
TKI	Tyrosinkinase-Inhibitor
Treg	Regulatorische T-Zelle
VEGF	Vascular Endothelial Growth Factor
VEGFR	Vascular Endothelial Growth Factor Receptor
VEGFR1	Vascular Endothelial Growth Factor Receptor 1
VEGFR2	Vascular Endothelial Growth Factor Receptor 2
VEGFR3	Vascular Endothelial Growth Factor Receptor 3
VHL	von-Hippel-Lindau

Modul 2 – allgemeine Informationen

Modul 2 enthält folgende Informationen:

- Allgemeine Angaben über das zu bewertende Arzneimittel (Abschnitt 2.1)
- Beschreibung der Anwendungsgebiete, für die das zu bewertende Arzneimittel zugelassen wurde (Abschnitt 2.2); dabei wird zwischen den Anwendungsgebieten, auf die sich das Dossier bezieht, und weiteren in Deutschland zugelassenen Anwendungsgebieten unterschieden.

Alle in den Abschnitten 2.1 und 2.2 getroffenen Aussagen sind zu begründen. Die Quellen (z. B. Publikationen), die für die Aussagen herangezogen werden, sind in Abschnitt 2.4 (Referenzliste) eindeutig zu benennen. Das Vorgehen zur Identifikation der Quellen ist im Abschnitt 2.3 (Beschreibung der Informationsbeschaffung) darzustellen.

Im Dokument verwendete Abkürzungen sind in das Abkürzungsverzeichnis aufzunehmen. Sofern Sie für Ihre Ausführungen Tabellen oder Abbildungen verwenden, sind diese im Tabellen- bzw. Abbildungsverzeichnis aufzuführen.

2.1 Allgemeine Angaben zum Arzneimittel

2.1.1 Administrative Angaben zum Arzneimittel

Geben Sie in Tabelle 2-1 den Namen des Wirkstoffs, den Handelsnamen und den ATC-Code für das zu bewertende Arzneimittel an.

Tabelle 2-1: Allgemeine Angaben zum zu bewertenden Arzneimittel

Wirkstoff:	Lenvatinib
Handelsname:	Kisplyx [®]
ATC-Code:	L01XE29

Geben Sie in der nachfolgenden Tabelle 2-2 an, welche Pharmazentralnummern (PZN) und welche Zulassungsnummern dem zu bewertenden Arzneimittel zuzuordnen sind, und benennen Sie dabei die zugehörige Wirkstärke und Packungsgröße. Fügen Sie für jede Pharmazentralnummer eine neue Zeile ein.

Tabelle 2-2: Pharmazentralnummern und Zulassungsnummern für das zu bewertende Arzneimittel

Pharmazentralnummer (PZN)	Zulassungsnummer	Wirkstärke	Packungsgröße
12448125	EU/1/16/1128/001	4 mg	30 Hartkapseln
12448131	EU/1/16/1128/002	10 mg	30 Hartkapseln
EU: Europäische Union; mg: Milligramm			

2.1.2 Angaben zum Wirkmechanismus des Arzneimittels

Beschreiben Sie den Wirkmechanismus des zu bewertenden Arzneimittels. Begründen Sie Ihre Angaben unter Nennung der verwendeten Quellen.

Lenvatinib gehört zur Klasse der Tyrosinkinase-Inhibitoren (TKI). Als multipler TKI hemmt Lenvatinib gleichzeitig verschiedene Signalwege, indem es auf mehrere Ziel-Rezeptor-Tyrosinkinasen wirkt (Sonpavde 2014; Stjepanovic 2014).

Tyrosinkinasen sind Enzyme, die durch Phosphorylierung der Aminosäure Tyrosin Proteine in ihrer Aktivität verändern. Die phosphorylierten Tyrosinreste können Bestandteil eigener Proteinstrukturen (Autophosphorylierung) oder andere Proteine sein. Durch die Steuerung der Aktivität von Proteinen kommt den Tyrosinkinasen eine wichtige Bedeutung in der Signalweiterleitung zellulärer Prozesse zu. Tyrosinkinasen sind entweder ein intrazellulärer Teil von an der Zellmembran gebundenen Rezeptoren (Rezeptor-Tyrosinkinasen) oder sie sind nicht direkt Teil des membrangebundenen Rezeptors, sondern binden an diesen Rezeptor und stellen damit die Gruppe der nicht membrangebundenen Tyrosinkinasen dar (Nicht-Rezeptor-Tyrosinkinasen) (Müller-Tidow 2007; Paul 2004).

Mindestens 90 Tyrosinkinasen sind bisher bekannt, davon 58 Rezeptor-Tyrosinkinasen und 32 Nicht-Rezeptor-Tyrosinkinasen. Die Rezeptor-Tyrosinkinasen lassen sich in weitere Subgruppen unterteilen, wie beispielsweise die Familie der vaskulären endothelialen Wachstumsfaktor-Rezeptoren (vascular endothelial growth factor receptor, VEGFR), die Familie der Plättchen-Wachstumsfaktor-Rezeptoren (platelet-derived growth factor receptor, PDGFR), die Familie der Fibroblasten-Wachstumsfaktor-Rezeptoren (fibroblast growth factor receptor, FGFR) und die Familie der "Rearranged during transfection tyrosine kinase" (RET)-Rezeptoren (Madhusudan 2004).

Bei Bindung eines Liganden an die extrazelluläre Liganden-Bindungsstelle der Rezeptor-Tyrosinkinase kommt es zu einer Konformationsänderung, wodurch die intrazelluläre Tyrosinkinasendomäne aktiviert und daraufhin (reversibel) eigene, sowie die Tyrosinreste anderer Proteine phosphoryliert werden. Diese Konformationsänderung geht entweder auf die Homodimerisierung zweier gleicher oder auf die Heterodimerisierung zweier unterschiedlicher Rezeptorsubtypen zurück (Madhusudan 2004; Müller-Tidow 2007). Durch die Aktivierung der Tyrosinkinasen und die anschließende Phosphorylierung von Tyrosinresten wird eine Kaskade über signalweiterleitende Proteine in Gang gesetzt, wodurch das extrazelluläre Signal (Ligand)

in intrazelluläre Signale transformiert wird (Faivre 2006; Madhusudan 2004). Diese intrazellulären Signale induzieren via Genexpression zahlreiche biologische Prozesse, wie Zellproliferation, Zell-Zyklus-Progression, Apoptose, Angiogenese und Zellmigration (Faivre 2006; Hunter 1998; Madhusudan 2004; Müller-Tidow 2007).

Fehlregulierte Tyrosinkinasen sind maßgeblich an der Bildung maligner Tumoren und der Tumorprogression beteiligt (Faivre 2006; Madhusudan 2004; Müller-Tidow 2007). Durch Mutationen oder auch Überexpressionen von Rezeptor-Tyrosinkinasen kann es zu einer unkontrollierten und Liganden-unabhängigen Dauer-Signalübertragung kommen und in deren Folge zur Proliferation, Metastasierung und Tumor-Angiogenese (Banumathy 2010; Müller-Tidow 2007; Yakes 2011).

Die Hemmung der Rezeptor-Tyrosinkinasen durch TKI wie Lenvatinib stellt eine wichtige therapeutische Möglichkeit zur Behandlung von Tumorerkrankungen dar (Faivre 2006; Müller-Tidow 2007; Yamamoto 2014). Die Mehrzahl der TKI hemmen die Tyrosinkinase-Aktivität durch Bindung an die intrazelluläre Adenosintriphosphat (ATP)-Bindungsstelle der Rezeptor-Tyrosinkinase, wodurch die Phosphorylierung verhindert und so die intrazelluläre Signalübertragung unterbrochen wird (Faivre 2006; Müller-Tidow 2007). Die anti-tumorale Wirkung von TKI zeigt sich insbesondere durch zwei Funktionen: die anti-angiogene und die anti-proliferative Funktion (Banumathy 2010). Diese beiden anti-tumoralen Funktionen werden im Folgenden für den TKI Lenvatinib beschrieben.

Anti-angiogene Funktion von Lenvatinib

Aufgrund des hohen Vaskularisierungsgrads von Nierenzellkarzinomen (renal cell carcinoma, RCC) spielt die anti-angiogene Behandlung dieser Tumore eine besonders große Rolle (Banumathy 2010). Lenvatinib hemmt verschiedene Rezeptor-Tyrosinkinasen, die eine Rolle in der Tumor-Angiogenese spielen. Die anti-angiogenen Eigenschaften von Lenvatinib ergeben sich vor allem durch die Hemmung der Rezeptor-Tyrosinkinasen VEGFR und FGFR, aber auch durch die Hemmung der Rezeptor-Tyrosinkinasen PDGFR und Tyrosinkinase KIT (c-KIT) (Banumathy 2010; Marech 2014). Die Funktionen der Rezeptor-Tyrosinkinasen VEGFR, FGFR, PDGFR und c-KIT sowie deren Beteiligung an angiogenen Prozessen werden nachfolgend erläutert.

Hypoxie (Sauerstoff-Mangelversorgung) und eine dadurch ausgelöste kompensatorische Hyperaktivierung der Angiogenese spielen eine Schlüsselrolle in der Entwicklung des RCC (Banumathy 2010). Besonders das klarzellige RCC ist durch starke Vaskularisation charakterisiert (Sonpavde 2014). Die Tumor-Angiogenese verläuft in einem mehrstufigen Prozess, der von verschiedenen pro-angiogenen Faktoren und Inhibitoren gesteuert wird (Raica 2010). Viele Wachstumsfaktoren wie VEGF, FGF2 oder PDGF sind maßgeblich an der Induktion und Progression der Angiogenese beteiligt (Raica 2010). Lenvatinib inhibiert die intrazellulären Kinasen der Rezeptoren VEGFR, FGFR, PDGFR und c-KIT, die an der Regulation der Angiogenese und Lymphangiogenese beteiligt sind (Faivre 2006; Ferrara 2005; Marech 2014; Raica 2010; Yamamoto 2014).

In allen familiären und mindestens zwei Drittel der sporadischen Formen des RCC konnte eine Inaktivierung des von-Hippel-Lindau (VHL)-Gens, einem Regulator der hypoxischen Reaktion, nachgewiesen werden (Banumathy 2010). In normalem Gewebe führt eine Hypoxie zur transienten Aktivierung einer speziellen Gruppe von Transkriptionsfaktoren, den sogenannten Hypoxia-Inducible Factors (HIF). Diese wiederum regulieren unter anderem die Transkription von angiogenen Proteinen, wie z.B. VEGF, FGF und PDGF (Banumathy 2010; Sonpavde 2014). Nach Normalisierung der Sauerstoffversorgung wird die α-Untereinheit des HIF von VHL gebunden und dadurch der Abbau im Proteasom induziert. In Tumorzellen mit inaktiviertem VHL-Gen kommt es zu konstitutiv aktivem HIF und somit zu einer dauerhaften Expression von VEGF und anderen HIF-Zielproteinen (Banumathy 2010).

VEGF wird in den meisten klarzelligen RCC überexprimiert (Banumathy 2010). VEGF sind zentrale Wachstumsfaktoren, die vor allem über Aktivierung des Mitogen-aktivierten Proteinkinase (mitogen-activated protein kinase, MAPK)- und des Phosphatidyl-Inositol-3-Kinase (PI3K)-Akt-Signalweges (Akt: Kinase mit Pleckstrin-Homologie-Domäne) die Bildung neuer Blutgefäße mit normaler (d.h. nicht krankhafter) Struktur und Funktion stimulieren (siehe Abbildung 2-1) (Ferrara 2005). In Tumoren treibt VEGF die Tumor-Angiogenese an und ist daher ein wichtiger prognostischer Marker in soliden Tumoren (Madhusudan 2004; Raica 2010). Eine gesteigerte Expression von VEGF ist sowohl beim RCC als auch in anderen Tumoren mit einer schlechten Prognose verbunden (Ferrara 2005; Posadas 2013). VEGF führt zu vaskulärer Permeabilität, Endothelzell-Proliferation und -Migration sowie Tubenbildung und ist damit ein Schlüsselregulator des Tumorwachstums und der Metastasierung (Fox 2001; Schöffski 2006; Yamamoto 2014). Blutgefäße in Tumoren, die unter dem Einfluss von VEGF gebildet wurden, sind in der Regel desorganisiert, entartet sowie undicht und weisen einen hohen interstitiellen Druck auf. Die Zufuhr von Sauerstoff sowie von Medikamenten durch die Blutgefäße ist daher wesentlich schlechter als in normalem Gewebe. Dies trägt zu einer positiven Selektion von Krebszellen und der Entwicklung von Resistenzen gegenüber Medikamenten und Bestrahlung bei (Ferrara 2005; Fox 2001). Die Hemmung von VEGF bzw. der VEGF / VEGFR-Interaktion unterbricht die Signalübertragung und führt demzufolge zu einer Normalisierung der vaskulären Permeabilität und zu reduziertem interstitiellen Druck (Ferrara 2005). Folglich kommt es zu verringertem Tumorwachstum, Hemmung der Progression für einen längeren Zeitraum und verringerter Invasivität (Stjepanovic 2014).

VEGF-Rezeptoren (VEGFR) lassen sich in drei Subtypen unterteilen: VEGFR1, VEGFR2 und VEGFR3. An der Angiogenese sind insbesondere VEGFR1 und VEGFR2 beteiligt. Die genaue Funktion von VEGFR1 ist noch nicht abschließend geklärt. Verschiedene Evidenz zeigt, dass VEGFR1 sowohl positive als auch negative Einflüsse auf die Angiogenese hat (Ferrara 2005; Rahimi 2006). Während der frühen embryonalen Angiogenese ist VEGFR1 ein wichtiger Gegenspieler und Kontrollmechanismus von VEGFR2, jedoch auch unerlässlich für Tumorwachstum und Metastasierung entarteter Zellen (Shibuya 2013). VEGFR2 ist dagegen der wichtigste Mediator der Tumor-Angiogenese, der das Zellwachstum, die Differenzierung, die Migration und die Tubulogenese fördert (Ferrara 2005; Glen 2011). VEGFR3 wird überwiegend in lymphatischen endothelialen Zellen exprimiert und ist daher vor allem in die

Neubildung lymphatischer Gefäße, die Lymphangiogenese involviert (Ferrara 2005; Stjepanovic 2014).

Viele RCC-Patienten, die mit gegen VEGF bzw. VEGFR gerichteten Therapien behandelt werden, entwickeln im Laufe der Zeit eine Resistenz gegen die Behandlung (Sonpavde 2014).

Der FGF / FGFR-Signalweg stellt häufig eine Alternative für Tumorzellen dar, wenn der Signalweg über VEGF / VEGFR blockiert ist. Durch die Hemmung des FGF / FGFR-Signalweges durch Lenvatinib wird auch der für die Tumorangiogenese bekannte Kompensationsmechanismus blockiert (Stjepanovic 2014).

FGF sind Heparin-bindende Wachstumsfaktoren. Derzeit sind 23 FGF-Wachstumsfaktoren, FGF-1 bis FGF-23, und vier Rezeptor Subtypen, FGFR1 bis FGFR4 bekannt (St. Bernard 2005). Lenvatinib bindet an die Rezeptoren der Subtypen FGFR1 bis 4 (Eisai GmbH 2021). Die Komponenten des **FGF** / **FGFR**-Signalweges werden in vielen Geweben exprimiert und sind in eine Vielzahl biologischer Prozesse involviert (Sonpavde 2014). FGF-Wachstumsfaktoren stimulieren außerdem alle Phasen der Angiogenese und schaffen somit eine für das Tumorwachstum geeignete Umgebung. So stimuliert z.B. FGF2 unter anderem die Endothelzell-Proliferation und -Migration. FGF2 wird in 75 % bis 80 % der RCC exprimiert. Die FGF2-Expression ist dabei mit einer schlechten Prognose assoziiert (Sonpavde 2014).

PDGF umfasst eine Gruppe von Wachstumsfaktoren (PDGFA, PDGFB, PDGFC, PDGFD), die bei Embryogenese, Zellproliferation, Zellmigration, Wundheilung und Angiogenese eine Rolle spielen (Raica 2010). PDGFR sind Rezeptor-Tyrosinkinasen, die sich als Bindungsstelle für PDGF an der Zelloberfläche befinden. In Tumoren führt die PDGF/PDGFR-Wechselwirkung durch autokrine und zell-autonome Prozesse zur Stimulation der Angiogenese und zur Kontrolle des interstitiellen Tumordrucks und dadurch zu Tumorentwicklung und Tumorprogression (Raica 2010). Von besonderer klinischer Bedeutung ist PDGFA, ein wichtiger chemotaktischer Faktor für die Bildung stromaler Fibroblasten, der physiologisch insbesondere von Herz-, Skelettmuskelzellen und Pankreas exprimiert wird. Pathologisch wird PDGFA auch von Tumorzellen produziert. Durch Unterbrechung des parakrinen Signalweges durch PDGFRa, dem Rezeptor für PDGFA, können das Tumorwachstum und die Angiogenese reduziert werden (Raica 2010). PDGFB und der dazugehörige Rezeptor PDGFRß sind essenziell an der Entwicklung des kardiovaskulären Systems beteiligt, sowohl bei normalen als auch bei pathologischen Prozessen. PDGFB führt gemeinsam mit anderen pro-angiogenen Faktoren zu Wachstum und Formation sowie zur Stabilisation neuer Blutgefäße. Die tumorbezogene Angiogenese wird von PDGFB durch autokrine und/oder parakrine Mechanismen sowie durch Migration während der Tumorinvasion gefördert (Raica 2010).

In vitro zeigt Lenvatinib eine Inhibition sowohl von PDGFR α als auch PDGFR β (Matsui 2008). Klinisch zeigt sich für PDGFR β eine im Vergleich zu anderen Rezeptor-Tyrosinkinasen schwächere Inhibition, so dass sich das klinische Inhibitionsprofil von Lenvatinib betreffend PDGFR auf PDGFR α bezieht (Schlumberger 2015).

c-KIT ist eine Rezeptor-Tyrosinkinase, die eine wichtige Rolle bei der Hämatopoese, Melanogenese und Spermatogenese spielt (Tanaka 1995). Eine Überexpression von c-KIT führt zu onkogenen Prozessen, wie Proliferation, verringerte Apoptose und Metastasierung, letztere durch Zellmigration, Zell-Adhäsion und Zell-Invasion (Faivre 2006). c-KIT wird im RCC auf der Zelloberfläche von Mast-, Endothel- und Tumorzellen exprimiert (Marech 2014). Eine Aktivierung von c-KIT führt zur Induktion verschiedener Signalwege, wie z.B. dem MAPK-Signalweg und dem PI3K-Akt-Signalweg. Die erhöhte Aktivierung dieser Signalwege führt wiederum zu einer Aktivierung von Mastzellen, welche pro-angiogene Faktoren, wie VEGF, PDGFβ und FGF, sezernieren und somit eine Verstärkung der Angiogenese bewirken (Marech 2014).

Zusammenfassend ist festzuhalten, dass Lenvatinib durch die gleichzeitige, effektive Hemmung der dargestellten angiogenen Signalwege die Tumorangiogenese und somit die Tumorprogression des RCC wirksam und für einen längeren Zeitraum inhibiert (Motzer 2015; Sonpavde 2014).

Anti-proliferative Funktion von Lenvatinib

Die anti-proliferative Funktion von Lenvatinib entsteht durch zwei Mechanismen. Zum einen kontrolliert Lenvatinib über die Hemmung der Rezeptor-Tyrosinkinasen RET, c-KIT und PDGFR die aberrante Tumorzell-Proliferation. Zum anderen beeinflusst Lenvatinib durch die Hemmung von FGFR1 bis 4 und PDGFR α / β die Mikroumgebung des Tumors (Matsui 2008; Stjepanovic 2014). Die Funktionen der Rezeptor-Tyrosinkinasen RET, c-KIT, PDGFR und FGFR und deren Beteiligung an proliferativen Prozessen werden nachfolgend erläutert.

Die Rezeptor-Tyrosinkinase **RET** ist an der Aktivierung verschiedener Signalkaskaden, wie z.B. dem MAPK-Signalweg und dem PI3K-Akt-Signalweg, beteiligt (Stjepanovic 2014). Der MAPK-Signalweg und der PI3-Akt-Signalweg steuern die zellulären Prozesse der Differenzierung, Proliferation und Hemmung der Apoptose (Benvenga 2014). Eine aberrante Aktivierung dieser Signalwege kann so zur Initiierung und Progression von Krebs führen (Benvenga 2014).

Die Überexpression der Rezeptor-Tyrosinkinase **c-KIT** führt zu onkogenen Prozessen, wie Proliferation, verringerte Apoptose und Metastasierung, letztere durch Zellmigration, Zell-Adhäsion und Zell-Invasion (Faivre 2006).

Die Beteiligung des **PDGF** / **PDGFR**-Signalweges und des **FGF** / **FGFR**-Signalweges an der Tumorzell-Proliferation und somit dem Tumorwachstum konnte in verschiedenen Tumorarten gezeigt werden (Raica 2010; St. Bernard 2005).

Wie zuvor erläutert sind die Rezeptor-Tyrosinkinasen RET, c-KIT, PDGFR und FGFR an zahlreichen proliferativen Prozessen beteiligt, die zur Tumorentwicklung und Tumorprogression führen. Lenvatinib ist in der Lage, durch multiple Hemmung aberrant aktivierter Rezeptor-Tyrosinkinasen, die Tumorprogression bei Patienten mit RCC für einen längeren Zeitraum zu unterbinden (Motzer 2015).

Immunmodulatorische Funktion von Lenvatinib

Neben den beschriebenen anti-angiogenen und anti-proliferativen Effekten kann durch Lenvatinib die Mikroumgebung des Tumors beeinflusst immunmodulatorische Funktion von Lenvatinib wird insbesondere auf die Hemmung der VEGF-induzierten Immunsuppression zurückgeführt (siehe Abbildung 2-1), einhergehend mit einer reduzierten Anzahl von regulatorischen Immunzellen und einer erhöhten Anzahl von CD8⁺ T-Zellen (Grünwald 2019; Kato 2019; Ott 2015; Zhao 2020). In syngenen Mausmodellen bewirkte die Kombination von Lenvatinib mit monoklonalen Antikörpern gegen den "programmed cell death 1" (PD-1)-Rezeptor eine höhere Anti-Tumor-Aktivität als jeder der Wirkstoffe allein und wurde von einer verstärkten, vermutlich durch CD8+ T-Zellen vermittelten Immunantwort begleitet (Grünwald 2019; Kimura 2018). Die verbesserte Anti-Tumor-Aktivität der Kombinationstherapie beruht unter anderem auf einer reduzierten Anzahl an tumorassoziierten Makrophagen (TAM), was wiederum die PD-1-Signalhemmung verstärkt. Darüber hinaus kommt es zur Aktivierung des Interferon (IFN)-Signalweges (siehe Abbildung 2-1) (Grünwald 2019; Kato 2019; Zhao 2020).

Kisplyx indiziert zur Behandlung von Erwachsenen mit fortgeschrittenem Nierenzellkarzinom (renal cell carcinoma, RCC) in Kombination mit Pembrolizumab als Erstlinientherapie (Eisai GmbH 2021). Im Folgenden wird der Wirkmechanismus von Pembrolizumab sowie der synergistische Effekt der gleichzeitigen Gabe von Lenvatinib in Kombination mit Pembrolizumab dargestellt.

Kombinationstherapie Lenvatinib und Pembrolizumab

Pembrolizumab (KEYTRUDA®) ist ein humanisierter monoklonaler Antikörper, der an den PD-1-Rezeptor bindet und die Interaktion mit seinen Liganden "programmed cell death ligand 1" (PD-L1) und "programmed cell death ligand 2" (PD-L2) blockiert (siehe Abbildung 2-1). Pembrolizumab zählt zur Gruppe der Immun-Checkpoint-Inhibitoren (ICI) und ist bereits in verschiedenen Indikationen zugelassen (MSD Sharp & Dohme GmbH 2021). Der PD-1-Rezeptor ist ein negativer Regulator der T-Zell-Aktivität, der nachweislich an der Kontrolle der T-Zell-Immunreaktion beteiligt ist. Pembrolizumab verstärkt die T-Zell-Reaktion einschließlich der Immunreaktion gegen den Tumor durch Hemmung der Bindung des PD-1-Rezeptors an seine Liganden PD-L1 und PD-L2, die auf Antigen-präsentierenden Zellen exprimiert werden und von Tumoren oder anderen Zellen in der Mikroumgebung des Tumors exprimiert werden können (Bardhan 2016; MSD Sharp & Dohme GmbH 2021; Pardoll 2012).

Aufgrund der komplementären Wirkmechanismen von Lenvatinib und Pembrolizumab (siehe Abbildung 2-1) werden gleichzeitig das anti-inflammatorische Milieu der Tumormikroumgebung, die Nährstoffversorgung des Tumors durch eine Hemmung der Angiogenese und das Wachstum des Tumors durch eine Hemmung der Zellproliferation therapeutisch adressiert (Kato 2019). Dieser multifaktorielle Ansatz erschwert zusätzlich eine Resistenzbildung des Tumors (Taylor 2021). Die Wirksamkeit dieses synergistischen Ansatzes wurde bereits in klinischen Studien bei der Behandlung unterschiedlicher Tumorentitäten gezeigt (Lee 2017; Motzer 2021; Taylor 2016; Taylor 2020; Taylor 2021).

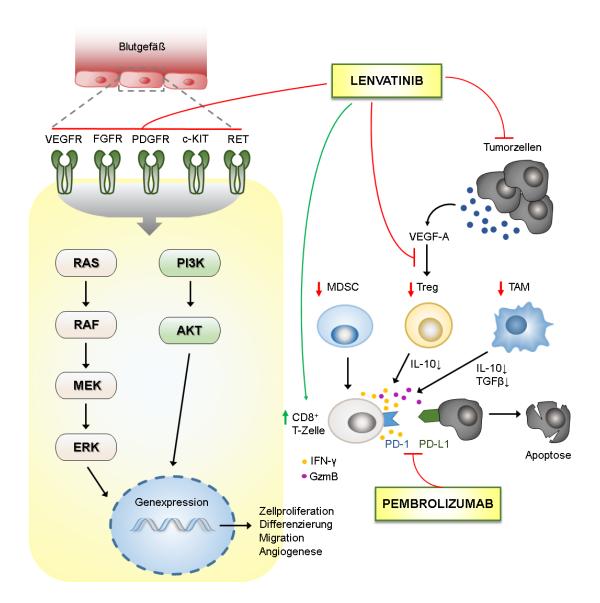


Abbildung 2-1: Wirkmechanismus der Kombinationstherapie Lenvatinib und Pembrolizumab

Linke Seite: Die anti-angiogene und anti-proliferative Funktion von Lenvatinib beruht auf der Hemmung verschiedener Rezeptor-Tyrosinkinasen (VEGFR, FGFR, PDGFR, RET und c-KIT) und der nachgeschalteten Signalwege.

Rechte Seite: Darüber hinaus wirkt die VEGF-gerichtete Behandlung mit Lenvatinib auch immunmodulatorisch durch die Reduktion der VEGF-vermittelten Immunsuppression. Die gleichzeitige Behandlung mit Pembrolizumab hat eine synergistische Wirkung in der Tumorbehandlung.

c-KIT: Tyrosinkinase KIT; FGFR: Fibroblast Growth Factor Receptor; GzmB: Granzym B; IFN γ : Interferon gamma; IL-10: Interleukin-10; MDSC: Myeloid-Derived Suppressor Cell; PD-1: Programmed Cell Death 1; PD-L1: Programmed Cell Death Ligand 1; PDGFR: Platelet-Derived Growth Factor Receptor; RET: Rearranged During Transfection; TAM: Tumorassoziierter Makrophage; TGF β : Transforming Growth Factor beta; Treg: Regulatorische T-Zelle; VEGF: Vascular Endothelial Growth Factor; VEGFR: Vascular Endothelial Growth Factor Receptor

Quelle: In Anlehnung an Zhao et al. (Zhao 2020).

2.2 Zugelassene Anwendungsgebiete

2.2.1 Anwendungsgebiete, auf die sich das Dossier bezieht

Benennen Sie in der nachfolgenden Tabelle 2-3 die Anwendungsgebiete, auf die sich das vorliegende Dossier bezieht. Geben Sie hierzu den Wortlaut der Fachinformation an. Sofern im Abschnitt "Anwendungsgebiete" der Fachinformation Verweise enthalten sind, führen Sie auch den Wortlaut an, auf den verwiesen wird. Fügen Sie für jedes Anwendungsgebiet eine neue Zeile ein, und vergeben Sie eine Kodierung (fortlaufende Bezeichnung von "A" bis "Z") [Anmerkung: Diese Kodierung ist für die übrigen Module des Dossiers entsprechend zu verwenden].

Tabelle 2-3: Zugelassene Anwendungsgebiete, auf die sich das Dossier bezieht

Anwendungsgebiet (Wortlaut der Fachinformation inkl. Wortlaut bei Verweisen)	orphan (ja / nein)	Datum der Zulassungserteilung	Kodierung im Dossier ^a
"Kisplyx ist indiziert zur Behandlung von Erwachsenen mit fortgeschrittenem Nierenzellkarzinom (renal cell carcinoma, RCC) in Kombination mit Pembrolizumab als Erstlinientherapie."	nein	26.11.2021	В
a: Fortlaufende Angabe "A" bis "Z".			

Benennen Sie die den Angaben in Tabelle 2-3 zugrunde gelegten Quellen.

Die Beschreibung des zugelassenen Anwendungsgebiets (AWG), auf das sich das Dossier bezieht, ist der deutschen Fachinformation von Kisplyx[®] mit Stand November 2021 entnommen (Eisai GmbH 2021).

2.2.2 Weitere in Deutschland zugelassene Anwendungsgebiete

Falls es sich um ein Dossier zu einem neuen Anwendungsgebiet eines bereits zugelassenen Arzneimittels handelt, benennen Sie in der nachfolgenden Tabelle 2-4 die weiteren in Deutschland zugelassenen Anwendungsgebiete des zu bewertenden Arzneimittels. Geben Sie hierzu den Wortlaut der Fachinformation an; sofern im Abschnitt "Anwendungsgebiete" der Fachinformation Verweise enthalten sind, führen Sie auch den Wortlaut an, auf den verwiesen wird. Fügen Sie dabei für jedes Anwendungsgebiet eine neue Zeile ein. Falls es kein weiteres zugelassenes Anwendungsgebiet gibt oder es sich nicht um ein Dossier zu einem neuen Anwendungsgebiet eines bereits zugelassenen Arzneimittels handelt, fügen Sie in der ersten Zeile unter "Anwendungsgebiet" "kein weiteres Anwendungsgebiet" ein.

Tabelle 2-4: Weitere in Deutschland zugelassene Anwendungsgebiete des zu bewertenden Arzneimittels

Anwendungsgebiet (Wortlaut der Fachinformation inkl. Wortlaut bei Verweisen)	Datum der Zulassungserteilung
"Kisplyx ist indiziert zur Behandlung von Erwachsenen mit fortgeschrittenem Nierenzellkarzinom (renal cell carcinoma, RCC) in Kombination mit Everolimus nach einer gegen den vaskulären endothelialen Wachstumsfaktor (VEGF) gerichteten vorangegangenen Behandlung."	25.08.2016
VEGF: Vascular Endothelial Growth Factor	

Benennen Sie die den Angaben in Tabelle 2-4 zugrunde gelegten Quellen. Falls es kein weiteres zugelassenes Anwendungsgebiet gibt oder es sich nicht um ein Dossier zu einem neuen Anwendungsgebiet eines bereits zugelassenen Arzneimittels handelt, geben Sie "nicht zutreffend" an.

Die Information ist der Fachinformation von Kisplyx® mit Stand November 2021 entnommen (Eisai GmbH 2021).

2.3 Beschreibung der Informationsbeschaffung für Modul 2

Erläutern Sie an dieser Stelle das Vorgehen zur Identifikation der im Abschnitt 2.1 und im Abschnitt 2.2 genannten Quellen (Informationsbeschaffung). Sofern erforderlich, können Sie zur Beschreibung der Informationsbeschaffung weitere Quellen benennen.

Zur Informationsbeschaffung von Abschnitt 2.1.2 – Angaben zum Wirkmechanismus des Arzneimittels erfolgte eine orientierende Literaturrecherche unter der Verwendung von relevanten Schlagwörtern in den Datenbanken MEDLINE, Cochrane Library und PubMed sowie in online Suchmaschinen.

Die Informationsbeschaffung zu Abschnitt 2.2 – Zugelassene AWG wurden der aktuellen deutschen Fachinformation von Kisplyx® mit Stand November 2021 entnommen (Eisai GmbH 2021).

2.4 Referenzliste für Modul 2

Listen Sie nachfolgend alle Quellen (z. B. Publikationen), die Sie in den vorhergehenden Abschnitten angegeben haben (als fortlaufend nummerierte Liste). Verwenden Sie hierzu einen allgemein gebräuchlichen Zitierstil (z. B. Vancouver oder Harvard). Geben Sie bei Fachinformationen immer den Stand des Dokuments an.

- 1. Banumathy G. und Cairns P. 2010. *Signaling pathways in renal cell carcinoma*. Cancer biology & therapy 10 (7), S. 658–664.
- 2. Bardhan K., Anagnostou T. und Boussiotis V. A. 2016. *The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation*. Frontiers in immunology 7 (550), S. 1–17.
- 3. Benvenga S. und Koch C. A. 2014. *Molecular pathways associated with aggressiveness of papillary thyroid cancer*. Current genomics 15 (3), S. 162–170.
- 4. Eisai GmbH 2021. Fachinformation Kisplyx® 4 mg/10 mg Hartkapseln. Lenvatinib. Stand November 2021. Data on file.
- 5. Faivre S., Djelloul S. und Raymond E. 2006. *New paradigms in anticancer therapy:* targeting multiple signaling pathways with kinase inhibitors. Seminars in oncology 33 (4), S. 407–420.
- 6. Ferrara N. 2005. *VEGF as a therapeutic target in cancer*. Oncology 69 (Suppl 3), S. 11–16.
- 7. Fox S. B., Gasparini G. und Harris A. L. 2001. *Angiogenesis: pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs.* The Lancet. Oncology 2 (5), S. 278–289.
- 8. Glen H., Mason S., Patel H. et al. 2011. *E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion*. BMC cancer 11 (309), S. 1–10.
- 9. Grünwald V., Powles T., Choueiri T. K. et al. 2019. *Lenvatinib plus everolimus or pembrolizumab versus sunitinib in advanced renal cell carcinoma: study design and rationale*. Future oncology (London, England) 15 (9), S. 929–941.
- 10. Hunter T. 1998. *The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease.* Philosophical transactions of the Royal Society of London. Series B, Biological sciences 353 (1368), S. 583–605.
- 11. Kato Y., Tabata K., Kimura T. et al. 2019. *Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway.* PloS one 14 (2), S. 1-18.
- 12. Kimura T., Kato Y., Ozawa Y. et al. 2018. *Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model*. Cancer science 109 (12), S. 3993–4002.
- 13. Lee C.-H., Makker V., Rasco D. et al. 2017. *A phase 1b/2 trial of lenvatinib plus pembrolizumab in patients with renal cell carcinoma*. Annals of Oncology 28 (Supplement 5), S. v295-v296.
- 14. Madhusudan S. und Ganesan T. S. 2004. *Tyrosine kinase inhibitors in cancer therapy*. Clinical biochemistry 37 (7), S. 618–635.
- 15. Marech I., Gadaleta C. D. und Ranieri G. 2014. *Possible prognostic and therapeutic significance of c-Kit expression, mast cell count and microvessel density in renal cell carcinoma*. International journal of molecular sciences 15 (7), S. 13060–13076.

- 16. Matsui J., Funahashi Y., Uenaka T. et al. 2008. *Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase*. Clinical cancer research: an official journal of the American Association for Cancer Research 14 (17), S. 5459–5465.
- 17. Motzer R., Alekseev B., Rha S.-Y. et al. 2021. *Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma*. The New England journal of medicine 384 (14), S. 1289–1300.
- 18. Motzer R. J., Hutson T. E., Glen H. et al. 2015. *Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial.* The Lancet Oncology 16 (15), S. 1473–1482.
- 19. MSD Sharp & Dohme GmbH 2021. *Fachinformation KEYTRUDA® 25 mg/ml Konzentrat zur Herstellung einer Infusionslösung: Stand November 2021*. Pembrolizumab. Verfügbar unter: https://www.fachinfo.de, abgerufen am: 25.11.2021.
- 20. Müller-Tidow C., Krug U., Brunnberg U. et al. 2007. *Tyrosinkinasen als Ziele neuer onkologischer Therapien: Aussichten und Probleme*. Deutsches Ärzteblatt 104 (19), S. 1312–1319.
- 21. Ott P. A., Hodi F. S. und Buchbinder E. I. 2015. *Inhibition of Immune Checkpoints and Vascular Endothelial Growth Factor as Combination Therapy for Metastatic Melanoma: An Overview of Rationale, Preclinical Evidence, and Initial Clinical Data.* Frontiers in oncology 5 (202), S. 1–7.
- 22. Pardoll D. M. 2012. *The blockade of immune checkpoints in cancer immunotherapy*. Nature reviews. Cancer 12 (4), S. 252–264.
- 23. Paul M. K. und Mukhopadhyay A. K. 2004. *Tyrosine kinase Role and significance in Cancer*. International journal of medical sciences 1 (2), S. 101–115.
- 24. Posadas E. M., Limvorasak S., Sharma S. et al. 2013. *Targeting angiogenesis in renal cell carcinoma*. Expert opinion on pharmacotherapy 14 (16), S. 2221–2236.
- 25. Rahimi N. 2006. *VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy*. Frontiers in bioscience: a journal and virtual library 11 (n.a.), S. 818–829.
- 26. Raica M. und Cimpean A. M. 2010. *Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy*. Pharmaceuticals (Basel, Switzerland) 3 (3), S. 572–599.
- 27. Schlumberger M., Tahara M., Wirth L. J. et al. 2015. *Lenvatinib versus placebo in radioiodine-refractory thyroid cancer*. The New England journal of medicine 372 (7), S. 621–630.
- 28. Schöffski P., Dumez H., Clement P. et al. 2006. *Emerging role of tyrosine kinase inhibitors in the treatment of advanced renal cell cancer: a review*. Annals of Oncology 17 (8), S. 1185–1196.

- 29. Shibuya M. 2013. *Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases.* Journal of biochemistry 153 (1), S. 13–19.
- 30. Sonpavde G., Willey C. D. und Sudarshan S. 2014. *Fibroblast growth factor receptors as therapeutic targets in clear-cell renal cell carcinoma*. Expert opinion on investigational drugs 23 (3), S. 305–315.
- 31. St. Bernard R., Zheng L., Liu W. et al. 2005. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology 146 (3), S. 1145–1153.
- 32. Stjepanovic N. und Capdevila J. 2014. *Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib.* Biologics: Targets & Therapy 8 (n.a.), S. 129–139.
- 33. Tanaka T., Umeki K., Yamamoto I. et al. 1995. *c-Kit proto-oncogene is more likely to lose expression in differentiated thyroid carcinoma than three thyroid-specific genes: thyroid peroxidase, thyroglobulin, and thyroid stimulating hormone receptor.* Endocrine journal 42 (5), S. 723–728.
- 34. Taylor M., Dutcus C. E., Schmidt E. et al. 2016. *A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients with selected solid tumors*. Annals of Oncology 27 (Supplement 6), S. vi266–vi295.
- 35. Taylor M. H., Lee C.-H., Makker V. et al. 2020. *Phase IB/II Trial of Lenvatinib Plus Pembrolizumab in Patients With Advanced Renal Cell Carcinoma, Endometrial Cancer, and Other Selected Advanced Solid Tumors*. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 38 (11), S. 1154–1163.
- 36. Taylor M. H., Schmidt E. V., Dutcus C. et al. 2021. *The LEAP program: lenvatinib plus pembrolizumab for the treatment of advanced solid tumors*. Future oncology (London, England) 17 (6), S. 637–647.
- 37. Yakes F. M., Chen J., Tan J. et al. 2011. *Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.* Molecular cancer therapeutics 10 (12), S. 2298–2308.
- 38. Yamamoto Y., Matsui J., Matsushima T. et al. 2014. *Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage.* Vascular cell 6 (18), S. 1–13.
- 39. Zhao Y., Zhang Y.-N., Wang K.-T. et al. 2020. *Lenvatinib for hepatocellular carcinoma:* From preclinical mechanisms to anti-cancer therapy. BBA Reviews on cancer 1874 (1), S. 1–9.