

# Kriterien zur Bestimmung der zweckmäßigen Vergleichstherapie

und

Recherche und Synopse der Evidenz zur Bestimmung der zweckmäßigen Vergleichstherapie nach § 35a SGB V

und

Schriftliche Beteiligung der wissenschaftlichmedizinischen Fachgesellschaften und der Arzneimittelkommission der deutschen Ärzteschaft (AkdÄ) zur Bestimmung der zweckmäßigen Vergleichstherapie nach § 35a SGB V

Vorgang: 2021-B-045 Faricimab

Stand: April 2021

# I. Zweckmäßige Vergleichstherapie: Kriterien gemäß 5. Kapitel § 6 VerfO G-BA

### Faricimab Behandlung der neovaskulären (feuchten) altersbedingten Makuladegeneration (AMD)

#### Kriterien gemäß 5. Kapitel § 6 VerfO

| Sofern als Vergleichstherapie eine Arzneimittelanwendung in<br>Betracht kommt, muss das Arzneimittel grundsätzlich eine<br>Zulassung für das Anwendungsgebiet haben. | Siehe Übersicht "II. Zugelassene Arzneimittel im Anwendungsgebiet".                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sofern als Vergleichstherapie eine nicht-medikamentöse<br>Behandlung in Betracht kommt, muss diese im Rahmen der<br>GKV erbringbar sein.                             | <ul> <li>Photodynamische Therapie (PDT), Photokoagulation mittels Laser</li> <li>Protonentherapie bei altersabhängiger Makuladegeneration</li> <li>photodynamische Therapie (PDT) mit Verteporfin bei altersabhängiger feuchter<br/>Makuladegeneration mit subfoveolärer klassischer choriodaler Neovaskularisation</li> </ul>                                                                                                   |
| Beschlüsse/Bewertungen/Empfehlungen des Gemeinsamen<br>Bundesausschusses zu im Anwendungsgebiet zugelassenen<br>Arzneimitteln/nicht-medikamentösen Behandlungen      | <ul> <li>Aflibercept - Beschluss vom 6. Juni 2013</li> <li>Brolucizumab - Beschluss vom 3. September 2020</li> <li>Protonentherapie bei altersabhängiger Makuladegeneration (Beschluss vom 17. September 2009)</li> <li>photodynamische Therapie (PDT) mit Verteporfin bei altersabhängiger feuchter Makuladegeneration mit subfoveolärer klassischer choriodaler Neovaskularisation (Beschluss vom 16. Oktober 2000)</li> </ul> |
| Die Vergleichstherapie soll nach dem allgemein anerkannten<br>Stand der medizinischen Erkenntnisse zur zweckmäßigen<br>Therapie im Anwendungsgebiet gehören.         | Siehe systematische Literaturrecherche                                                                                                                                                                                                                                                                                                                                                                                           |

| II. Zugelassene Arzneimittel im Anwendungsgebiet |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Wirkstoff<br>ATC-Code<br>Handelsname             | Anwendungsgebiet<br>(Text aus Fachinformation)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Zu bewertendes                                   | Arzneimittel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Faricimab                                        | Geplantes Anwendungsgebiet laut Beratungsanforderung:<br>Faricimab wird angewendet bei Erwachsenen zur Behandlung der neovaskulären (feuchten) altersbedingten Makuladegeneration (nAMD).                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Ranibizumab<br>S01LA04<br>Lucentis®              | Lucentis wird angewendet bei Erwachsenen zur: []<br>– Behandlung der neovaskulären (feuchten) altersabhängigen Makuladegeneration (AMD)<br>Stand FI Juli 2020                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Aflibercept<br>S01LA05<br>Eylea®                 | Eylea wird angewendet bei Erwachsenen zur Behandlung<br>– der neovaskulären (feuchten) altersabhängigen Makuladegeneration (AMD) (siehe Abschnitt 5.1),<br>Stand Fl Juni 2020                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Brolucizumab<br>S01LA06<br>Beovu®                | Beovu wird angewendet bei Erwachsenen zur Behandlung der neovaskulären (feuchten) altersabhängigen Makuladegeneration (AMD).<br>Stand FI Mai 2020                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Verteporfin<br>S01LA01<br>Visudyne®              | <ul> <li>Visudyne wird angewendet für die Behandlung von []</li> <li>Erwachsenen mit exsudativer (feuchter) altersbezogener Makuladegeneration (AMD) mit vorwiegend klassischen subfovealen chorioidalen Neovaskularisationen (CNV),</li> <li>Der erste Schritt besteht in einer 10-minutigen intravenösen Infusion von Visudyne. Der zweite Schritt besteht in der Lichtaktivierung von Visudyne 15 Minuten nach Beginn der Infusion.</li> <li>Stand FI August 2019</li> </ul> |  |  |  |  |  |  |
| Pegaptanib<br>S01LA03<br>Macugen®                | Macugen ist indiziert zur Behandlung der neovaskulären (feuchten) altersabhängigen Makuladegeneration (AMD) bei Erwachsenen.<br>Stand FI August 2012                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |

Quellen: AMIce-Datenbank, Fachinformationen



# Abteilung Fachberatung Medizin

# Recherche und Synopse der Evidenz zur Bestimmung der zweckmäßigen Vergleichstherapie nach § 35a SGB V

# Vorgang: 2021-B-045 (Faricimab)

| Auftrag von:    | Abt. AM          |
|-----------------|------------------|
| Bearbeitet von: | Abt. FB Med      |
| Datum:          | 24. Februar 2021 |



# Inhaltsverzeichnis

| Abkürzungsverzeichnis                             | 3  |
|---------------------------------------------------|----|
| 1 Indikation                                      | 5  |
| 2 Systematische Recherche                         | 5  |
| 3 Ergebnisse                                      | 6  |
| 3.1 G-BA Beschlüsse/IQWiG Berichte                |    |
| 3.2 Cochrane Reviews                              | 8  |
| 3.3 Systematische Reviews                         |    |
| 3.4 Leitlinien                                    | 44 |
| 4 Detaillierte Darstellung der Recherchestrategie | 54 |
| Referenzen                                        |    |
| Anhang                                            | 58 |



# Abkürzungsverzeichnis

| AM-RLArzneimittel-RichtlinieATCArterial ThromboembolicAWMFArbeitsgemeinschaft der wissenschaftlichen medizinischen FachgesellschaftenBCVABest-Corrected Visual AcuityBRVOBranch Retinal Vein OcclusionCMTCentral Macular ThicknessCNVChoroidal NeovascularizationCRTCentral Retinal ThicknessCRVOCentral Retinal ThicknessCRVOCentral Retinal ThicknessCRVOCentral Retinal ThicknessCRVOCentral Retinal ThicknessCRVOCentral Retinal ThicknessCRVOCentral Retinal ToinchessCRVOCentral Retinal ToinchessERIPRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration | AMD     | Altersabhängigen Makuladegeneration                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|
| ATCArterial ThromboembolicAWMFArbeitsgemeinschaft der wissenschaftlichen medizinischen FachgesellschaftenBCVABest-Corrected Visual AcuityBRVOBranch Retinal Vein OcclusionCMTCentral Macular ThicknessCNVChoroidal NeovascularizationCRTCentral Retinal ThicknessCRVOCentral Retinal Vein OcclusionDMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGidelines International NetworkGRADEGrading of RecommendationsGRADEInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenKIKonfidenzintervallILDELevel of EvidenceMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Institute for Health and Care ExcellenceNIMANetwork Meta-AnalysisNYAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                   |         |                                                                   |
| AWMFArbeitsgemeinschaft der wissenschaftlichen medizinischen FachgesellschaftenBCVABest-Corrected Visual AcuityBRVOBranch Retinal Vein OcclusionCMTCentral Macular ThicknessCNVChoroidal NeovascularizationCRTCentral Retinal ThicknessCRVOCentral Retinal Vein OcclusionDMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGrade of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWIGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRLevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                    |         |                                                                   |
| BCVABest-Corrected Visual AcuityBRVOBranch Retinal Vein OcclusionCMTCentral Macular ThicknessCNVChoroidal NeovascularizationCRTCentral Retinal ThicknessCRVOCentral Retinal Vein OcclusionDMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                         |         |                                                                   |
| BRVOBranch Retinal Vein OcclusionCMTCentral Macular ThicknessCNVChoroidal NeovascularizationCRTCentral Retinal ThicknessCRVOCentral Retinal Vein OcclusionDMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationIRNHazard RatioIQWIGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRLevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNICENational Institute for Health and Care ExcellenceNIMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                     | BCVA    |                                                                   |
| CNVChoroidal NeovascularizationCRTCentral Retinal ThicknessCRVOCentral Retinal Vein OcclusionDMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWIGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRLoter of EvidenceMDKonfidenzintervallNCENeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNIAMNetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                   | BRVO    | -                                                                 |
| CRTCentral Retinal ThicknessCRVOCentral Retinal Vein OcclusionDMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWIGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidencenAMDNeovaskuläre Altersabhängige MakuladegenerationNICENational Ispitute Visual Function QuestionnaireNICAMDNetwork Meta-AnalysisNYAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                    | CMT     | Central Macular Thickness                                         |
| CRVOCentral Retinal Vein OcclusionDMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRAGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallADDMean DifferenceNADNevoaskuläre Altersabhängige MakuladegenerationNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                | CNV     | Choroidal Neovascularization                                      |
| DMEDiabetic Macular EdemaETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLOELevel of EvidenceMDMean DifferenceNADDNeovaskuläre Altersabhängige MakuladegenerationNICENational Istitute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                | CRT     | Central Retinal Thickness                                         |
| ETDRSEarly Treatment Diabetic Retinopathy StudyECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWIGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRVO    | Central Retinal Vein Occlusion                                    |
| ECRIECRI Guidelines TrustFAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DME     | Diabetic Macular Edema                                            |
| FAFluorescein AngiographyG-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWIGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenKIKonfidenzintervallLoELevel of EvidenceMDMean DifferenceNAMDNeovaskuläre Altersabhängige MakuladegenerationNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ETDRS   | Early Treatment Diabetic Retinopathy Study                        |
| G-BAGemeinsamer BundesausschussGINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ECRI    | ECRI Guidelines Trust                                             |
| GINGuidelines International NetworkGoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIQWiGIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferenceNAMDNetovaskuläre Altersabhängige MakuladegenerationNICENational Eye Institute Visual Function QuestionnaireNMANetwork Meta-AnalysisNVAMDKevascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FA      | Fluorescein Angiography                                           |
| GoRGrade of RecommendationsGRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDDMean DifferenceNAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENetwork Meta-AnalysisNVAMDNetwork Meta-Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G-BA    | Gemeinsamer Bundesausschuss                                       |
| GRADEGrading of Recommendations Assessment, Development and EvaluationHRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferenceNAMDNeovaskuläre Altersabhängige MakuladegenerationNICENational Eye Institute Visual Function QuestionnaireNMANetwork Meta-AnalysisNVAMDKeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GIN     | Guidelines International Network                                  |
| HRHazard RatioIQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GoR     | Grade of Recommendations                                          |
| IQWiGInstitut für Qualität und Wirtschaftlichkeit im GesundheitswesenIVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GRADE   | Grading of Recommendations Assessment, Development and Evaluation |
| IVRIntravitreal RanibizumabKIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HR      | Hazard Ratio                                                      |
| KIKonfidenzintervallLoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IQWiG   | Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen  |
| LoELevel of EvidenceMDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IVR     | Intravitreal Ranibizumab                                          |
| MDMean DifferencenAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KI      | Konfidenzintervall                                                |
| nAMDNeovaskuläre Altersabhängige MakuladegenerationNEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LoE     | Level of Evidence                                                 |
| NEI-VFQNational Eye Institute Visual Function QuestionnaireNICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MD      | Mean Difference                                                   |
| NICENational Institute for Health and Care ExcellenceNMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nAMD    | Neovaskuläre Altersabhängige Makuladegeneration                   |
| NMANetwork Meta-AnalysisNVAMDNeovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEI-VFQ | National Eye Institute Visual Function Questionnaire              |
| NVAMD Neovascular Age-related Macular Degeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NICE    | National Institute for Health and Care Excellence                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NMA     | Network Meta-Analysis                                             |
| OCT Optical Coherence Tomography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NVAMD   | Neovascular Age-related Macular Degeneration                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OCT     | Optical Coherence Tomography                                      |



| OR    | Odds Ratio                                  |
|-------|---------------------------------------------|
| PCV   | Polypoidal Choroidal Vasculopathy           |
| PDT   | Photodynamische Therapie                    |
| PRN   | Pro Re Nata                                 |
| RCT   | Randomized Controlled Trial                 |
| RF    | Reduced-Fluence                             |
| RR    | Relatives Risiko                            |
| RVO   | Retinal Vein Occlusion                      |
| SF    | Standard-Fluence                            |
| SIGN  | Scottish Intercollegiate Guidelines Network |
| SOAEs | Severe Ocular Adverse Events                |
| TRIP  | Turn Research into Practice Database        |
| VEGF  | Vascular Endothelial Growth Factor          |
| WHO   | World Health Organization                   |
| WMD   | Weighted Mean Difference                    |



## 1 Indikation

Behandlung der neovaskulären (feuchten) altersbedingten Makuladegeneration (AMD) bei Erwachsenen.

## 2 Systematische Recherche

Es wurde eine systematische Literaturrecherche nach systematischen Reviews, Meta-Analysen und evidenzbasierten systematischen Leitlinien zur Indikation *neovaskuläre (feuchte) altersbedingte Makuladegeneration* durchgeführt. Der Suchzeitraum wurde auf die letzten 5 Jahre eingeschränkt und die Recherche am 01.10.2020 abgeschlossen. Die Suche erfolgte in den aufgeführten Datenbanken bzw. Internetseiten folgender Organisationen: The Cochrane Library (Cochrane Database of Systematic Reviews), MEDLINE (PubMed), AWMF, ECRI, G-BA, GIN, NICE, TRIP, SIGN, WHO. Ergänzend erfolgte eine freie Internetsuche nach aktuellen deutschen und europäischen Leitlinien. Die detaillierte Darstellung der Suchstrategie ist am Ende der Synopse aufgeführt.

In einem zweistufigen Screening wurden die Ergebnisse der Literaturrecherche bewertet. Die Recherche ergab 464 Quellen. Im ersten Screening wurden auf Basis von Titel und Abstract nach Population, Intervention, Komparator und Publikationstyp nicht relevante Publikationen ausgeschlossen. Zudem wurde eine Sprachrestriktion auf deutsche und englische Quellen vorgenommen. Im zweiten Screening wurden die im ersten Screening eingeschlossenen Publikationen als Volltexte gesichtet und auf ihre Relevanz und methodische Qualität geprüft. Dafür wurden dieselben Kriterien wie im ersten Screening sowie Kriterien zur methodischen Qualität der Evidenzquellen verwendet. Basierend darauf, wurden insgesamt 15 Quellen eingeschlossen. Es erfolgte eine synoptische Darstellung wesentlicher Inhalte der identifizierten Referenzen.



### 3 Ergebnisse

### 3.1 G-BA Beschlüsse/IQWiG Berichte

#### G-BA, 2020 [3].

Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V – Brolucizumab (Neovaskuläre altersabhängige Makuladegeneration) vom 3. September 2020

#### Anwendungsgebiet

Beovu® wird angewendet bei Erwachsenen zur Behandlung der neovaskulären (feuchten) altersabhängigen Makuladegeneration (AMD).

#### Zweckmäßige Vergleichstherapie:

- Ranibizumab oder Aflibercept

#### Ausmaß und Wahrscheinlichkeit des Zusatznutzens von Brolucizumab gegenüber Ranibizumab oder Aflibercept:

Ein Zusatznutzen ist nicht belegt.

#### G-BA, 2013 [6].

Richtlinie über die Verordnung von Arzneimitteln in der vertragsärztlichen Versorgung (AM-RL); Anlage XII: (Frühe) Nutzenbewertung nach § 35a SGB V; Geltende Fassung zum Beschluss vom 06. Juni 2013 - Aflibercept

#### Anwendungsgebiet

Eylea® ist angezeigt zur Behandlung von Erwachsenen mit neovaskulärer (feuchter) altersbedingter Makuladegeneration.

#### Zweckmäßige Vergleichstherapie

Ranibizumab

#### Ausmaß und Wahrscheinlichkeit des Zusatznutzens gegenüber Ranibizumab

Der Zusatznutzen im Verhältnis zur zweckmäßigen Vergleichstherapie ist nicht belegt.

#### Anmerkung:

Es liegen bislang keine validen Daten für Patienten vor, die mit anderen VEGF-Inhibitoren vorbehandelt wurden.



#### G-BA, 2010 [5].

Protonentherapie bei altersabhängiger Makuladegeneration

Abschlussbericht Beratungsverfahren nach § 137c SGB V (Krankenhausbehandlung) 13. Januar 2010

#### Anwendungsgebiet

altersabhängige Makuladegeneration

#### Fazit

Es konnten drei Fallserien und drei randomisierte klinische Studien identifiziert werden, die zur Nutzenbewertung herangezogen wurden. Die Anwendung der Strahlentherapie mit Photonen und Protonen bei der Indikation AMD wurde zudem in einem Cochrane-Review, einem HTA-Bericht und einer systematischen Übersichtsarbeit bewertet.

Zusammenfassend ergeben sich aus den vorliegenden Daten keine belastbaren Hinweise auf einen Nutzen der Protonentherapie bei der altersabhängigen Makuladegeneration.

#### G-BA, 2001 [4].

Photodynamische Therapie (PDT) mit Verteporfin bei altersabhängiger feuchter Makuladegeneration mit subfoveolären klassischen choriodalen Neovaskularisationen

Zusammenfassender Bericht des Arbeitsausschusses "Ärztliche Behandlung" des Bundesausschusses der Ärzte und Krankenkassen über die Beratungen gemäß §135 Abs.1 SGB V vom 22. Januar 2001

#### Anwendungsgebiet

altersabhängige feuchte Makuladegeneration mit subfoveolärer klassischer choriodaler Neovaskularisation

#### Fazit

Die Analyse und Bewertung aller Stellungnahmen, der aktuellen wissenschaftlichen Literatur und sonstigen Fundstellen ergab im Ergebnis, dass die Wirksamkeit und medizinische Notwendigkeit der PDT bei der Indikation der neovaskulären AMD mit subfoveolären klassischen Neovaskularisationen in soweit belegt ist, dass durch (ggf. wiederholte) Anwendung dieser Therapie die Progredienz einer drohenden Erblindung aufgehalten oder verzögert werden kann. Dieser Effekt ist durch eine Studie für den Zeitraum eines Jahres belegt, nach derzeit noch unveröffentlichten Studiendaten, die dem Ausschuss bereits vorliegen, ist die Wirksamkeit auch über eine Beobachtungszeitraum von zwei Jahren gegeben.



### 3.2 Cochrane Reviews

#### Solomon SD et al., 2019 [13].

Update von Solomon SD et al., 2014<sup>1</sup>

Anti-vascular endothelial growth factor for neovascular age-related macular degeneration (Review)

#### Fragestellung

To investigate ocular and systemic effects of, and quality of life associated with, intravitreous injection of three anti-VEGF agents (pegaptanib, ranibizumab, and bevacizumab) versus no anti-VEGF treatment for patients with neovascular AMD.

To compare the relative effects of one of these anti-VEGF agents versus another when administered in comparable dosages and regimens.

#### Methodik

We included only randomized controlled trials (RCTs) in this review. We included only trials in which participants were followed for at least one year. We also included outcomes at two-year follow-up when these data were available.

#### Population:

• We included trials in which participants had neovascular AMD as defined by study investigators.

#### Intervention/Komparator:

 We included studies that compared anti-VEGF treatment versus another treatment, sham treatment, or no treatment. We did not include studies that compared different doses of one anti-VEGF treatment against another, studies that included no control or comparator group, or studies that used anti-VEGF agents in combination with other treatments. We did not include studies of aflibercept (VEGF Trap-Eye/EYLEA solution) or studies that compared different treatment schedules (e.g. monthly vs as needed dosing), because other Cochrane reviews have evaluated these interventions.

#### Endpunkte:

#### Primary outcomes

 best-corrected visual acuity (BCVA) at one-year follow-up. All included RCTs randomized only one eye per participant (i.e. the study eye); therefore we defined the primary outcome for the comparison of treatments as the proportion of participants who gained 15 or more letters (three lines) of BCVA in the study eye when BCVA was measured on a visual acuity chart with a LogMAR scale.

#### Secondary outcomes

Visual acuity outcomes

<sup>&</sup>lt;sup>1</sup> Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev 2014(8):CD005139.



- Proportion of participants who gained 15 or more letters of BCVA in the study eye as measured at two-year follow-up
- Proportion of participants who lost fewer than 15 letters of visual acuity at one year and at two years
- Proportion of participants who lost fewer than 30 letters of visual acuity at one year and at two years
- Proportion of participants for whom blindness was avoided in the study eye, defined as eyes with visual acuity better than
- 20/200 at one year and at two years
- Proportion of participants maintaining visual acuity, defined as a gain of zero or more letters (i.e. no loss of BCVA from baseline) at one year and at two years
- Mean change in visual acuity from baseline to one year and to two years

Other secondary outcomes

- Contrast sensitivity, reading speed, or any other validated measure of visual function as measured in the included studies
- Assessment of morphologic characteristics by fluorescein angiography or optical coherence tomography (OCT), including mean change in size of CNV, mean change in size of total lesion, and mean change in central retinal
- Central retinal thickness (CRT)
- Quality of life measures, as assessed with any validated measurementscale
- Economic data, such as comparative cost analyses
- Ocular or systemic adverse outcomes

#### Recherche/Suchzeitraum:

We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which contains the Cochrane Eyes and Vision Trials Register (searched January 31, 2018); MEDLINE Ovid (1946 to January 31, 2018); Embase Ovid (1947 to January 31, 2018); the Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to January 31, 2018); the International Standard Randomized Controlled Trials Number (ISRCTN) Registry (2018); ClinicalTrials.gov (searched November 28, 2018); and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (searched January 31, 2018). We did not impose any date or language restrictions in electronic searches for trials.

#### Qualitätsbewertung der Studien:

- risk of bias was assessed using the Cochrane Risk of Bias tool
- GRADE Working Group grades of evidence

#### Ergebnisse

#### Anzahl eingeschlossener Studien:

- We had classified one newly included study as ongoing in the 2014 version of this review. Overall, we identified and included 16 RCTs (n=6.347).
- Of six studies that compared anti-VEGF monotherapy versus control, one study evaluated three doses of pegaptanib versus sham injection (VISION 2004), three studies compared two



doses of ranibizumab versus sham injections or PDT (ANCHOR 2006; MARINA 2006; PIER 2008), and two studies compared bevacizumab with other treatments for AMD (ABC 2010; Sacu 2009). The remaining ten studies were head-to-head trials of bevacizumab versus ranibizumab (Biswas 2011; BRAMD 2016; CATT 2011; GEFAL 2013; IVAN 2013; LUCAS 2015; MANTA 2013; SAVE-AMD 2017; Scholler 2014; Subramanian 2010).

Charakteristika der Population:

- The 16 trials were similar in that all enrolled both men and women 50 years of age or older who had subfoveal CNV secondary to AMD; one study also enrolled participants with juxtafoveal or extrafoveal CNV (BRAMD 2016).
- A majority of participants in most trials were women, but one trial enrolled a greater number of men than women (Subramanian 2010).

Qualität der Studien:

• Overall, we found the included studies to be at low risk for most categories of bias.



Figure 2. Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Other potential sources of bias:

We considered various other aspects of trial design and reporting, trial sponsorship, and financial interests of investigators as other potential sources of bias. Pharmaceutical companies marketing the study drugs under investigation sponsored ANCHOR 2006, MARINA 2006, PIER 2008, and VISION 2004, and submitted data from these trials to the FDA to obtain approval for ranibizumab and pegaptanib. In addition, pharmaceutical company sponsors had important roles in trial design, analysis, and reporting. Some investigators from other trials reported that they received trial agents or financial support from pharmaceutical companies; however,



because the companies did not directly sponsor these trials, we did not judge them to be at risk of bias for this domain (CATT 2011; GEFAL 2013; IVAN 2013; Scholler 2014). We observed no other potential sources of bias for the remaining eight studies.

Studienergebnisse:

Der Fokus der Ergebnisdarstellung liegt auf Vergleichen zu den im AWG zugelassenen Wirkstoffen.

Primary Outcome:

Gain of 15 or more letters visual acuity

Abb.1: Comparison Anti-VEGF treatment versus control, Outcome: Gain of 15 or more letters visual acuity at 1 year

|                                                              | Anti-V     | EGF               | Contr  | ol                |                        | Risk Ratio                             | Risk Ratio          |
|--------------------------------------------------------------|------------|-------------------|--------|-------------------|------------------------|----------------------------------------|---------------------|
| Study or Subgroup                                            | Events     | Total             | Events | Total             | Weight                 | M-H, Random, 95% Cl                    | M-H, Random, 95% Cl |
| 1.1.1 Pegaptanib vs                                          | control    |                   |        |                   |                        |                                        |                     |
| VISION 2004 (1)<br>Subtotal (95% CI)                         | 51         | 890<br><b>890</b> | 6      | 296<br><b>296</b> | 19.0%<br><b>19.0</b> % | 2.83 [1.23, 6.52]<br>2.83 [1.23, 6.52] | -                   |
| Total events                                                 | 51         |                   | 6      |                   |                        |                                        |                     |
| Heterogeneity: Not a                                         | pplicable  |                   |        |                   |                        |                                        |                     |
| Test for overall effect                                      | : Z = 2.44 | (P = 0.0          | 01)    |                   |                        |                                        |                     |
| 1.1.2 Ranibizumab v                                          | s control  |                   |        |                   |                        |                                        |                     |
| ANCHOR 2006 (2)                                              | 106        | 279               | 8      | 143               | 21.6%                  | 6.79 [3.41, 13.54]                     |                     |
| MARINA 2006 (3)                                              | 140        | 478               | 12     | 238               |                        | 5.81 [3.29, 10.26]                     |                     |
| PIER 2008 (4)<br>Subtotal (95% CI)                           | 15         | 121<br>878        | 6      | 63<br>444         | 17.9%<br>63.4%         | 1.30 [0.53, 3.19]<br>3.92 [1.59, 9.67] |                     |
| Total events                                                 | 261        |                   | 26     |                   |                        |                                        |                     |
| Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect |            |                   |        | (P = 0.0          | 108); I² = 8           | 30%                                    |                     |
| Footnotes                                                    |            |                   |        |                   |                        |                                        |                     |

(1) Control group in the VISION study received sham injections

(2) Control group in the ANCHOR study received sham injections plus active verteportin photodynamic therapy

(3) Control group in the MARINA study received sham injections

(4) Control group in the PIER study received sham injections

 At two years, data were available from only the three ranibizumab trials. The proportion of participants who were treated with ranibizumab and had gained 15 or more letters at two years was nearly six times the proportion of those treated with control who gained 15 or more letters (RR 5.77, 95% CI 3.38 to 9.84). We graded the certainty of evidence for the two-year outcome also as moderate, again downgrading for imprecision (-1).

Secondary Outcomes:

Loss of fewer than 15 letters of visual acuity

Abb.: Comparison Anti-VEGF treatment versus control, Loss of fewer than 15 letters visual acuity at 1 year



| Study or subgroup                                             | Anti-VEGF                        | Control | Risk Ratio          | Weight | Risk Ratio          |  |
|---------------------------------------------------------------|----------------------------------|---------|---------------------|--------|---------------------|--|
|                                                               | n/N                              | n/N     | M-H, Random, 95% CI |        | M-H, Random, 95% CI |  |
| 1.3.1 Pegaptanib vs control                                   |                                  |         |                     |        |                     |  |
| VISION 2004                                                   | 612/890                          | 164/296 |                     | 21.61% | 1.24[1.11,1.39]     |  |
| Subtotal (95% CI)                                             | 890                              | 296     | •                   | 21.61% | 1.24[1.11,1.39]     |  |
| Total events: 612 (Anti-VEGF), 164 (                          | Control)                         |         |                     |        |                     |  |
| Heterogeneity: Not applicable                                 |                                  |         |                     |        |                     |  |
| Test for overall effect: Z=3.8(P=0)                           |                                  |         |                     |        |                     |  |
| 1.3.2 Ranibizumab vs control                                  |                                  |         |                     |        |                     |  |
| ANCHOR 2006                                                   | 266/279                          | 92/143  |                     | 20.27% | 1.48[1.31,1.68]     |  |
| MARINA 2006                                                   | 452/478                          | 148/238 |                     | 22.62% | 1.52[1.37,1.68]     |  |
| PIER 2008                                                     | 105/121                          | 31/63   |                     | 10.01% | 1.76[1.36,2.29]     |  |
| Subtotal (95% CI)                                             | 878                              | 444     | •                   | 52.91% | 1.53[1.41,1.64]     |  |
| Total events: 823 (Anti-VEGF), 271 (                          | Control)                         |         |                     |        |                     |  |
| Heterogeneity: Tau <sup>2</sup> =0; Chi <sup>2</sup> =1.43, c | lf=2(P=0.49); I <sup>2</sup> =0% |         |                     |        |                     |  |
| Test for overall effect: Z=10.99(P<0.                         | 0001)                            |         |                     |        |                     |  |

 At two years, the beneficial effect of ranibizumab for this outcome persisted at a similar magnitude when compared with control therapy (three ranibizumab trials). Sixty percent more participants treated with ranibizumab lost fewer than 15 letters of visual acuity at two-year follow-up as participants in control groups (RR 1.62, 95% CI 1.32 to 1.98), high certainty of evidence

#### Loss of fewer than 30 letters of visual acuity

Abb.: Comparison Anti-VEGF treatment versus control, Loss of fewer than 30 letters visual acuity at 1 year.

| Study or subgroup                                        | Anti-VEGF                       | Control | Risk Ratio          | Weight | Risk Ratio<br>M-H, Random, 95% Cl |  |
|----------------------------------------------------------|---------------------------------|---------|---------------------|--------|-----------------------------------|--|
|                                                          | n/N                             | n/N     | M-H, Random, 95% Cl |        |                                   |  |
| 1.5.1 Pegaptanib vs control                              |                                 |         |                     |        |                                   |  |
| VISION 2004                                              | 798/890                         | 231/296 |                     | 24.17% | 1.15[1.08,1.23]                   |  |
| Subtotal (95% CI)                                        | 890                             | 296     | •                   | 24.17% | 1.15[1.08,1.23]                   |  |
| Total events: 798 (Anti-VEGF), 2                         | 231 (Control)                   |         |                     |        |                                   |  |
| Heterogeneity: Not applicable                            |                                 |         |                     |        |                                   |  |
| Test for overall effect: Z=4.22(P                        | P<0.0001)                       |         |                     |        |                                   |  |
| 1.5.2 Ranibizumab vs control                             | ι                               |         |                     |        |                                   |  |
| ANCHOR 2006                                              | 279/279                         | 124/143 |                     | 24.08% | 1.15[1.08,1.23]                   |  |
| MARINA 2006                                              | 473/478                         | 204/238 |                     | 26.77% | 1.15[1.1,1.22]                    |  |
| Subtotal (95% CI)                                        | 757                             | 381     | •                   | 50.85% | 1.15[1.11,1.2]                    |  |
| Total events: 752 (Anti-VEGF), 3                         | 328 (Control)                   |         |                     |        |                                   |  |
| Heterogeneity: Tau <sup>2</sup> =0; Chi <sup>2</sup> =0, | , df=1(P=1); I <sup>2</sup> =0% |         |                     |        |                                   |  |
| Test for overall effect: Z=6.89(P                        | 0<0.0001)                       |         |                     |        |                                   |  |

 When comparing ranibizumab groups versus controls, we estimated a 22% benefit of ranibizumab with respect to loss of fewer than 30 letters of visual acuity after two years (RR 1.22, 95% CI 1.15 to 1.29), (high certainty of evidence)

Prevention of blindness in the study eye (visual acuity better than 20/200)

Treatment with pegaptanib or ranibizumab resulted in fewer blind study eyes at one year follow-up; the summary effect estimate (risk ratio) for visual acuity better than 20/200 was 1.58 (95% Cl 1.34 to 1.86) for the two anti-VEGF agents compared with control (high certainty of evidence both at one year and at two years)

Mean change in visual acuity

• Participants treated with pegaptanib were able to read 7 more letters at one-year follow-up (mean difference [MD] 6.7 (95% CI 4.4 to 9.0) and participants treated with ranibizumab were



able to read 18 more (MD= 17.8, 95% CI 16.0 to 19.6) compared with participants given control treatment (moderate certainty of evidence, after downgrading for inconsistence).

• participants treated with ranibizumab were able to read 20 more letters (MD 20.1, 95% CI 18.1 to 22.2) at two years compared to control group (high certainty of evidence).

Reduction in size lesion at one year (Mean number of disc areas)

- Pegaptanib treatment resulted in smaller mean lesion size at one-year follow-up compared with sham treatment (MD 0.86 DAs, 95% CI 0.35 to 1.37), (moderate certainty of evidence, after downgrading for imprecision.
- The mean reduction in the size of the lesion was greater by 2.34 disc areas (95% CI 1.88 to 2.81) among participants treated with ranibizumab compared with participants treated with control interventions (ANCHOR and PIER study) after one year. At two years, this effect persisted in ANCHOR (MD 2.44, 95% CI 1.87 to 3.00) but not in PIER (MD 0.59, 95% CI 0.55 to 1.73), (moderate certainty of evidence, after downgrading for inconsistence).

#### Quality of life outcomes

At one year, overall vision-related quality of life improved more often among participants in ranibizumab groups than among those in control groups (MD 6.7, 95% CI 3.4 to 10.0). The mean difference was greater in MARINA 2006 (MD 8.2, 95% CI 6.0 to 10.4) than in ANCHOR 2006 (MD 4.8, 95% CI 1.7 to 7.9). This difference between the two trials may have occurred because participants in the control group in ANCHOR 2006 received an active treatment (verteporfin PDT therapy).

#### Adverse events

Ocular inflammation and increased intraocular pressure (IOP) after intravitreal injection were
the most frequently reported serious ocular adverse events. Researchers reported
endophthalmitis in less than 1% of anti-VEGF-treated participants and in no cases among
control groups. The occurrence of serious systemic adverse events was comparable across
anti-VEGF-treated groups and control groups; however, the numbers of events and trial
participants may have been insufficient to show a meaningful difference between groups
(evidence of low to moderate-certainty). Investigators rarely measured and reported data on
visual function, quality of life, or economic outcomes.

#### Anmerkung/Fazit der Autoren

Results of this review show the effectiveness of anti-VEGF agents (pegaptanib, ranibizumab, and bevacizumab) in terms of maintaining visual acuity; studies show that ranibizumab and bevacizumab improved visual acuity in some eyes that received these agents and were equally effective. Available information on the adverse effects of each medication does not suggest a higher incidence of potentially vision- threatening complications with intravitreous injection of anti-VEGF agents compared with control interventions; however, clinical trial sample sizes were not sufficient to estimate differences in rare safety outcomes. Future Cochrane Reviews should incorporate research evaluating variable dosing regimens of anti-VEGF agents, effects of long-term use, use of combination therapies (e.g. anti-VEGF treatment plus photodynamic therapy), and other methods of delivering these agents.



#### Kommentare zum Review

- Kein direkter Vergleich zwischen Pegaptanib und einem anderen VEGF.
- In zwei der drei Studien zu Ranibizumab wurde gegen Scheinmedikation verglichen. Einzig die Anchor-Studie verglich Ranibizumab gegen PDT mit Verteporfin.

#### Sarwar S et al., 2016 [12].

Aflibercept for neovascular age-relatedmacular degeneration (Review)

#### Fragestellung

To assess and compare the effectiveness and safety of intravitreal injections of aflibercept versus ranibizumab, bevacizumab, or sham for treatment of patients with neovascular AMD.

#### Methodik

We included randomized controlled trials (RCTs) only.

#### Population:

• We included trials of participants with diagnosed subfoveal neovascular AMD, confirmed by fluorescein angiography, who received no previous treatment for AMD in the study eye.

#### Intervention/Komparator:

• We included trials in which aflibercept monotherapy was compared with ranibizumab, bevacizumab, or sham. We excluded studies in which aflibercept was evaluated as part of combination therapy versus other active treatments, such as laser photocoagulation.

#### Endpunkte:

#### Primary Outcome:

 mean change from baseline in number of letters of best-corrected visual acuity (BCVA) at one year, as measured by the Early Treatment Diabetic Retinopathy Study (ETDRS) chart or equivalent.

Secondary Outcomes:

- Mean change in number of letters of BCVA at two years.
- Proportion of participants who gained 15 or more letters of BCVA at one year and at two years.
- Proportion of participants who lost 15 or more letters of BCVA at one year and at two years.
- Proportion of participants with BCVA worse than 20/200 at one year and at two years.
- Proportion of eyes with absence of fluid on optical coherence tomography (OCT) at one year and at two years.
- Proportion of eyes with absence of leakage on fluorescein angiography at one year and at two years.
- Mean number of injections received by one year and by two years.
- Mean change in central retinal thickness from baseline to one year and to two years.



• Mean change in extent of choroidal neovascularization (CNV) from baseline at one year and at two years.

Quality-of-life outcomes

 measured by a validated scale, such as the National Eye Institute Visual Function Questionnaire (NEI-VFQ), at one year and at two years

#### Adverse events

- Proportion of participants with arterial thrombotic events at one year and at two years.
- Proportion of participants with serious systemic adverse events at one year and at two years.
- Proportion of eyes with serious ocular adverse events at one year and at two years.

#### Recherche/Suchzeitraum:

We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (Issue 11, 2015), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2015), EMBASE (January 1980 to November 2015), PubMed (1948 to November 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to November 2015), the meta Register of Controlled Trials (mRCT) (last searched December 4, 2014), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). We did not use any date or language restrictions in the electronic search for trials. We last searched the electronic databases on November 30, 2015.

#### Qualitätsbewertung der Studien:

- risk of bias was assessed using the Cochrane Risk of Bias tool
- GRADE Working Group grades of evidence.

#### Ergebnisse

#### Anzahl eingeschlossener Studien:

• 2 studies included (n=2.458). VIEW 1 included participants from 154 sites in Canada and the United States, and VIEW 2 included participants from 172 sites located elsewhere.

#### Charakteristika der Population:

- VIEW1 enrolled 1217 participants, and VIEW 2 enrolled 1240 participants.
- Criteria for participant selection common to the two RCTs included age 50 years or older, CNV lesions confirmed by fluorescein angiography, and BCVA score equivalent to 20/40 or worse.
- Both trials included one study eye per participant.

#### Qualität der Studien:

Risk of bias: We assessed studies at low risk of bias for most domains. However, both trials were sponsored by the manufacturer of aflibercept; therefore, we assessed these trials at high risk of bias because of the funding source.





#### Studienergebnisse:

#### Primary Endpoint

The mean difference (MD) in mean change in number of letters of BCVA from baseline to one year was less than one letter when aflibercept was compared with ranibizumab (MD -0.15, 95% CI -1.47 to 1.17). Thus, eyes treated with aflibercept and ranibizumab showed similar gains in visual acuity at one year. We graded the quality of evidence for this outcome as high.

# Figure 3. Forest plot of comparison: | Aflibercept vs ranibizumab, outcome: |.| Mean change in BCVA in ETDRS letters at | year.

|                                                  | Af     | libercept |       | Rani | bizum | ab    |        | Mean Difference     |     | Ме                    | an Differenc    | e                  |    |
|--------------------------------------------------|--------|-----------|-------|------|-------|-------|--------|---------------------|-----|-----------------------|-----------------|--------------------|----|
| Study or Subgroup                                | Mean   | SD        | Total | Mean | SD    | Total | Weight | IV, Fixed, 95% CI   |     | IV,                   | Fixed, 95% C    | 3                  |    |
| VIEW 1                                           | 8.5744 | 14.1693   | 906   | 8.1  | 15.3  | 304   | 45.7%  | 0.47 [-1.48, 2.43]  |     |                       |                 |                    |    |
| VIEW 2                                           | 8.719  | 13.7271   | 911   | 9.4  | 13.5  | 291   | 54.3%  | -0.68 [-2.47, 1.11] |     | -                     |                 |                    |    |
| Total (95% CI)                                   |        |           | 1817  |      |       | 595   | 100.0% | -0.15 [-1.47, 1.17] |     |                       | •               |                    |    |
| Heterogeneity: Chi² =<br>Test for overall effect |        |           |       | 0%   |       |       |        |                     | -10 | -5<br>Favors ranibizu | 0<br>mab Favor: | 5<br>s aflibercept | 10 |

- At two years, the mean change in BCVA from baseline was 7.2 letters for the aflibercept groups versus 7.9 letters for the ranibizumab groups. Additional data regarding two-year outcomes, such as standard deviation for the mean BCVA change, were not available for further analysis of this outcome.
- At one-year follow-up, the proportion of participants who gained 15 or more letters of BCVA was 31.4% in the aflibercept groups and 32.4% in the ranibizumab groups. For this outcome, a risk ratio (RR) greater than 1 favors treatment with aflibercept. The RR for the combined aflibercept groups versus the ranibizumab groups was 0.97 (95% CI 0.85 to 1.11), which indicates that similar proportions of participants in the aflibercept and ranibizumab groups showed large visual acuity gains. We graded the quality of evidence for this outcome as high.



# Figure 4. Forest plot of comparison: I Aflibercept vs ranibizumab, outcome: 1.2 Gain of $\geq$ 15 letters of BVCA at I year.

|                                   | Afliber    | cept     | Ranibizu                | ımab  |        | Risk Ratio         | Risk Ratio                            |
|-----------------------------------|------------|----------|-------------------------|-------|--------|--------------------|---------------------------------------|
| Study or Subgroup                 | Events     | Total    | Events                  | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% Cl                    |
| VIEW 1                            | 281        | 906      | 94                      | 304   | 48.4%  | 1.00 [0.83, 1.22]  | -+-                                   |
| VIEW 2                            | 290        | 911      | 99                      | 291   | 51.6%  | 0.94 [0.78, 1.13]  |                                       |
| Total (95% CI)                    |            | 1817     |                         | 595   | 100.0% | 0.97 [0.85, 1.11]  | •                                     |
| Total events                      | 571        |          | 193                     |       |        |                    |                                       |
| Heterogeneity: Chi <sup>2</sup> = | 0.26, df=  | 1 (P =   | 0.61); I <sup>2</sup> = | 0%    |        |                    | 0.1 0.2 0.5 1 2 5 10                  |
| Test for overall effect           | Z = 0.47 ( | (P = 0.6 | 4)                      |       |        |                    | Favors ranibizumab Favors aflibercept |

At two-year follow-up, 562 (30.9%) of 1,817 participants in the aflibercept groups and 188 (31.6%) of 595 participants in the ranibizumab groups gained 15 or more letters from baseline. This outcome was comparable between the two groups (RR 0.98, 95% CI 0.85 to 1.12). We graded the quality of evidence for this outcome as high.

#### Loss of 15 or more letters of BCVA

At one-year follow-up, the proportion of participants who lost 15 or more letters of BCVA was 5.1% in the aflibercept groups and 5.7% in the ranibizumab groups. For this outcome, an RR less than 1 favors treatment with aflibercept, as it indicates that a higher proportion of participants lost letters of visual acuity – a negative outcome - in the ranibizumab groups (RR 0.89, 95% CI 0.61 to 1.30). We graded the quality of evidence for this outcome as moderate due to imprecision.

Absence of fluid on optical coherence tomography (OCT)

- At one year, no significant difference between aflibercept and ranibizumab in the proportion of eyes who achieved dry retinas (absence of cystic intraretinal fluid and subretinal fluid on OCT) (RR = 1.06 (95% CI 0.98 to 1.14). We graded the quality of evidence for this outcome as high.
- The proportion of participants with no retinal fluid decreased in all treatment groups from one year to two years. A higher proportion of participants in the aflibercept groups (757/1520, 49.8%) showed absence of fluid on OCT compared with participants in the ranibizumab groups (231/508, 45.5%) (RR 1.10, 95% CI 0.98 1.22). We graded the quality of evidence for this outcome as high.

Mean change in central retinal thickness (CRT)

 At one-year follow-up, the MD between aflibercept and ranibizumab was -4.94 μm (95% CI -15.48 to 5.61), which is neither a clinically nor statistically important difference. We graded the quality of evidence for this outcome as high.

Vision-related quality-of-life (VRQoL)

 Similar changes in NEI-VFQ-25 composite scores from baseline to one year were reported for both aflibercept and ranibizumab (MD -0.39, 95% CI -1.71 to 0.93). We graded the quality of evidence for this outcome as high.



#### Adverse events

Overall, occurrence of serious systemic adverse events was similar and comparable in aflibercept- and ranibizumab-treated groups at one year (RR 0.99, 95% CI 0.79 to 1.25). Risk of any serious ocular adverse event was lower in the aflibercept group than in the ranibizumab group, but the risk estimate is imprecise (RR 0.62, 95% CI 0.36 to 1.07). As the result of imprecision, we graded the quality of evidence for all adverse events as moderate.

#### Anmerkung/Fazit der Autoren

Results of this review document the comparative effectiveness of aflibercept versus ranibizumab for visual acuity and morphological outcomes in eyes with neovascular AMD. Current available information on adverse effects of each medication suggests that the safety profile of aflibercept is comparable with that of ranibizumab; however, the number of participants who experienced adverse events was small, leading to imprecise estimates of absolute and relative effect sizes. The eight-week dosing regimen of aflibercept represents reduced treatment requirements in comparison with monthly dosing regimens and thus has the potential to reduce treatment burden and risks associated with frequent injections.

#### Kommentare zum Review

Subgroup analysis and investigation of heterogeneity: We planned to perform subgroup analysis according to the comparison intervention reported in the included trials (eg, aflibercept vs placebo or sham injections, aflibercept vs ranibizumab); however, we did not perform these subgroup analyses, as only one comparison intervention (ranibizumab) was used in trials included in this review.

### 3.3 Systematische Reviews

#### Low A et al., 2019 [8].

Comparative effectiveness and harms of intravitreal antivascular endothelial growth factor agents for three retinal conditions: a systematic review and meta-analysis

#### Fragestellung

to compare the effects of aflibercept, bevacizumab and ranibizumab on bestcorrected visual acuity (BCVA) changes, quality of life and ocular or systemic adverse events in patients with neovascular age-related macular degeneration (NVAMD), diabetic macular oedema (DME) and central or branch retinal vein occlusion (RVO).

#### Methodik

#### Population:

Adults treated with anti-VEGF agents due to one of the following conditions:

- Choroidal neovascularization secondary to age-related macular degeneration (AMD)/neovascular AMD (NVAMD)
- Diabetic macular edema (DME)



- Branch retinal vein occlusion (BRVO) or central retinal vein occlusion (CRVO) with cystoid macular edema
- Vitreous hemorrhage/proliferative diabetic retinopathy/neovascular glaucoma

#### Intervention:

- Aflibercept (Eylea; Trap-Eye)
- Bevacizumab (Avastin)
- Ranibizumab (Lucentis)

#### Komparator:

• One anti-VEGF intervention versus another anti-VEGF intervention (head-to-head)

#### Endpunkte:

- Mean best-corrected visual acuity (BCVA) change (minimal clinically important difference defined as five or more letters)
- ≥ 15 letter gain
- ocular adverse events
- systemic adverse events

#### Recherche/Suchzeitraum:

• We searched Ovid MEDLINE, PubMed, Elsevier EMBASE, Ovid EMB Reviews, trial registries and regulatory agency websites from database inception to 6 February 2017

#### Qualitätsbewertung der Studien:

- Cochrane Risk of Bias tool
- we classified the overall strength of evidence for each outcome as high, moderate, low or insufficient using an established method that considers study limitations, directness, consistency, precision, reporting bias and applicability of the evidence

#### Ergebnisse

#### Anzahl eingeschlossener Studien:

- 17 RCTs (8 with low risk of bias, 4 with unclear risk of bias and 5 with high risk of bias
- Eleven trials included patients with NVAMD, three with DME and three with central or branch RVO.
- NVAMD: 2 RCTs (n=2457) Aflibercept vs. Ranibizumab, 9 RCTs (n=3630) Bevacizumab vs Ranibizumab

#### Charakteristika der Population:

• NVAMD: The 11 trials were similar in that all enrolled both men and women; age ranged between 63.9 and 80.1 years

#### Qualität der Studien:

• NVAMD: risk of bias was low in six studies, unclear in three studies and high in two studies



#### Studienergebnisse:

Der Fokus der Ergebnisdarstellung liegt auf Vergleichen zu den im AWG zugelassenen Wirkstoffen.

• Two trials provided low-strength evidence that aflibercept and ranibizumab had similar effects in patients with NVAMD.

|                          | No. studies                     | Summary of findings;                                                                                                                                                                             | Strength of |                                                                                                   |
|--------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------|
| Outcome                  | (N=total randomised)            | Combined summary estimate (95% CI)                                                                                                                                                               | evidence*   | Comments                                                                                          |
| NVAMD                    |                                 |                                                                                                                                                                                                  |             |                                                                                                   |
| Aflibercept vs Bevacizum | ab: no evidence                 |                                                                                                                                                                                                  |             |                                                                                                   |
| Aflibercept vs Ranibizum | ab                              |                                                                                                                                                                                                  |             |                                                                                                   |
| Mean BCVA change†        | 2 RCTs (n=2457)‡<br>► 2 low ROB | Mixed findings, but no clinically important differences between drugs.                                                                                                                           | Low         | Attempted pooling resulted in very high statistical<br>heterogeneity due to conflicting results.§ |
| ≥15 letter gain          | 2 RCTs (n=2457)‡<br>2 low ROB   | No difference.                                                                                                                                                                                   | Low         | Attempted pooling resulted in very high statistical<br>heterogeneity.¶                            |
| Ocular AEs               | 2 RCTs (n=2457)‡<br>► 2 low ROB | Low rates of serious ocular AEs and likely no difference between drugs.<br>Endophthalmitis: <1% per group 22 months.                                                                             | Moderate    | Statistical comparisons between drugs not reported.                                               |
| Systemic AEs             | 2 RCTs (n=2457)‡<br>► 2 low ROB | No significant differences reported, and no evidence of a dose-response<br>relationship (highest exposure to aflibercept generally had lowest event<br>rates). ATEs: 2.4% (monthly arm) vs 3.2%. | Low         | Statistical comparison between drugs not reported.                                                |
| Costs                    | 2 RCTs (n=2457)‡<br>► 2 low ROB | No direct data. Aflibercept required slightly less frequent injections during 10 month PRN phase (4.1 vs 4.7; P<0.001), likely representing a small savings (-\$2300/year**).                    | Low         |                                                                                                   |

#### Anmerkung/Fazit der Autoren

We found that aflibercept, bevacizumab and ranibizumab had comparable effects on visual acuity and similar rates of ocular and systemic harms. Because the agents had similar effectiveness and safety profiles but had marked differences in price, repackaged bevacizumab was found to be the most cost-effective drug. Clinicians should also consider factors such as patient preference, individual treatment response, convenience of dosing and evolving regulatory standards when choosing among these three anti-VEGF agents.

#### Nguyen CL et al., 2018 [10].

Anti-vascular endothelial growth factor for neovascular age-related macular degeneration: a meta-analysis of randomized controlled trials

Siehe auch Pham et al 2019 [11].

#### Fragestellung

to evaluate the relative efficacy and safety of all intravitreal anti-VEGF agents that are available compared with another treatment for neovascular age-related macular degeneration (nAMD) and in particular when compared to each other.

#### Methodik

Population:

Patients with nAMD

Intervention/Komparator:

• anti-VEGF treatment (pegaptanib, ranibizumab, bevacizumab, aflibercept or conbercept)



#### Endpunkte:

- Efficacy: mean change in best corrected visual acuity (BCVA), central macular thickness (CMT) from baseline at 1 and 2 years of follow up.
- Safety: proportions of patients with death, arteriothrombotic and venous thrombotic events, and at least one serious systemic adverse event at 1 and 2 years of follow up.

#### Recherche/Suchzeitraum:

 systematic literature review with searches of CENTRAL, Ovid MEDLINE (January 1946 to June 2016), EMBASE (January 1974 to June 2016), the metaRegister of Controlled Trials (mRCT), ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP). The final search was performed on June 2016.

#### Qualitätsbewertung der Studien:

• Cochrane Risk of Bias tool

#### Ergebnisse

#### Anzahl eingeschlossener Studien:

- Fifteen RCTs selected for meta-analysis (8320 patients).
- Two trials compared pegaptanib, and three trials compared ranibizumab versus control. Eight trials compared bevacizumab with ranibizumab. Two trials compared aflibercept with ranibizumab.

#### Charakteristika der Population:

#### Table 1 Characteristics of included studies

| Study                 | Location                                                                                                                                                                                                                 | Treatment groups                 | Followup,<br>months | Number of<br>patients | Age,<br>years          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|-----------------------|------------------------|
| VISION 2004 [6]       | United States, Canada, Austria, Belgium,<br>Czech Republic, Denmark, France, Germany,<br>Hungary, Israel, Italy, the Netherlands, Poland,<br>Portugal, Spain, Switzerland, UK, Brazil, Chile,<br>Colombia, and Australia | Pegatanib and photocoagulation   | 12                  | 904/304 <sup>a</sup>  | 75/77 <sup>a</sup>     |
| ANCHOR 2006 [9]       | United States, France, Germany, Hungary,<br>Czech Republic, and Australia                                                                                                                                                | Ranibizumab and photocoagulation | 24                  | 280/143 <sup>b</sup>  | 76.7/77.8 <sup>b</sup> |
| MARINA 2006 [10]      | United States                                                                                                                                                                                                            | Ranibizumab and photocoagulation | 24                  | 478/238 <sup>b</sup>  | 77/77 <sup>b</sup>     |
| PIER 2008 [36]        | United States                                                                                                                                                                                                            | Ranibizumab and photocoagulation | 24                  | 121/63 <sup>b</sup>   | 79/78 <sup>b</sup>     |
| ABC 2010 [34]         | United Kingdom                                                                                                                                                                                                           | Bevacizumab and photocoagulation | 12                  | 65/66 <sup>c</sup>    | 79/81 <sup>c</sup>     |
| SACU 2009 [37]        | Austria                                                                                                                                                                                                                  | Bevacizumab and photocoagulation | 12                  | 14/14 <sup>c</sup>    | 78/78 <sup>c</sup>     |
| CATT 2011 [12]        | United States                                                                                                                                                                                                            | Bevacizumab and ranibizumab      | 24                  | 586/599 <sup>d</sup>  | 79.7/78.8 <sup>d</sup> |
| IVAN 2013 [14]        | United Kingdom                                                                                                                                                                                                           | Bevacizumab and ranibizumab      | 24                  | 296/314 <sup>d</sup>  | 77.8/77.7 <sup>d</sup> |
| GEFAL 2013 [35]       | France                                                                                                                                                                                                                   | Bevacizumab and ranibizumab      | 12                  | 191/183 <sup>d</sup>  | 79.6/78.7 <sup>d</sup> |
| MANTA 2013 [16]       | Austria                                                                                                                                                                                                                  | Bevacizumab and ranibizumab      | 12                  | 154/163 <sup>d</sup>  | 76.7/77.6 <sup>d</sup> |
| Subramanian 2010 [38] | United States                                                                                                                                                                                                            | Bevacizumab and ranibizumab      | 12                  | 15/7 <sup>d</sup>     | 78/80 <sup>d</sup>     |
| Biswas 2011 [24]      | India                                                                                                                                                                                                                    | Bevacizumab and ranibizumab      | 18                  | 50/54 <sup>d</sup>    | 64.4/63.5 <sup>d</sup> |
| LUCAS 2015 [18]       | Norway                                                                                                                                                                                                                   | Bevacizumab and ranibizumab      | 24                  | 213/218 <sup>d</sup>  | 62/78 <sup>d</sup>     |
| BRAMD 2016 [19]       | Netherlands                                                                                                                                                                                                              | Bevacizumab and ranibizumab      | 12                  | 161/166 <sup>d</sup>  | 79/78 <sup>d</sup>     |
| VIEW 1 [25]           | United States and Canada                                                                                                                                                                                                 | Aflibercept and ranibizumab      | 24                  | 911/304 <sup>e</sup>  | 78/78 <sup>e</sup>     |
| VIEW 2 [25]           | Europe, the Middle East, Asia-Pacific,<br>and Latin America                                                                                                                                                              | Aflibercept and ranibizumab      | 24                  | 913/291 <sup>e</sup>  | 74/73 <sup>e</sup>     |

<sup>a</sup>Pregatanib group/photocoagulation group

<sup>b</sup>Ranibizumab group/photocoagulation group <sup>c</sup>Bevacizumab group/photocoagulation group

<sup>d</sup>Bevacizumab group/ranibizumab group

<sup>e</sup>Aflibercept group/ranibizumab group



#### Qualität der Studien:



Abbildung 1: Risk of bias assessment of included studies. Low risk (+), Unclear risk (?), High risk (-)

#### Studienergebnisse:

Der Fokus der Ergebnisdarstellung liegt auf Vergleichen zu den im AWG zugelassenen Wirkstoffen.

#### Pegaptanib versus control

- The VISION 2004 study involved two RCTs. The mean difference in change in BCVA from baseline between the combined pegaptanib groups versus the control group was 6.72 letters (95% CI 4.43 to 9.01, P < 0.00001) at 1 year. Patients treated with pegaptanib lost 7 letters fewer than patients in the control group. CMT outcomes were not measured; two year outcomes were not analysed as the trial crossed over.
- Rates of systemic serious adverse events did not differ significantly between pegaptanib and control intervention at 1 year followup. Estimated relative risk ratio of at least 1 systemic serious adverse event for pegaptanib compared to control at 1 year was 1.25 (CI 0.93 to 1.70, P = 0.14).

#### Ranibizumab versus control

- The three trials involving 1322 patients demonstrated that patients treated with ranibizumab read 18 letters more at the 1 year follow up (weighted mean difference = 17.80, 95% CI 15.95 to 19.65, P < 0.00001, I2 = 0), and 20 letters more at the two-year follow up than patients in the control groups (weighted mean difference (WMD)= 20.11, 95% CI 18.08 to 22.15, P < 0.00001, I2 = 0). No data on CMT was available.</li>
- Rates of death and arteriothrombotic events in ranibizumab and control groups did not differ significantly at 1 year or 2 years

#### Aflibercept versus ranibizumab

• Two trials comprising of 2412 patients treated with aflibercept and ranibizumab, demonstrated comparable gains in BCVA at 1 year follow up (WMD = -0.15, 95% CI -1.47 to 1.16, P = 0.82, I<sup>2</sup> = 0).



- Similarly, aflibercept and ranibizumab demonstrated comparable reduction in CMT at 1 year follow up (WMD = 4.94, 95% CI -15.48 to 5. 61, P = 0.36, I<sup>2</sup> = 0).
- The two-year efficacy outcomes were unable to be included in the metaanalysis as they were combined when reported. At two years the mean change in BCVA from baseline was 7.2 letters and 7.9 letters in the aflibercept and ranibizumab groups respectively, and this was not statistically significant. Data on outcomes for reduction in CMT at two years were not available.
- At 1 year follow up, there were no significant differences between aflibercept and ranibizumab in terms of rates of death, arteriothrombotic events, or venous thrombotic events. However, the numbers for these adverse events were small.
- Adverse event data from VIEW1 and VIEW2 trials were not available for analysis of two-year outcomes due to data from both studies being combined. Following two years, 3.3% (60/1824) of patients treated with aflibercept experienced an arteriothrombotic event compared to 3.2% (19/595) of patients treated with ranibizumab (RR 1.03, 95% CI 0.62 to 1.71). The risk of any serious systemic adverse event was similar between aflibercept and ranibizumab groups at two year follow-up (RR 0.98, 95% CI 0.83 to 1.15).

#### Anmerkung/Fazit der Autoren

The results of this review indicate effectiveness of anti- VEGF agents in terms of the stability or improvement in VA after 1 and 2 years of treatment. Bevacizumab and ranibizumab had equivalent efficacy for BCVA, while ranibizumab had greater reduction in CMT and less rate of serious systemic adverse events. Aflibercept and ranibizumab had comparable efficacy for BCVA and CMT. The available information on adverse effects with each drug does not suggest a higher incidence of vision-threatening complications with intravitreal anti-VEGF injection compared with control interventions.

#### Kommentare zum Review

This study conducted metaanalyses of results by anti-VEGF agent, combining different doses and regimens of the same agent evaluated in the individual trials. Studies in which different doses of one anti-VEGF agent were compared with each other, with no control or comparator were excluded. Studies in which anti-VEGF agents were used in combination with other treatments were excluded.

#### Gao Y et al., 2018 [2].

Anti-VEGF monotherapy versus photodynamic therapy and anti-VEGF combination treatment for neovascular age-related macular degeneration: a meta-analysis

#### Fragestellung

The purpose of this study was to compare the efficacy and safety of anti-VEGF monotherapy with verteporfin photodynamic therapy (PDT) and anti-VEGF combination treatment in neovascular AMD.



#### Methodik

#### Population:

• Patients with active CNV secondary to AMD

#### Intervention/Komparator:

• combined anti-VEGF therapy and PDT versus anti-VEGF monotherapy

#### Endpunkte:

• BCVA, central retinal thickness (CRT), number of anti-VEGF treatments, proportion of patients who gained ≥15 BCVA letters at end of the study

#### Recherche/Suchzeitraum:

• Literature published prior to July 2017 was searched in PubMed, Web of Science, and Cochrane Library databases

#### Qualitätsbewertung der Studien:

- Cochrane Risk of Bias tool
- Subgroup analyses were performed based on the following factors: verteporfin PDT of different fluences in combination therapy (i.e., standard-fluence [SF] versus reduced-fluence [RF])

#### Ergebnisse

Anzahl eingeschlossener Studien:

• 16 studies (n=1260)

#### Charakteristika der Population:

- Among the 16 studies, seven were conducted in Europe, four in the United States and three in Australia.
- The studies were divided into the anti-VEGF monotherapy group (587 patients) and PDT and anti-VEGF combination therapy group (673 patients).
- Thirteen trials were followed-up for 12 months, one trial was followed-up for 24 months, and two trials were followed-up for 6 months.
- Eleven studies compared ranibizumab monotherapy with ranibizumab + PDT combination treatment. Five studies compared bevacizumab monotherapy with bevacizumab + PDT combination therapy.



| First Author    | Publication<br>Year | Location | Previous CNV<br>Treatment                                                      | Design                   | Follow-<br>up,<br>mo | Groups                                                                               | Sample<br>Size    | Average<br>Age, y                      |
|-----------------|---------------------|----------|--------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------------------------------------------------------------------|-------------------|----------------------------------------|
| Larsen, M.      | 2012                | Europe   | Naive                                                                          | Double-<br>masked<br>RCT | 12                   | IVR(3+PRN)+sham PDT<br>IVR(3+PRN)+SF PDT                                             | 133<br>122        | $75.5 \pm 7.4$<br>$76.8 \pm 7.7$       |
| Kaiser, P.K.    | 2012                | USA      | Naive                                                                          | Double-<br>masked<br>RCT | 12                   | IVR(3+PRN)+sham PDT<br>IVR(3+PRN)+SF PDT<br>IVR(2+PRN)+BF PDT                        | 112<br>104<br>105 | NR<br>NR                               |
| Krebs, I.       | 2013                | Austria  | Naive                                                                          | RCT                      | 12                   | IVR(3+PRN)+RF PDT<br>IVR(3+PRN)<br>IVR(3+PRN)+SF PDT                                 | 24<br>20          | NR<br>77.71 ± 8.87<br>80.25 ± 6.32     |
| Vallance, J.H.  | 2010                | UK       | Naive                                                                          | Double-<br>masked<br>RCT | 12                   | IVR(3+PRN)+sham PDT<br>IVR(3+PRN)+SF PDT                                             | 9<br>9            | NR<br>NR                               |
| Chen, E.        | 2010                | USA      | Naive                                                                          | RCT                      | 12                   | IVR(3+PRN)+sham PDT<br>IVR(3+PRN)+20% PDT<br>IVR(3+PRN)+40% PDT                      | 2<br>2<br>3       | 76 ± 4.62                              |
| Williams, P.D.  | 2012                | USA      | Naive                                                                          | RCT                      | 12                   | IVR(3+PRN)<br>IVR(3+PRN)+RF PDT                                                      | 27<br>29          | 79.1<br>79.3                           |
| Gallemore, R.P. | 2017                | USA      | Naive                                                                          | RCT                      | 24                   | IVR(3+PRN)<br>IVR(3+PRN)+RF PDT                                                      | 41<br>43          | NR<br>NR                               |
| Hatz, K.        | 2015                | Austria  | No laser, intravitreal<br>steroids or PDT<br>within 30 d before<br>enrollment  | Double-<br>masked<br>RCT | 12                   | IVR(3+PRN)<br>IVR(3+PRN)+SF PDT                                                      | 21<br>19          | 78<br>79                               |
| Lim, J.Y.       | 2012                | Korea    | No intravitreal<br>triamcinolone<br>or PDT within<br>90 d before<br>enrollment | RCT                      | 12                   | IVB(3+PRN)<br>IVB(3+PRN)+SF PDT                                                      | 13<br>18          | NR<br>NR                               |
| Costagliola, C. | 2010                | Italy    | Naive                                                                          | RCT                      | 12                   | IVB(1+PRN)<br>IVB(1+PRN)+RF PDT                                                      | 45<br>40          | $65.3 \pm 15$<br>$63.2 \pm 12$         |
| Datseris, I.    | 2015                | Greece   | Naive                                                                          | RCT                      | 12                   | IVB(1+PRN)<br>IVB(1+PRN)+RF PDT                                                      | 46<br>49          | $74 \pm 10.3$<br>$73 \pm 8.5$          |
| Saviano, S.     | 2016                | Italy    | No intravitreal anti-<br>VEGF or PDT<br>within 6 mo<br>before enrollment       | RCT                      | 12                   | IVB(3+PRN)<br>IVB(1+PRN)+RF PDT                                                      | 31<br>31          | 79 ± 7.3<br>77 ± 7.8                   |
| Weingessel, B.  | 2016                | Austria  | Naive                                                                          | RCT                      | 12                   | IVR(3+PRN)<br>IVR(3+PRN)+SF PDT                                                      | 16<br>14          | $81.1 \pm 7.9$<br>$83.3 \pm 6.1$       |
| Semeraro, F.    | 2015                | Italy    | Naive                                                                          | RCT                      | 12                   | IVR(3+PRN)<br>IVR(3+PRN)+RF PDT                                                      | 25<br>25          | $77.2 \pm 8.3$<br>$76.6 \pm 6.2$       |
| Giustolisi, R.  | 2011                | Italy    | Naive                                                                          | RCT                      | 6                    | IVR(3+PRN)<br>IVR(3+PRN)+SF PDT                                                      | 30<br>17          | 70.57                                  |
| Potter, M.J.    | 2010                | Canada   | Naive                                                                          | Double-<br>masked<br>RCT | 6                    | IVB(1+PRN)+sham PDT<br>IVB(1+PRN)+RF PDT<br>IVB(1+PRN)+25% PDT<br>IVB(1+PRN)+25% PDT | 12<br>11<br>12    | 80.6 ± 7.9<br>83.4 ± 6.9<br>78.3 ± 8.6 |

#### TABLE 1. The Characteristics of the Included Studies

Monotherapy, group that received anti-VEGF treatment only; PDT (SF), PDT with SF; PDT (RF), PDT with RF; IVR, intravitreal ranibizumab; IVB, intravitreal bevacizumab; PRN, as needed; NR: not recorded.

#### Qualität der Studien:



#### Studienergebnisse:

**Best Corrected Visual Acuity** 

Seven studies reported the BCVA at baseline: The pooled result showed no statistical difference between the baseline BCVA of the two groups (WMD=-1.672, 95% CI: -3.959 to 0.735, P=0.178)



- Nine studies reported the BCVA at the end of the study: no statistical difference between the end-of-study BCVA of the two groups (WMD=1.928, 95% CI: -1.495 to 5.352, P=0.270).
- Monotherapy was associated with a higher ratio of patients who gained ≥15 BCVA letters as compared to combination treatment. However, the pooled result revealed no statistical difference between the two groups (RR =0.948, 95% CI: 0.890~1.009, P=0.095).

Central Retinal Thickness

- Twelve studies reported CRT at baseline: no statistical difference between the two groups (WMD=-5.209, 95% CI: -18.979 to 8.560, P=0.458)
- Thirteen studies reported the CRT at the end of the study: no significant difference between the end-of-study CRT of the two groups (WMD=2.906, 95% CI: -6.205 to 12.017, P = 0.532)

Number of Anti-VEGF Treatments

• The combination therapy group required fewer anti-VEGF treatments than the monotherapy group (WMD: 1.254; 95% CI: 0.111~2.397; P= 0.032).

Adverse Events

Six studies reported adverse events at the end of the study. Overall, the incidence of serious
adverse events (endophthalmitis, macular hole) was very low. Comparison of the number of
ocular and nonocular adverse events revealed no significant difference between the two
treatment groups.

Subgroup analyses

- In the combination therapy group, the intervention was 50 J/cm<sup>2</sup> standard-fluence (SF) PDT and anti-VEGF treatment in seven studies and was 25 J/cm<sup>2</sup> reduced-fluence (RF) PDT and anti-VEGF treatment in six studies. There was no obvious trend in the effects on BCVA at the end of the study based on fluence (SD PDT: WMD: 0.947, 95% CI: -3.855 to 5.749, P=0.699; RF PDT: WMD: 3.305, 95% CI: -11.390 to 18.000, P=0.659).
- CRT at end of the study was thinner in the SF PDT combination therapy group than in the monotherapy group (WMD: 17.229; 95% CI: 5.378~29.080; P = 0.004). The RF PDT combination therapy group required fewer anti-VEGF injections than the monotherapy group (WMD: 3.157; 95% CI: 1.275~5.041; P = 0.001), while the number of anti-VEGF treatments between the SF PDT combination therapy and monotherapy groups was not statistically different (WMD: 0.23; 95% CI: -0.016~0.475; P = 0.067).

#### Anmerkung/Fazit der Autoren

In conclusion, combination therapy with verteporfin PDT and anti-VEGF therapy is effective for achieving BCVA gain and CRT reduction compared with anti-VEGF monotherapy. Combination therapy with RF PDT has the potential to decrease the number of anti-VEGF injections, thereby reducing the overall treatment burden and serious adverse events associated with intravitreal injection. However, monotherapy is associated with a higher ratio of patients who gain  $\geq$  15 BCVA letters than does combination therapy, despite the lack of statistical difference.



#### Su Yet al., 2018 [14].

Photodynamic therapy in combination with ranibizumab versus ranibizumab monotherapy for wet age-related macular degeneration: a systematic review and meta-analysis

#### Fragestellung

To evaluate the efficacy and safety becween photodynamic therapy (PDT] combined with intravitreal ranibizumab (IVR) and ranibizumab monotherapy in treating wet age-related macular degeneration (AMD).

#### Methodik

#### Population:

• Patients with AMD diagnosed by professional ophthalmic examinations

#### Intervention/ Komperator:

• Photodynamic therapy in combination with ranibizumab versus ranibizumab monotherapy

#### Endpunkte:

primary outcomes

• BCVA, number of ranibizumab injections and central retinal thickness (CRT)

secondary outcomes

lesion size of CNV, proportion of patients gaining ≥ 15 letters, proportion of patients losing ≥ 15 letters and ocular adverse events.

#### Recherche/Suchzeitraum:

• search was performed in the PubMed, Embase, Web of Science and the Cochrane Library databases through December 31, 2017.

#### Qualitätsbewertung der Studien:

• Cochrane Risk of Bias tool

#### Ergebnisse

Anzahl eingeschlossener Studien:

• 8 RCTs included (n=922)



#### Charakteristika der Population:

| Author Publication | Publication year | Location                                            | Eyes                   |             | $Age(mean \doteq SD$   | ŀ            | OCT                                                                                                                | Major Inclusion criteria                                                                                                                                        | Major Exclusion criteria                                                                                                      |  |
|--------------------|------------------|-----------------------------------------------------|------------------------|-------------|------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
|                    |                  |                                                     | Combination<br>therapy | Monotherapy | Combination<br>therapy | Monothearpy  |                                                                                                                    |                                                                                                                                                                 |                                                                                                                               |  |
| Weingestel         | 2016             | Austria                                             | 14                     | 16          | 81.1 ± 7.9             | 83.3 ± 6.1   | Spectralis OCT(Heidelberg Engineering,<br>Heidelberg.Germany)                                                      | BCVA letter score of<br>7324 letters;<br>Lesion size of < 5400<br>BD                                                                                            | Patients had received any prior treatme<br>for AMD                                                                            |  |
| Semeraro           | 2015             | Multicenter(2 hospitals<br>in Italy)                | 25:25                  | 25          | 76.6 = 6.2             | 77.2 ± 8.3   | Spectralis OCT(Heidelberg<br>Engineering, Heidelberg,Germany)                                                      | Presence of treatment-<br>naïve neovascular AMD                                                                                                                 | Any previous intravitical treatment or<br>laser treatment                                                                     |  |
| Hatz               | 2015             | Austria                                             | 19                     | 21          | >50                    |              | Stratus DCT(Zeiss Meditec, Dublin, CA)                                                                             | CNV occupying ≻50%<br>of total lesion;<br>BCVA score 23-73 leters                                                                                               | Laser photocoagulaton, intravitreal<br>steroidsor verteporfn FDT in 30 days;<br>History of intravitreal ant-VEGF<br>freatment |  |
| Krebs              | 2013             | Multicenter(3 hospitals<br>in Austria)              | 24                     | 24          | 80.25 ± 6.32           | 77.71 ± 8.87 | Cirrus OCT(Zeiss, Dublin, CA,USA); Spectralis<br>OCT(Heidelberger Ing, Heidelberg, Germany);<br>Stratus OCT(Zeiss) | Area of CNV occupy at<br>least 50% of the total<br>lesion                                                                                                       | BCVA < 33 letters (about 20 /200) in<br>both eyes;History of eye surgery or dru<br>or eye treatment                           |  |
| Larsen             | 2012             | Multicenter(45 centers in<br>12 European countries) | 122                    | 133         | ≥50                    |              | Stratus OCT(Carl Zeiss Meditec, Jena, Germany)                                                                     | CNV occupying $\geq$ 50%<br>of the total lesion;<br>BCVA letter score of 73-                                                                                    | Patients had received prior treatment f<br>neovascular AMD;<br>Other pathological changes except CNV                          |  |
| Kaiser             | 2012             | The United<br>States,Canada                         | 103;105                | 110         | ≥50                    |              | NA                                                                                                                 | 24 letters:<br>Lesion size of $\leq 5400$<br>$\mu$ m;<br>CNV occupying $\geq 50\%$                                                                              | occupying 5:50% of the total lesion<br>Prior treatmentfor neovascular AMD;                                                    |  |
| Bashshur           | 2011             | Lebanon                                             | 20                     | 20          | 71 ± 7.99              | 75.59 ± 6.25 | Stratus OCT(Carl Zelss Meditec, Dublin, CA)                                                                        | of the total lesion<br>RCVA of 20/50 to 20/<br>400(Snellen equivalent);<br>Lesion size of $\leq$ 5400<br>µm;<br>CNV occupying $\geq$ 50%<br>of the total lesion | Previous treatment for CNV Anti-VEGP<br>treatment, or Vecteporfin PDT                                                         |  |
| Vallanco           | 2010             | ŪK.                                                 | 9                      | 9           | NA                     |              | Stratus OCT(Zeiss Meditach,<br>Jena, Germany)                                                                      |                                                                                                                                                                 | Any previous GNV treatment                                                                                                    |  |

#### Qualität der Studien:

- The quality of five RCTs were high, of two RCTs moderate and of one low.
- The overall risk of bias is low





Studienergebnisse:

 No significant difference between combination therapy and monotherapy at month 3 and 6, but significant difference at month 12 (siehe Abbildung 1). This result suggested that ranibizumab monotherapy achieved better BCVA improvement than combination therapy as an AMD treatment.

Abbildung 1: Forest plot of standard mean difference in BCVA (logMAR was used in Semararo's study and ETDRS letters in the others). A: BCVA at month 3; B: BCVA at month 6; C: BCVA at month 12.



- The analysis showed a significant difference between the two groups in the proportion of patients gaining ≥ 15 letters (RR = 0.70, 95% CI: 0. 56-0.87; P = 0.001), showing that the proportion of patients gaining ≥ 15 letters in combination therapy was statistically smaller than those in the monotherapy group after 12 months.
- no significant difference between the two groups in proportion of patients loosing ≥ 15 letters (RR = 1.35, 95% CI: 0. 89-2.04, P= 0.16).
- no significant difference between the two groups in CRT (MD = 4.80, 95% CI: -6.28 to 15.89, P = 0.40).
- The analysis showed no significant difference between the two groups in adverse events (RR = 1.12, 95% CI: 0.94-1.33, P=0. 22)
- significant difference between the two groups in the number of ranibizumab injections (MD= -1.13, 95% CI: -2.11 to -0.15, P = 0. 0002, I<sup>2</sup> = 85%). Subgroup analysis was conducted according to BCVA baseline (siehe Abbildung 2)



#### Abbildung 2: Forest plot of number of ranibizumab at month 12

|                                   | combini                | ation the  | rapy      | mon      | othera          | ру         |        | Mean Difference      | Mean Difference                          |
|-----------------------------------|------------------------|------------|-----------|----------|-----------------|------------|--------|----------------------|------------------------------------------|
| Study or Subgroup                 | Mean                   | SD         | Total     | Mean     | SD              | Total      | Weight | IV, Random, 95% Ci   | IV, Random, 95% Cl                       |
| 10.1.1 Within limitatio           | on of 73-24            | l letters  |           |          |                 |            |        |                      |                                          |
| Larsen2012                        | 4.8                    | 2.03       | 122       | 5.1      | 2.01            | 132        | 28.4%  | -0.30 [-0.80, 0.20]  |                                          |
| Weingessel 2016                   | 6.9                    | 1.1        | 14        | 7.4      | 1.4             | 16         | 24.4%  | -0.50 [-1.40, 0.40]  |                                          |
| Subtotal (95% CI)                 |                        |            | 136       |          |                 | 148        | 52.9%  | -0.35 [-0.78, 0.09]  | •                                        |
| Heterogeneity: Tau*=              | 0.00; Chi <sup>a</sup> | '= 0.15, c | f=1 (P    | = 0.70)  | P= 09           | *          |        |                      |                                          |
| Test for overall effect:          |                        |            | •         |          |                 |            |        |                      | i i i i i i i i i i i i i i i i i i i    |
|                                   |                        |            |           |          |                 |            |        |                      |                                          |
| 10.1.2 Without limitat            | tion of BC\            | /A baseli  | ne        |          |                 |            |        |                      |                                          |
| Krebs2013                         | 4.7                    | 1.8        | 19        | 5.6      | 2.4             | 22         | 20.0%  | -1.90 (-3.19, -0.61) |                                          |
| Semeraro2015                      | 5.8                    | 1.3        | 25        | 7.8      | 1               | 25         | 27.1%  | -2.00 [-2.64, -1.36] |                                          |
| Subtotal (95% CI)                 |                        |            | 44        |          |                 | 47         | 47.1%  | -1.98 [-2.56, -1.40] | ♦                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; ChP              | = 0.02, c  | lf = 1 (P | = 0.89); | l <b>™</b> = 09 | *          |        |                      |                                          |
| Test for overall effect.          | Z= 6.75 (F             | P < 0.000  | 01)       |          |                 |            |        |                      |                                          |
|                                   |                        |            |           |          |                 |            |        |                      |                                          |
| Total (95% CI)                    |                        |            | 180       |          |                 | 195        | 100.0% | -1.13 [-2.11, -0.15] | •                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.81; ChP              | '= 19.86,  | df = 3 (  | P = 0.00 | 102); P         | = 85%      |        |                      | — <u> </u>                               |
| Test for overall effect:          | Z = 2.26 (F            | ° = 0.02)  |           |          |                 |            |        |                      | -10 -5 0 S 10                            |
| Test for subaroup diff            | erences: C             | ;hi²=19.   | 70. df =  | 1 (P < 0 | .0000           | 1). (* = 9 | 34.9%  |                      | Favours (experimental) Favours [control] |

#### Anmerkung/Fazit der Autoren

Although BCVA improvement in the combination group was inferior to that with ranibizumab alone at month 12 and the proportion of patients gaining more than 15 letters was less than that of the monogroup, PDT combined with ranibizumab could decrease the number of injections of ranibizumab, thus reducing the financla! burden and making it more convenient for patienis who could not be regularly followed up. We should consider individualized treatments according to patients specific conditions and different needs. There was no difference in adverse effects between the groups.

#### Kommentare zum Review

Our meta-analysis also had the following limitations 1) most studies failed to mention the method of allocation concealment, so the quality of these studies was moderate; 2) some studies did not mention the proportion of each type of CNV, and PDT was more suitable for the classical type, while anti-VEGF drugs were fit for all types; 3) no funnel plots could be drawn for the meta-analysis because there were only eight studies; 4) because there were only three RCTs measuring mean BCVA changes at month 6, we were not able to perform the subgroup analysis; 5) it would be better to include data for more years because wet AMD is a chronic disease, and therefore a longtherm perspective is needed; and 6) the types of OCT differed in the 8 RCTs, so there might be statistical errors in the CRT data.

#### Li S et al., 2017 [7].

Combinatorial treatment with topical NSAIDs and anti-VEGF for age-related macular degeneration, a meta-analysis

#### Fragestellung

In this study, we systematically reviewed clinical trials comparing combined treatment versus anti-VEGF alone in AMD patients.



#### Methodik

#### Population:

Patients: treated or naive wet AMD requiring anti-VEGF therapy

#### Intervention/Komparator:

 combined treatment with topical non-steroidal anti-inflammatory drugs (NSAIDs) and anti-VEGF versus anti-VEGF alone

#### Endpunkte:

• injection number of anti-VEGF, best corrected visual acuity (BCVA) at the end point, central retinal thickness (CRT) at the end point, adverse effects

#### Recherche/Suchzeitraum:

 A systematic literature review was performed to identify relevant articles comparing anti-VEGF agents combined with topical NSAIDS and anti-VEGF alone for the treatment of nAMD from inception to December 2016. Two independent reviewers searched electronic databases including PubMed, EMBASE and the Cochrane Central Register of Controlled Trials.

#### Qualitätsbewertung der Studien:

• Risk of bias of each included study was evaluated using the Cochrane risk of bias tool

#### Ergebnisse

#### Anzahl eingeschlossener Studien:

- six studies (n=278 patients), including two quasi-RCTs and four RCTs, were included in this meta-analysis.
- Follow up duration for all studies were between 6 months to 12 months.

#### Charakteristika der Population:

- n=142 in study group and n=136 in control group
- Of the 278 eyes, 172 (62%) in four trials received ranibizumab as the anti-VEGF agent, 54 eyes (19%) in one trial received aflibercept, and 52 eyes (19%) in another trial received bevacizumab as anti-VEGF agent.
- Bromfenac was used in four studies, including 89 eyes (63%). Ketorolac was employed in two trials, including 53 eyes (37%).



#### Table 1. Baseline characteristics of the included studies.

| Study                                                  | Design        | Country          | Patients                                              | No. of<br>patients | Mean<br>age   | Anti-VEGF               | NSAIDs                                                   | Follow-<br>up | Outcomes                     |
|--------------------------------------------------------|---------------|------------------|-------------------------------------------------------|--------------------|---------------|-------------------------|----------------------------------------------------------|---------------|------------------------------|
| Flaxel et al., 2012<br>[10]                            | RCT           | United<br>States | New or recurrent<br>exudative or<br>neovascular AMD   | 20/10              | 85.5/<br>77.5 | Ranibizumab (4<br>+PRN) | Bromfenac (1 drop<br>twice daily for 12<br>months)       | 12            | BCVA, CRT                    |
| Gomi et al., 2012[8]                                   | RCT           | Japan            | nAMD with lesions<br>smaller than 2 disk<br>diameters | 16/22              | 75/<br>74.4   | Ranibizumab (1<br>+PRN) | Bromfenac (1 drop<br>twice daily for 6<br>months)        | 6             | CVA, CRT,<br>No.of injection |
| Russo et al., 2013<br>[11]                             | RCT           | Italy            | New neovascular<br>AMD                                | 28/26              | 76/<br>77.8   | Ranibizumab (3<br>+PRN) | Ketorolac (1 drop<br>three times a day<br>for 6 months)  | 6             | CVA, CRT,<br>No.of injection |
| Wyględowska-<br>Promieńska et al.,<br>2014[12]         | Quasi-<br>RCT | Poland           | Exudative AMD                                         | 26/26              | 72.4/<br>72.3 | Bevacizumab<br>(3+PRN)  | Bromfenac (1 drop<br>twice daily for 3<br>months)        | 8             | CVA, CRT,<br>No.of injection |
| Semeraro et al.,<br>2015[ <u>13]</u>                   | RCT           | Italy            | Naïve eyes affected<br>by neovascular<br>AMD          | 25/25              | 76.3/<br>77.2 | Ranibizumab (3<br>+PRN) | Ketorolac (1 drop<br>three times a day<br>for 12 months) | 12            | CVA, CRT,<br>No.of injection |
| Wyględowska-<br>Promieńska et al.,<br>2015[ <u>14]</u> | Quasi-<br>RCT | Poland           | Exudative AMD                                         | 27/27              | 72.3/<br>72.8 | Aflibercept (4<br>+PRN) | Bromfenac (1 drop<br>twice daily for 3<br>months)        | 8             | BCVA, CRT                    |

#### Qualität der Studien:

#### Table 2. Assessment of risk of bias of the included studies.

| Domain Flaxel et al<br>2012    |           | l et al. Gomi et al. R<br>2012 20 |           | Wyględowska-Promieńska<br>et al., 2014 | Semeraro et al.<br>2015 | Wyględowska-Promieńska<br>et al. 2015 |  |  |
|--------------------------------|-----------|-----------------------------------|-----------|----------------------------------------|-------------------------|---------------------------------------|--|--|
| Random sequence<br>generation  | Low risk  | Low risk                          | Low risk  | High risk                              | Low risk                | High risk                             |  |  |
| Allocation concealment         | Unclear   | Unclear                           | Unclear   | High risk                              | Unclear                 | High risk                             |  |  |
| Blinding for visual<br>acuity  |           |                                   |           |                                        |                         |                                       |  |  |
| Participants and<br>personnel  | High risk | Low risk                          | High risk | High risk                              | High risk               | High risk                             |  |  |
| Outcome<br>assessment          | Low risk  | Low risk                          | Low risk  | Low risk                               | Low risk                | Low risk                              |  |  |
| Blinding for other<br>outcomes |           |                                   |           |                                        |                         |                                       |  |  |
| Participants and<br>personnel  | High risk | Low risk                          | High risk | High risk                              | High risk               | High risk                             |  |  |
| Outcome<br>assessment          | Low risk  | Low risk                          | Low risk  | Low risk                               | Low risk                | Low risk                              |  |  |
| Incomplete outcome<br>data     | Low risk  | Low risk                          | Low risk  | Low risk                               | Low risk                | Low risk                              |  |  |
| Selective reporting            | Low risk  | Low risk                          | Low risk  | Low risk                               | Low risk                | Low risk                              |  |  |
| Other bias                     | Low risk  | Low risk                          | Low risk  | Low risk                               | Low risk                | Low risk                              |  |  |

#### Studienergebnisse:

- Four studies compared the mean injection numbers between treatment and control group. Pooling results showed that combined topical NSAIDs with anti-VEGF was associated with fewer anti-VEGF injections (Fig 2A).
- Subgroup studies were assessed according to type of topical NSAID, anti-VEGF, and duration of follow-up (Fig 2B). Regardless of anti-VEGF agent used, combined treatment decreased the number of anti-VEGF treatments required. This trend is more significant with follow-up duration greater than 6 months. However, only bromfenec demonstrated a statistically-significant reduction of anti-VEGF injection number.



|                                                                                                                                  | Expe                  | eriment               |          |       | ontrol      | <b>T</b> | and all a | Mean Difference                             | Mean Difference                                       |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|----------|-------|-------------|----------|-----------|---------------------------------------------|-------------------------------------------------------|
| tudy or Subgroup                                                                                                                 |                       |                       |          | Mean  |             |          |           | IV, Random, 95% CI                          | IV, Random, 95% CI                                    |
| orota Wyględowska-Promieńska 2014 bevacizumab                                                                                    |                       | 0.485                 | 26       | 6.923 | 0.5         | 26       |           | -1.12 [-1.38, -0.85]                        |                                                       |
| see 2013                                                                                                                         | 2.2                   | 1.3                   | 16<br>28 | 3.2   | 1.5<br>0.78 | 22       |           | -1.00 [-1.89, -0.11]<br>-0.30 [-0.72, 0.12] | - <u>-</u>                                            |
| meraro 2015                                                                                                                      | 6.5                   | 1.2                   | 25       | 7.8   |             | 25       |           | -1.30 [-1.91, -0.69]                        | • I                                                   |
| cinerard 2015                                                                                                                    | 0.5                   | 1.2                   | 2.5      | 7.0   | 1           | 2.3      | 22.5%     | -1.50 [-1.51, -0.05]                        | -                                                     |
| otal (95% CI)                                                                                                                    |                       |                       | 95       |       |             | 99       | 100.0%    | -0.91 [-1.39, -0.42]                        |                                                       |
| eterogeneity: Tau <sup>2</sup> = 0.17; Chi <sup>2</sup> = 11.84, df = 3 (P = 0 est for overall effect: Z = 3.66 (P = 0.0003)     | ).008); P             | <sup>1</sup> = 75%    |          |       |             |          |           |                                             | -2 -1 0 1<br>Favours [experimental] Favours [control] |
|                                                                                                                                  |                       |                       |          |       |             |          |           |                                             |                                                       |
|                                                                                                                                  | Expe                  | eriment               | al       | C     | ontrol      |          |           | Mean Difference                             | Mean Difference                                       |
| tudy or Subgroup                                                                                                                 | Mean                  | SD                    | Total    | Mean  | SD          | Total    | Weight    | IV, Random, 95% CI                          | IV, Random, 95% CI                                    |
| 1.1 bromfenec                                                                                                                    |                       |                       |          |       |             |          |           |                                             |                                                       |
|                                                                                                                                  | 5.808                 |                       |          | 6.923 |             | 26       |           | -1.12 [-1.38, -0.85]                        |                                                       |
| omi 2012                                                                                                                         | 2.2                   | 1.3                   | 16       | 3.2   | 1.5         | 22       |           | -1.00 [-1.89, -0.11]                        |                                                       |
| ubtotal (95% CI)                                                                                                                 |                       |                       | 42       |       |             | 48       | 16.5%     | -1.11 [-1.36, -0.85]                        | ◆                                                     |
| eterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.06, df = 1 (P = 0.<br>est for overall effect: Z = 8.45 (P < 0.00001) | 81); I <sup>2</sup> = | 0%                    |          |       |             |          |           |                                             |                                                       |
| 1.2 ketorolac                                                                                                                    |                       |                       |          |       |             |          |           |                                             |                                                       |
| 1550 2013                                                                                                                        | 4                     | 0.8                   | 28       | 4.3   | 0.78        | 26       | 9.7%      | -0.30 [-0.72, 0.12]                         | +                                                     |
| emeraro 2015                                                                                                                     | 6.5                   | 1.2                   | 25       | 7.8   | 1           | 25       |           | -1.30 [-1.91, -0.69]                        |                                                       |
| ubtotal (95% CI)                                                                                                                 |                       |                       | 53       |       |             | 51       |           | -0.77 [-1.75, 0.20]                         |                                                       |
| leterogeneity: Tau <sup>2</sup> = 0.43; Chi <sup>2</sup> = 6.95, df = 1 (P = 0.<br>est for overall effect: Z = 1.55 (P = 0.12)   | 008); I <sup>2</sup>  | = 86%                 |          |       |             |          |           |                                             |                                                       |
| .1.3 ranibizumab                                                                                                                 |                       |                       |          |       |             |          |           |                                             |                                                       |
|                                                                                                                                  |                       |                       | 10       |       |             |          | 4.70      | 100/180 035                                 |                                                       |
| omi 2012                                                                                                                         | 2.2                   | 1.3                   | 16       | 3.2   |             | 22       |           | -1.00 [-1.89, -0.11]                        |                                                       |
| usso 2013                                                                                                                        | 4                     | 0.8                   | 28       |       | 0.78        | 26       |           | -0.30 [-0.72, 0.12]                         | T                                                     |
| emeraro 2015<br>ubtotal (95% CI)                                                                                                 | 6.5                   | 1.2                   | 25<br>69 | 7.8   | 1           | 25<br>73 |           | -1.30 [-1.91, -0.69]                        |                                                       |
|                                                                                                                                  | 51.400                | 7.404                 | 69       |       |             | 73       | 21.5%     | -0.82 [-1.52, -0.13]                        | -                                                     |
| leterogeneity: Tau <sup>3</sup> = 0.27; Chi <sup>2</sup> = 7.55, df = 2 (P = 0.<br>est for overall effect: Z = 2.32 (P = 0.02)   | 02); I* =             | /4%                   |          |       |             |          |           |                                             |                                                       |
| .1.4 bevacizumab                                                                                                                 |                       |                       |          |       |             |          |           |                                             |                                                       |
| lorota Wyględowska-Promieńska 2014 bevacizumab                                                                                   | 5.808                 | 0.485                 |          | 6.923 | 0.5         | 26       |           | -1.12 [-1.38, -0.85]                        |                                                       |
| ubtotal (95% CI)                                                                                                                 |                       |                       | 26       |       |             | 26       | 11.8%     | -1.12 [-1.38, -0.85]                        | •                                                     |
| eterogeneity: Not applicable<br>est for overall effect: Z = 8.16 (P < 0.00001)                                                   |                       |                       |          |       |             |          |           |                                             | -                                                     |
| 1.5 6M                                                                                                                           |                       |                       |          |       |             |          |           |                                             |                                                       |
| iomi 2012                                                                                                                        | 2.2                   | 1.3                   | 16       |       | 1.5         | 22       | 4.74      | -1.00 [-1.89, -0.11]                        |                                                       |
| Joni 2012                                                                                                                        | 2.2                   | 0.8                   | 28       |       | 0.78        | 26       | 9.7%      | -0.30 [-0.72, 0.12]                         |                                                       |
| ubtotal (95% CI)                                                                                                                 |                       | 0.8                   | 44       | 7.3   | J.78        | 48       |           | -0.53 [-0.72, 0.12]                         |                                                       |
| leterogeneity: $Tau^2 = 0.12$ ; $Chi^2 = 1.93$ , $df = 1$ (P = 0.<br>lest for overall effect: Z = 1.62 (P = 0.11)                | 16); l <sup>2</sup> = | 48%                   | 1        |       |             | 0        |           |                                             |                                                       |
| .1.6 >6M                                                                                                                         |                       |                       |          |       |             |          |           |                                             |                                                       |
|                                                                                                                                  | 5.808                 | 0.485                 | 26       | 6.923 | 0.5         | 26       | 11.8%     | -1.12 [-1.38, -0.85]                        |                                                       |
| emeraro 2015                                                                                                                     | 5.808                 | 1.2                   | 25       | 7.8   | 0.5         | 25       |           | -1.30 [-1.91, -0.69]                        |                                                       |
| ubtotal (95% CD                                                                                                                  | 0.3                   | 4.4                   | 51       | 7.0   | *           | 51       |           | -1.14 [-1.39, -0.90]                        |                                                       |
| eterogeneity: $Tau^2 = 0.00$ ; $Chl^2 = 0.29$ , $df = 1$ (P = 0.<br>est for overall effect: Z = 9.15 (P < 0.00001)               | 59); I <sup>2</sup> = | 0%                    |          |       |             |          | /-        |                                             | •                                                     |
|                                                                                                                                  |                       |                       |          |       |             |          |           |                                             |                                                       |
| otal (95% CI)                                                                                                                    |                       |                       | 285      |       |             | 297      | 100.0%    | -0.90 [-1.14, -0.67]                        | • • · · · ·                                           |
| leterogeneity: Tau <sup>2</sup> = 0.11; Chi <sup>2</sup> = 35.52, df = 11 (P =                                                   | 0.0002)               | ); I <sup>2</sup> = 6 | 9%       |       |             |          |           |                                             |                                                       |
| est for overall effect: Z = 7.46 (P < 0.00001)                                                                                   |                       |                       |          |       |             |          |           |                                             | Favours [experimental] Favours [control]              |
| est for subgroup differences: Chi <sup>2</sup> = 3.98, df = 5 (P =                                                               |                       | 0.00                  |          |       |             |          |           |                                             |                                                       |

Fig 2. Forest plot showing the weighted mean difference of required anti-VEGF injections, comparing combined treatment and anti-VEGF alone. A. Pooled data computed using the random effects model. B. Data was grouped by type of NSAIDs (bromfenac and ketorolac), type of anti-VEGF (ranibizumab and bevacizumab) and follow-up duration (6 months and greater than 6 months).

- The mean BCVA (logMAR) at final followup in the combined treatment group and anti-VEGF alone group were not statistically significant.
- subgroup analysis: The BCVAs from two quasi-RCTs were strongly different from other studies in the forest plot. Therefore, the two quasi-RCTs were excluded from the analysis owing to differences in study design. After removing quasi-RCTs, the heterogeneity decreased but yet failed to detect significant change.
- A grouping was also examined with respect to follow-up duration. This also failed to show any difference between the two groups.
- Combining topical NSAIDs with anti-VEGF may reduce the CRT significantly (followed up from 6 months to 12 months), with WMD of -22.9, 95% CI: -41.20 to -4.59, P = 0.01 (Fig 4).

|                                                                               | Exp      | eriment    | tal   | Control |       |       |        | Mean Difference          | Mean Difference                          |
|-------------------------------------------------------------------------------|----------|------------|-------|---------|-------|-------|--------|--------------------------|------------------------------------------|
| Study or Subgroup                                                             | Mean     | SD         | Total | Mean    | SD    | Total | Weight | IV, Random, 95% CI       | IV, Random, 95% Cl                       |
| Dorota Wyględowska-Promieńska 2014 aflibercept                                | 377.2    | 143.4      | 27    | 376.7   | 110.6 | 27    | 5.9%   | 0.50 [-67.81, 68.81]     | · · · · · · · · · · · · · · · · · · ·    |
| Dorota Wyględowska–Promieńska 2014 bevacizumab                                | 389.5    | 51.3       | 26    | 400     | 35.71 | 26    | 20.8%  | -10.50 [-34.53, 13.53]   |                                          |
| Flaxel 2012                                                                   | 206.2    | 50.1       | 20    | 182     | 53.8  | 10    | 12.7%  | 24.20 [-15.72, 64.12]    |                                          |
| Gomi 2012                                                                     | 221      | 14.8       | 16    | 254     | 13.26 | 22    | 29.9%  | -33.00 [-42.13, -23.87]  |                                          |
| russo 2013                                                                    | 293      | 54         | 28    | 359     | 117   | 26    | 9.7%   | -66.00 [-115.22, -16.78] | · • • • • • • • • • • • • • • • • • • •  |
| Semeraro 2015                                                                 | 279      | 50         | 25    | 315     | 34    | 25    | 21.0%  | -36.00 [-59.70, -12.30]  | ·                                        |
| Total (95% CI)                                                                |          |            | 142   |         |       | 136   | 100.0% | -22.90 [-41.20, -4.59]   | -                                        |
| Heterogeneity: Tau <sup>2</sup> = 269.70; Chi <sup>2</sup> = 13.05, df = 5 (P | = 0.02); | $I^2 = 62$ | %     |         |       |       |        |                          | -100 -50 0 50 100                        |
| Test for overall effect: $Z = 2.45$ (P = 0.01)                                |          |            |       |         |       |       |        |                          | Favours [experimental] Favours [control] |

Fig 4. Forest plot showing weighted mean difference of CRT comparing combined treatment and anti-VEGF alone using the random effects model.

۸


 Adverse events (3 RCTs on ranibizumab): only foreign body sensation significantly increased with topical NSAIDs (odds ratio [OR] =2.63, 95%CI: 1.06 to 6.52, P = 0.76, I<sup>2</sup> = 0%).

### Anmerkung/Fazit der Autoren

Combining topical NSAIDs with intravitreal anti-VEGF results in a small but statistically significant reduction in required anti-VEGF injections and central retinal thickness. BCVA was not improved significantly. No additional side effects were observed apart from foreign body sensation. Combining topical NSAIDs and anti-VEGF agents may serve as a new strategy in AMD treatment.

#### Kommentare zum Review

- all included studies have **small number of participants**, lowering the power of the analysis.
- Two of the included studies are **quasi-RCTs**, which do not have a trusted randomization process. In this analysis, we used a sensitivity test and found that excluding any study did not affect the final result.

#### Ye L et al., 2020 [15].

Comparative efficacy and safety of anti-vascular endothelial growth factor regimens for neovascular age-related macular degeneration: systematic review and Bayesian network metaanalysis

## Fragestellung

To provide substantial evidence for clinical nAMD treatment, this study ranks the priority of anti-VEGF regimens via Bayesian network meta-analysis (NMA), comparing data collected from randomized controlled trials (RCTs).

#### Methodik

#### Population:

 Adults (≥50 years) were treatment-naive patients with a primary diagnosis of nAMD, whose baseline BCVA was generally better than 20/500 (Snellen equivalent) assessed using Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity charts

#### Intervention:

 Pegaptanib every 6 weeks, ranibizumab monthly, ranibizumab quarterly, ranibizumab pro re nata (PRN), ranibizumab treat-and- extend regimen, bevacizumab monthly, bevacizumab PRN, bevacizumab treat-and-extend regimen, aflibercept monthly, aflibercept bimonthly, aflibercept treat-and-extend regimen, conbercept monthly, conbercept PRN, conbercept quarterly, brolucizumab bimonthly, brolucizumab quarterly, and PDT monotherapy.

#### Komparator:

• Sham or active comparator



## Endpunkte:

- proportion of patients gaining 15 (three ETDRS lines or 0.3 logMAR) or more letters, and the
  incidence of arterial thromboembolic (ATC) events as our primary efficacy and safety
  outcomes, respectively, from baseline to month 12. ATC events involve non-fatal myocardial
  infarction, non-fatal stroke, or death from a vascular cause and including any death from an
  unknown cause because most deaths in high-risk patients are likely to be due to vascular
  causes
- Secondary efficacy outcomes comprised mean change in BCVA from baseline to 12 months, the change in anatomical measurements from baseline to 12 months, including reductions in central retinal thickness (CRT) measured using optical coherence tomography (OCT) and mean change in area of CNV based on fluorescein angiography (FA).
- In addition, secondary safety outcomes represented by the incidence of severe ocular adverse events (SOAEs) such as endophthalmitis, traumatic cataract, retinal detachment, and vitreous hemorrhage, from baseline to 12 months were recorded.
- The end point for evaluation of the previously mentioned outcomes was 54 weeks after first treatment.

#### Recherche/Suchzeitraum:

• PubMed Central, MEDLINE Ovid, Embase Ovid, ISRCTN, ICTRP and ClinicalTrials. gov from a database established until 1 April 2019

#### Qualitätsbewertung der Studien:

- Cochranes risk of bias tool
- Inconsistency between direct and indirect sources of evidence was statistically assessed by globally and locally (by computing difference between direct and indirect estimates in each closed loop in the network).

## Ergebnisse

Anzahl eingeschlossener Studien:

• 29 RCTs including 13,596 participants

#### Charakteristika der Population:

- A total of 18 multicenter RCTs recruited patients from the US or Europe. Six studies (20%) contained participants of predominantly Mongolian race, whereas the rest had mostly Caucasian patients.
- Regarding participants, the included records recruited 13,596 patients (mean age 74 years) and 56% (n = 7679) were female.
- The median baseline BCVA across studies was 56.7 letters [interquartile range (IQR) = 52.5–60.6]. Female proportion (p = 0.99), baseline BCVA (p = 0.98), and mean age (p = 0.99) were similar across included trials.
- Participants with polypoidal choroidal vasculopathy (PCV) were involved in 17 trials.
- These studies covered PDT and 15 different regimens for six anti-VEGF drugs.
- Of 153 possible comparisons between included treatments, 24 were compared directly in the identified studies.



### Qualität der Studien:

- As for overall risk of bias, 86% of these trials were rated as low risk or uncertain risk bias.
- The percentage of studies with high risk of bias for each individual domain was: 17.2% for allocation concealment, 27% for blinding of participants and personnel, 10.7% for blinding of outcome assessment, and 7% for missing information.







#### Studienergebnisse:

Pairwise meta-analysis:

 No significant differences were found between aflibercept and ranibizumab or aflibercept and brolucizumab in terms of primary efficacy outcome (proportions of patients with gain of three or more BCVA lines)

| Tabelle 1: Pairwise meta-analysis of primary outcomes | Tabelle 1 | : Pairwise | meta- | -analysis | s of | primary | / outcomes |
|-------------------------------------------------------|-----------|------------|-------|-----------|------|---------|------------|
|-------------------------------------------------------|-----------|------------|-------|-----------|------|---------|------------|

| a. sham | VS active |      |                | 15le | tters |       |      |                |                | ATC  | events |      |      |
|---------|-----------|------|----------------|------|-------|-------|------|----------------|----------------|------|--------|------|------|
| comp    | arisons   | 12   | τ <sup>1</sup> | OR   | LL    | UL    | P    | I <sup>2</sup> | τ <sup>1</sup> | OR   | LL     | UL   | P    |
| sham    | PDT       | -    | -              | 0.77 | 0.04  | 13.41 | 0.85 | -              | 2              |      | -      | +    | -    |
| sham    | pegaqów   | 0.00 | 0.00           | 2.67 | 1.17  | 6.09  | 0.02 | 1.00           | ÷.             | 1.00 | 0.50   | 2.01 | 1.00 |
| sham    | raniM     | -    | -              | 5.81 | 3.16  | 10.69 | 0.00 |                | -              | 1.20 | 0.56   | 2.54 | 0.64 |
| sham    | raniQ     | -    | 2              | 1.30 | 0.48  | 3.52  | 0.60 | -              | -              |      |        |      |      |
| sham    | conberQ   | 1.2  | 14             | 1.44 | 0.56  | 3.70  | 0.45 | 141            | - 20           | 0.53 | 0.03   | 8.70 | 0.66 |
| .active | VS active |      |                | 15le | tters |       |      |                |                | 151  | etters |      |      |
| PDT     | pegaqów   | · •  |                | 0.90 | 0.08  | 10.55 | 0.93 | 0.70           |                |      | 2.1    |      |      |
| PDT     | raniM     | 1.2  | 2              | 6.79 | 3.22  | 14.33 | 0.00 | 1.20           | 2              | 1    | 22     | 2    | 1.00 |
| PDT     | bevaP     |      |                | 5.58 | 0.70  | 44.48 | 0.11 |                |                |      | -      |      |      |
| PDT     | aflibB    |      | -              |      |       | -     |      | -              |                | 0.33 | 0.05   | 2.41 | 0.28 |
| pegaqóv | bevaP     |      | -              | 6.23 | 1.38  | 28.08 | 0.02 | -              | -              | 1.19 | 0.21   | 6.79 | 0.85 |
| raniM   | raniQ     | -    |                | 0.56 | 0.33  | 0.93  | 0.03 | -              | -              | 0.73 | 0.12   | 4.40 | 0.73 |
| raniM   | raniP     | 0.00 | 0.00           | 1.19 | 0.98  | 1.45  | 0.08 | 0.00           | 0.00           | 1.20 | 0.70   | 2.06 | 0.51 |
| raniM   | raniTE    | 0.00 | 0.00           | 1.08 | 0.84  | 1.39  | 0.54 | 0.00           | 0.00           | 0.78 | 0.29   | 2.06 | 0.61 |
| raniM   | bevaM     | 0.24 | 0.01           | 1.23 | 0.94  | 1.61  | 0.14 | -              | -              | 1.19 | 0.21   | 6.79 | 0.85 |
| raniM   | bevaP     | -    | -              | 1.22 | 0.86  | 1.72  | 0.26 | -              | -              | 0.73 | 0.12   | 4.40 | 0.73 |
| raniM   | aflibM    |      | 1.4            | 0.94 | 0.77  | 1.14  | 0.52 | 0.00           | 0.00           | 1.20 | 0.70   | 2.06 | 0.51 |
| raniM   | aflibB    | -    |                | 0.96 | 0.77  | 1.21  | 0.75 | 0.00           | 0.00           | 0.78 | 0.29   | 2.06 | 0.61 |
| raniP   | bevaM     |      | -              | 0.80 | 0.56  | 1.14  | 0.21 | -              | -              | 0.93 | 0.30   | 2.92 | 0.90 |
| raniP   | bevaP     | 0.00 | 0.00           | 0.95 | 0.75  | 1.20  | 0.67 | 0.00           | 0.00           | 0.86 | 0.44   | 1.70 | 0.67 |
| raniP   | conberP   | •    | -              | -    |       | -     |      | -              | -              |      |        | -    | -    |
| raniTE  | bevaTE    | -    |                | 0.94 | 0.61  | 1.47  | 0.79 | -              | -              | 0.30 | 0.08   | 1.11 | 0.07 |
| raniTE  | aflibTE   | -    | 2              | 1.10 | 0.61  | 1.97  | 0.76 | -              | -              | 0.98 | 0.24   | 3.99 | 0.98 |
| bevaM   | bevaP     |      |                | 1.12 | 0.78  | 1.59  | 0.54 | 1.00           |                | 0.77 | 0.26   | 2.24 | 0.63 |
| aflibM  | aflibB    |      |                | 1.02 | 0.83  | 1.24  | 0.86 |                | -              | 0.61 | 0.36   | 1.01 | 0.05 |
| aflibB  | aflibTE   | -    | <u></u>        | 0.95 | 0.31  | 2.89  | 0.93 | 1.0            | -              |      |        | -    |      |
| aflibB  | broliB    | -    | 54             | -    | -     | -     | -    | 141            | -              | 0.40 | 0.07   | 2.17 | 0.29 |
| aflibB  | broliQ    | -    |                | 1.10 | 0.88  | 1.36  | 0.40 | -              | -              | 1.59 | 0.86   | 2.94 | 0.14 |

Note. Effect-sizes pooled using a random-effects model. Pegaq6w= pegaptanib every 6 weeks. ranik=ranikizumak Monthly. ranik=ranikizumak Quarterly. ranik=ranikizumak PRN. ranit=ranikizumak treat-and-extend regimen. https://doc.org/abstract/abstract/abstract/a regimen. aflibM=aflibercept Monthly. afflibB=aflibercept Bimonthly. aflibTE=aflibercept treat-and-extend regimen. conbertM=conbercept Monthly. conberP=conbercept

#### Tabelle 2: Pairwise meta-analysis of secondary outcomes

| a. sham | VS activ | e    |         | BCVA  | change |      |      |      |      | CRT   | change |       |      |      |                | CNV   | change |       |         |                |      | SOAE  | events |        |      |
|---------|----------|------|---------|-------|--------|------|------|------|------|-------|--------|-------|------|------|----------------|-------|--------|-------|---------|----------------|------|-------|--------|--------|------|
| com     | arisons  | P    | τ2      | SMD   | LL     | UL   | p    | P    | τ2   | SMD   | LL     | UL    | р    | F    | τ <sup>2</sup> | SMD   | LL     | UL    | p       | I <sup>2</sup> | τ²   | OR    | LL     | UL     | р    |
| sham    | PDT      | -    | -       | -     | -      | -    | -    | -    | -    | -     | -      | -     | -    | -    | -              | -     | -      | -     | -       | -              | -    | -     | -      | -      | -    |
| sham    | pegaqóv  | v -  | 12      | 1     |        | 2    | 12   | 1    | 1.00 | 2     | 4      | -     | -    | 1    |                | 10    | -      | 23    | 5       | 1              | 141  | 15.34 | 0.94   | ###### | 0.0  |
| sham    | raniM    | 2    |         | 1     |        | ÷.,  | 12   | -    | -    | 2     | Q.     |       | -    | ÷.   | 4              | ÷.    | 1.00   | 23    | <u></u> |                |      | 1.65  | 0.46   | 5.93   | 0.4  |
| sham    | raniQ    | 2    | 2       | 0.82  | 0.45   | 1.19 | 0.00 | S    | 121  | 2     |        | 10.1  | 22   | - 22 | - 2            | 0.79  | 0.48   | 1.11  | 0.00    | 1.2            | 1    |       | - 2    | -      |      |
| sham    | conberQ  | 2 -  | <u></u> | 0.09  | -0.28  | 0.46 | 0.65 | 1.2  | 121  | - 2   |        | 1.0   | 120  | 22   | - 2            | 0.44  | 0.07   | 0.81  | 0.02    | 1.22           | 5    | 0.54  | 0.03   | 8.79   | 0.66 |
| .active | VS activ | e    |         | 15le  | tters  |      |      |      |      | 151   | etters |       |      |      |                | 1516  | tters  |       |         |                |      | 15le  | ters   |        |      |
| PDT     | pegaqóv  | v =  |         |       |        |      |      |      |      |       | -      |       |      |      |                | -     |        |       |         |                |      |       |        |        |      |
| PDT     | raniM    | -    |         | 1.25  | 0.99   | 1.50 | 0.00 |      |      | -     |        |       | -    | -    | -              | 0.86  | 1.07   | 0.65  | 0.00    |                |      | 2.05  | 0.23   | 18.51  | 0.52 |
| PDT     | bevaP    | -    | -       | -     | -      | -    | -    |      |      | -     | -      |       |      | -    | -              | -     | -      | -     | -       | -              | -    | -     | -      |        |      |
| PDT     | aflibB   | -    | -       | 0.79  | 0.52   | 1.06 | 0.00 |      |      | -     | -      |       |      | -    | -              | -     |        | -     | -       | -              |      | 1.00  | 0.04   | 24.91  | 1.00 |
| pegaqó  | wbevaP   | -    | -       | -     | -      |      | -    |      |      |       |        | -     |      | -    | -              |       |        | -     | -       | -              |      | 0.40  | 0.06   | 2.48   | 0.32 |
| rani M  | raniQ    | -    | -       | 0.31  | 0.09   | 0.54 | 0.01 |      | -    | 0.04  | -0.18  | 0.26  | 0.72 | -    | -              | -0.06 | -0.28  | 0.16  | 0.60    |                | -    | 3.39  | 0.17   | 66.18  | 0.60 |
| raniM   | raniP    | 0.00 | 0.00    | 0.12  | 0.03   | 0.21 | 0.01 | 0.05 | 0.00 | -0.06 | -0.15  | 0.03  | 0.20 | 0.00 | 0.00           | -0.19 | -0.29  | -0.10 | 0.00    | 0.00           | 0.00 | 3.67  | 0.60   | 22.36  | 0.10 |
| raniM   | raniTE   | 0.64 | 0.02    | 0.78  | 0.29   | 2.06 | 0.61 |      | -    | -0.01 | -0.16  | 0.15  | 0.92 | -    |                | -     |        | -     | -       |                |      | 0.61  | 0.14   | 2.56   | 0.50 |
| raniM   | bevaM    | -    |         | 0.03  | -0.13  | 0.20 | 0.70 | -    | -    | -0.18 | -0.35  | -0.01 | 0.04 | -    |                | -0.05 | -0.22  | 0.12  | 0.55    |                |      | 0.47  | 0.09   | 2.57   | 0.38 |
| raniM   | bevaP    |      | -       | 0.17  | 0.01   | 0.34 | 0.04 | -    |      | -0.25 | -0.42  | -0.08 | 0.00 | -    | -              | -0.22 | -0.38  | -0.05 | 0.01    |                |      | 4.77  | 0.23   | 99.84  | 0.3  |
| raniM   | aflibM   |      | -       | 0.02  | -0.07  | 0.12 | 0.63 | -    | -    | 0.03  | -0.07  | 0.13  | 0.52 | -    | -              | 0.05  | -0.04  | 0.15  | 0.28    |                |      | 3.46  | 0.18   | 67.07  | 0.4  |
| rani M  | aflibB   |      |         | 0.00  | -0.10  | 0.10 | 1.00 | -    | -    | 0.00  | -0.11  | 0.12  | 0.96 | -    | -              | 0.02  | -0.09  | 0.13  | 0.75    | -              | -    | 6.92  | 0.36   | #####  | 0.20 |
| raniP   | bevaM    | -    | -       | -     | -      |      | -    | -    | -    | -0.02 | -0.19  | 0.15  | 0.80 | -    | +              | 0.05  | -0.12  | 0.21  | 0.60    |                |      | -     | -      |        |      |
| raniP   | bevaP    | 0.02 | 0.00    | -0.02 | -0.13  | 0.09 | 0.68 | 0.19 | 0.00 | -0.10 | -0.20  | 0.01  | 0.07 | 0.00 | 0.00           | -0.07 | -0.20  | 0.06  | 0.28    | 0.00           | 0.00 | 1.49  | 0.24   | 9.19   | 0.67 |
| raniP   | conberF  | -    | -       | -0.02 | -0.41  | 0.38 | 0.94 | 0.60 | 0.11 | -0.39 | -0.98  | 0.19  | 0.19 |      |                |       |        |       | -       |                |      | -     |        |        |      |
| rani TE | bevaTE   | -    | -       | -0.02 | -0.23  | 0.18 | 0.82 |      |      | 0.09  | -0.15  | 0.32  | 0.47 |      |                |       |        | -     | -       | -              |      | 7.03  | 0.36   | #####  | 0.20 |
| rani TE | aflibTE  | -    |         | 0.14  | -0.10  | 0.37 | 0.25 |      |      | -0.08 | -0.28  | 0.12  | 0.45 | -    |                |       | -      | -     | -       |                |      | 0.98  | 0.24   | 3.99   | 0.98 |
| bevaM   | bevaP    | -    | -       | 0.13  | -0.04  | 0.30 | 0.14 | -    | ÷.   | -0.07 | -0.24  | 0.10  | 0.44 | -    | -              | -0.18 | -0.3   | -0.01 | 0.04    | 4              | 1.0  | 4.11  | 0.46   | 36.97  | 0.2  |
| aflibM  | aflibB   | -    | -       | 0.02  | -0.07  | 0.12 | 0.63 | -    |      | 0.03  | -0.07  | 0.13  | 0.56 | -    | -              | -0.03 | -0.13  | 0.07  | 0.54    |                |      | 0.50  | 0.10   | 2.48   | 0.39 |
| aflibB  | aflibTE  | -    | -       | -     | -      | -    | -    | -    | -    | -0.04 | -0.65  | 0.58  | 0.91 | +1   | +              | ÷.    | -      | -     | -       | -              |      | -     | -      | -      | 1    |
| aflibB  | broliB   | 2    | 1       | 0.05  | -0.36  | 0.46 | 0.81 | -    | -    | -0.06 | -0.47  | 0.35  | 0.78 | -    | -              |       | -      | 1     | <u></u> |                | 4    | 0.47  | 0.10   | 2.35   | 0.30 |
| aflibB  | broliQ   | 2    | 12      | 0.02  | -0.09  | 0.12 | 0.78 | -    | 140  | 0.31  | 0.41   | 0.20  | 0.00 | -    |                |       | -      | 2     | 2       |                | 14   | -0.01 | 0.00   | -0.04  | 0.00 |

Note. Effect-sizes pooled using a random-effects model. Pegaq6w= pegaptanib every 6 weeks. raniM-ranibizumab Monthly. raniQ-ranibizumab Quarterly. ranip-ranibizumab PRN. raniTE-ranibizumab treat-and-extend regimen. bevaM-bevacizumab Monthly. bevaP-bevacizumab PRN. bevaTE-bevacizumab treat-and-extend regimen. aflibM-aflibercept Monthly. afflibB=aflibercept Bimonthly. aflibTE=aflibercept treat-and-extend regimen. conbercept Monthly. conberP=conbercept PRN. conberQ=conbercept Quarterly. broliB=brolucizumab Bimonthly broliQ=brolucizumab Quarterly

#### Network meta-analysis



• Figure 2 presents the results of the NMA for the primary outcome of efficacy (the proportion of patients gaining 15 or more BCVA letters) and safety (incidence of ATC events).

|           |                     |                     |                     |                      |                       |                     |                     | A                    | IC                  |                     |                     |                        |                      |                     |                     |                     |
|-----------|---------------------|---------------------|---------------------|----------------------|-----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|------------------------|----------------------|---------------------|---------------------|---------------------|
|           | raniTE              | 2.16                | 0.29                | 0.96                 | 3.43                  | 0.90                | 1.34                | 1.07                 | 0.80                | 0.79                | 0.23                | 8.23                   | 0.77                 | 1.45                | 1.30                | 0.24                |
|           |                     | (0.52,8.90)         | (0.08,1.07)         | (0.36,2.56)          | (0.93,12.63)          | (0.60,1.36)         | (0.37,4.81)         | (0.32,3.59)          | (0.20,3.22)         | (0.26,2.36)         | (0.02,3.10)         | (0.54,126.34)          | (0.01,46.79)         | (0.46,4.59)         | (0.35,4.90)         | (0.02,3.07)         |
|           | 1.00                | broliQ              | 0.14                | 0.45                 | 1.59                  | 0.90                | 0.62                | 0.49                 | 0.37                | 0.37                | 0.11                | 3.81                   | 0.36                 | 0.67                | 0.60                | 0.11                |
|           | (0.59,1.69)<br>1.08 | 1.08                | (0.02,0.93)         | (0.16,1.24)          | (0.23,10.90)          | (0.59,1.38)<br>0.97 | (0.34,1.15)<br>4.60 | (0.14,1.73)          | (0.09,1.54)<br>2.76 | (0.12,1.14)<br>2.70 | (0.01,1.46)         | (0.32,46.09)           | (0.01,21.93)<br>2.65 | (0.20,2.21)<br>4.97 | (0.16,2.35)<br>4.46 | (0.01,1.10)<br>0.84 |
|           | (0.67,1.73)         | (0.55,2.13)         | bevaTE              | 3.30<br>(0.65,16.85) | 11.75<br>(1.86,74.31) | (0.53,1.78)         | 4.60 (0.74,28.51)   | 3.66<br>(0.62.21.71) | (0.41,18.51)        | 2.70 (0.49,14.84)   | 0.79 (0.04,14.45)   | 28.21<br>(1.37,581.90) | 2.65 (0.04,196.36)   | 4.97                | 4.46 (0.70,28.64)   | 0.84 (0.05,14.45)   |
|           | 1.17                | 1.17                | 1.08                |                      | 3.56                  | 1.05                | 1.39                | (0.02,21.71)         | 0.84                | 0.82                | 0.24                | 8.55                   | 0.80                 | (0.87,28.55)        | 1.35                | 0.25                |
|           | (0.87,1.57)         | (0.75,1.82)         | (0.63,1.85)         | raniM                | (0.70,18,18)          | (0.78,1.41)         | (0.61.3.16)         | (0.54,2.27)          | (0.31,2.23)         | (0.50,1.34)         | (0.02,2.66)         | (0.67,109.45)          | (0.01,43,17)         | (0.82,2.77)         | (0.55,3.30)         | (0.02,2.62)         |
|           | 1.22                | 1.22                | 1.13                | 1.04                 |                       | 1.09                | 0.39                | 0.31                 | 0.23                | 0.23                | 0.07                | 2.40                   | 0.23                 | 0.42                | 0.38                | 0.07                |
|           | (0.61, 2.42)        | (0.55, 2.72)        | (0.63,2.01)         | (0.51, 2.14)         | aflibTE               | (0.51, 2.33)        | (0.06,2.43)         | (0.05,1.85)          | (0.03, 1.58)        | (0.04, 1.26)        | (0.00, 1.23)        | (0.12,49.52)           | (0.00,16.71)         | (0.07,2.41)         | (0.06, 2.44)        | (0.00, 1.23)        |
|           | 1.11                | 1.11                | 1.03                | 0.95                 | 0.91                  | aflibM              | 1.57                | 1.25                 | 0.94                | 0.92                | 0.27                | 9.63                   | 0.91                 | 1.70                | 1.52                | 0.29                |
|           | (0.73,1.68)         | (0.72,1.71)         | (0.56,1.88)         | (0.71, 1.28)         | (0.43,1.94)           |                     | (0.78,3.18)         | (0.43,3.60)          | (0.27,3.30)         | (0.37,2.32)         | (0.02, 3.38)        | (0.78,119.17)          | (0.02, 52.46)        | (0.63,4.56)         | (0.47, 4.98)        | (0.03,2.85)         |
|           | 1.14                | 1.14                | 1.05                | 0.98                 | 0.94                  | 1.03                | aflibB              | 0.80                 | 0.60                | 0.59                | 0.17                | 6.14                   | 0.58                 | 1.08                | 0.97                | 0.18                |
| ers       | (0.75, 1.74)        | (0.84, 1.56)        | (0.58,1.92)         | (0.71, 1.34)         | (0.45,1.97)           | (0.76,1.38)         |                     | (0.27,2.36)          | (0.17,2.16)         | (0.23, 1.53)        | (0.01, 2.18)        | (0.55,68.63)           | (0.01,33.68)         | (0.39, 3.00)        | (0.29,3.26)         | (0.02,1.62)         |
| Slettters | 1.52                | 1.52                | 1.40                | 1.30                 | 1.25                  | 1.36                | 1.33                | bevaP                | 0.75                | 0.74                | 0.22                | 7.71                   | 0.72                 | 1.36                | 1.22                | 0.23                |
| -         | (1.00,2.30)         | (0.89,2.58)         | (0.76,2.59)         | (0.97,1.74)          | (0.58,2.70)           | (0.90,2.07)         | (0.87,2.05)         |                      | (0.28,2.05)         | (0.39,1.40)         | (0.02,2.66)         | (0.55,108.93)          | (0.01,41.29)         | (0.54,3.40)         | (0.41,3.67)         | (0.02,2.63)         |
| N.        | 1.51                | 1.51                | 1.40                | 1.30                 | 1.24                  | 1.36                | 1.33                | 1.00                 | bevaM               | 0.98                | 0.29                | 10.23                  | 0.96                 | 1.80                | 1.62                | 0.30                |
| Gain      | (0.98,2.33)<br>1.60 | (0.88,2.60)<br>1.60 | (0.75,2.62)<br>1.48 | (0.95,1.77)<br>1.37  | (0.57,2.72)<br>1.32   | (0.88,2.09)<br>1.44 | (0.85,2.07)<br>1.41 | (0.70,1.43)<br>1.06  | 1.06                | (0.37,2.57)         | (0.02,3.85)<br>0.29 | (0.67,157.22)<br>10.44 | (0.02,58.06)<br>0.98 | (0.57,5.68)<br>1.84 | (0.44,6.00)<br>1.65 | (0.02,3.83)<br>0.31 |
| 0         | (1.10,2.32)         | (0.98,2.63)         | (0.83,2.66)         | (1.10,1.72)          | (0.62,2.79)           | (0.99,2.09)         | (0.95,2.07)         | (0.82,1.37)          | (0.77,1.46)         | raniP               | (0.02,3.41)         | (0.78,140.09)          | (0.02,54.24)         | 1.84 (0.85,3.99)    | (0.61,4.51)         | (0.03,3.37)         |
|           | (1.10,2.52)<br>3.10 | 3.10                | 2.87                | 2.66                 | 2.55                  | 2.79                | 2.72                | 2.04                 | 2.05                | 1.93                | (0.02, 5.41)        | 35.85                  | 3.37                 | 6.31                | 5.67                | 1.06                |
|           | (1.70,5.66)         | (1.56,6.15)         | (1.35,6.09)         | (1.58,4.48)          | (1.05,6.19)           | (1.53,5.08)         | (1.48,5.01)         | (1.13,3.69)          | (1.13,3.73)         | (1.11,3.38)         | raniQ               |                        | (0.03.354.81)        | (0.52,75.91)        | (0.43,74.17)        | (0.04,30.53)        |
|           | 12.54               | 12.55               | 11.61               | 10.75                | 10.31                 | 11.28               | 11.01               | 8.27                 | 8.29                | 7.83                | 4.05                |                        | 0.09                 | 0.18                | 0.16                | 0.03                |
|           | (5.57,28.20)        | (5.23,30.12)        | (4.59,29.36)        | (5.05,22.87)         | (3.64,29.19)          | (5.01,25.40)        | (4.86,24.95)        | (3.71.18.45)         | (3.67,18.71)        | (3.57,17.14)        | (1.62, 10.11)       | PDT                    | (0.00,10.65)         | (0.01, 2.42)        | (0.01, 2.36)        | (0.00, 0.77)        |
|           | 5.44                | 5.44                | 5.03                | 4.66                 | 4.47                  | 4.89                | 4.77                | 3.58                 | 3.59                | 3.39                | 1.75                | 0.43                   | 1.0                  | 1.87                | 1.68                | 0.32                |
|           | (1.71,17.25)        | (1.64, 18.09)       | (1.46,17.39)        | (1.53,14.23)         | (1.19,16.84)          | (1.54,15.53)        | (1.50, 15.23)       | (1.14,11.26)         | (1.13,11.41)        | (1.09, 10.55)       | (0.54, 5.68)        | (0.11,1.66)            | conberQ              | (0.04,96.06)        | (0.03,91.49)        | (0.00,31.99)        |
|           | 8.57                | 8.58                | 7.93                | 7.34                 | 7.04                  | 7.71                | 7.52                | 5.65                 | 5.66                | 5.35                | 2.76                | 0.68                   | 1.58                 | sham                | 0.90                | 0.17                |
|           | (4.66,15.73)        | (4.30, 17.13)       | (3.72,16.91)        | (4.32,12.49)         | (2.89, 17.19)         | (4.20,14.17)        | (4.05,13.95)        | (3.14,10.16)         | (3.08, 10.41)       | (3.03,9.43)         | (1.45, 5.27)        | (0.27, 1.71)           | (0.59,4.21)          | Sham                | (0.46,1.77)         | (0.02, 1.89)        |
|           | 4.19                | 4.19                | 3.88                | 3.59                 | 3.44                  | 3.77                | 3.68                | 2.76                 | 2.77                | 2.61                | 1.35                | 0.33                   | 0.77                 | 0.49                | редаqбw             | 0.19                |
|           | (1.71,10.27)        | (1.61, 10.89)       | (1.42,10.58)        | (1.54,8.36)          | (1.14,10.44)          | (1.54,9.24)         | (1.49,9.07)         | (1.17,6.52)          | (1.14,6.72)         | (1.11,6.17)         | (0.53, 3.45)        | (0.11,1.03)            | (0.22,2.67)          | (0.23,1.05)         | hegadow             | (0.02,2.29)         |
|           |                     |                     |                     |                      |                       |                     |                     |                      |                     | -                   |                     |                        | -                    | -                   |                     | broliB              |
|           |                     |                     |                     |                      |                       |                     |                     |                      |                     |                     |                     |                        |                      |                     |                     |                     |

the proportion of patients gaining 15 or more letters

Regimen

Figure 2. Network meta-analysis of primary efficacy and safety outcomes. Regimens are reported in order of patients' proportion gaining 15 or more letters ranking according to SUCRAs. Summary OR and 95% Crl for categorical outcomes to estimate the treatment effect size.

the ATC events

afflibB, aflibercept Bimonthly; aflibM, aflibercept Monthly; aflibTE, aflibercept treat-and-extend regimen; ATC, arterial thromboembolic; bevaM, bevacizumab Monthly; bevaP, bevacizumab PRN; bevaTE, bevacizumab treat-and-extend regimen; broliB, brolucizumab Bimonthly; broliQ, brolucizumab Quarterly; conberM, conbercept Monthly; conberP, conbercept PRN; conberCq, conbercept Quarterly; Cr1, credible intervals; OR, odds ratio; Pegadow, pegado

• The primary outcome of efficacy results contains 105 treatment arms made up of 51 data points (Figure 3).



Figure 3. Network plot of available treatment comparisons for primary efficacy outcome. Size of node represent the number of patients randomized to each regimen. Line width represent the number of RCTs comparing each pair of regimens directly. afflibB, afflibercept Bimonthly; afflibM, afflibercept Monthly; afflibTE, afflibercept treat-and-extend regimen; bevaM, bevacizumab Monthly; bevaP, bevacizumab PRN; bevaTE, bevacizumab Monthly; bevaP, bevacizumab PRN; bevaCizumab Quarterly; conberQ, conbercept Quarterly; Pegaqów, pegaptanib every 6weeks; raniM, ranibizumab Monthly; raniP, ranibizumab PRN; raniQ, ranibizumab Quarterly; raniTE, ranibizumab treat-and-extend regimen; RCT, randomized controlled trial.



• The highest probability of being most efficacious in terms of primary efficacy outcome was the ranibizumab treat-and-extend regimen (SUCRA 86.7%), whereas pegaptanib every 6 weeks (SUCRA 3.2%) was lowest (s.Tab. 3).

Tabelle 3: The proportion of patients gaining 15 or more letters

| treatments | SUCRA(%) | meanrank |
|------------|----------|----------|
| sham       | 6.7      | 14.1     |
| PDT        | 19.7     | 12.2     |
| реgaq6w    | 3.2      | 14.6     |
| raniM      | 74.3     | 4.6      |
| raniQ      | 26.7     | 11.3     |
| raniP      | 44.8     | 8.7      |
| raniTE     | 86.7     | 2.9      |
| bevaM      | 51.7     | 7.8      |
| bevaP      | 51.9     | 7.7      |
| bevaTE     | 77.4     | 4.2      |
| aflibM     | 70.9     | 5.1      |
| aflibB     | 68.1     | 5.5      |
| aflibTE    | 71.2     | 5        |
| conberQ    | 17.5     | 12.6     |
| broliQ     | 79.5     | 3.9      |

\* Larger SUCRAs denote more effective regimens.

- A total of 18 studies with 11,500 participants reported usable data concerning the primary outcome of safety results (incidence of ATC events), with 120 treatment arms containing 16 regimens available (Figure 3).
- With respect to ranking probabilities, the bevacizumab treat-andextend regimen (SUCRA 87.5%) had the highest mean ranks (lowest incidence of ATC) (s. Tab.4).

The results of network meta-analysis for secondary outcomes

Tabelle 4: The incidence of Arterial thromboembolic events

| treatments | SUCRA(%) | meanrank |
|------------|----------|----------|
| sham       | 59       | 7.2      |
| PDT        | 11.3     | 14.3     |
| рegaqбw    | 58       | 7.3      |
| raniM      | 45.1     | 9.2      |
| raniQ      | 55.6     | 7.7      |
| raniP      | 61.5     | 6.8      |
| raniTE     | 47.4     | 8.9      |
| bevaM      | 39.7     | 10       |
| bevaP      | 51.6     | 8.3      |
| bevaTE     | 87.5     | 2.9      |
| aflibM     | 64.8     | 6.3      |
| aflibB     | 23.9     | 12.4     |
| aflibTE    | 47.1     | 8.9      |
| conberQ    | 68.4     | 5.7      |
| broliB     | 66.3     | 6.1      |
| broliQ     | 12.7     | 14.1     |

\* Larger SUCRAs denote safer regimens.

- A total of 10,588 participants from 22 studies presented usable mean BCVA change data.
- Compared with sham injection, the SMDs for 13 regimens were associated with significant BCVA improvement.



|                                       | raniTE               | 0.777 (0.294.2.055)   | -0.023<br>(-0.23.0.18) | NA                    | NA                    | 0.139 (-0.097.0.37)  | NA                     | NA                    | NA                     | NA                     | NA                    | NA                      | NA                     | NA      | NA      | NA                     | NA                     |
|---------------------------------------|----------------------|-----------------------|------------------------|-----------------------|-----------------------|----------------------|------------------------|-----------------------|------------------------|------------------------|-----------------------|-------------------------|------------------------|---------|---------|------------------------|------------------------|
|                                       | 0.03 (-0.16,0.22)    | raniM                 | NA                     | 0.024 (-0.07,0.121)   | 0.034<br>(-0.134,0.2) | NA                   | 0<br>(-0.09,0.098)     | NA                    | NA                     | NA                     | 0.173<br>(0.006,0.34) | 0.118 (0.031,0.208)     | 0.313<br>(0.089,0.537) | NA      | NA      | NA                     | 1.249<br>(0.99,1.50)   |
|                                       | 0.02<br>(-0.29.0.34) | -0.01<br>(-0.37.0.36) | bevaTE                 | NA                    | NA                    | NA                   |                        | NA                    | NA                     | NA                     | NA                    | NA                      | NA                     | NA      | NA      | NA                     | NA                     |
|                                       | 0.08<br>(-0.24.0.39) | 0.05<br>(-0.20.0.30)  | 0.05<br>(-0.39.0.50)   | aflibM                | NA                    | NA                   | 0.024<br>(-0.07.0.121) | NA                    | NA                     | NA                     | NA                    | NA                      | NA                     | NA      | NA      | NA                     | NA                     |
|                                       | 0.06<br>(-0.27.0.38) | 0.03                  | 0.03                   | -0.02<br>(-0.38.0.34) | bev aM                | NA                   |                        | NA                    | NA                     | NA                     | 0.128 (-0.04,0.298)   | NA                      | NA                     | NA      | NA      | NA                     | NA                     |
|                                       | 0.14<br>(-0.20.0.47) | 0.11<br>(-0.28.0.49)  | 0.11<br>(-0.35.0.57)   | 0.06 (-0.40.0.52)     | 0.08                  | aflibTE              | 0.015<br>(-0.09.0.117) | NA                    | NA                     | NA                     | NA                    | NA                      | NA                     | NA      | NA      | NA                     | NA                     |
|                                       | 0.15<br>(-0.16.0.45) | 0.12<br>(-0.12.0.36)  | 0.12<br>(-0.31.0.56)   | 0.07 (-0.18.0.32)     | 0.09                  | 0.01 (-0.44.0.47)    | aflibB                 | NA                    | NA                     | 0.051 (-0.36,0.464)    | NA                    | NA                      | NA                     | NA      | NA      | NA                     | 0.791<br>(0.524,1.508) |
| a a a a a a a a a a a a a a a a a a a | 0.16<br>(-0.24.0.56) | 0.13 (-0.22.0.48)     | 0.14                   | 0.09 (-0.27.0.45)     | 0.11<br>(-0.33.0.54)  | 0.03                 | 0.01 (-0.24.0.27)      | broliQ                | NA                     | NA                     | NA                    | NA                      | NA                     | NA      | NA      | NA                     | NA                     |
| /Ach                                  | 0.19<br>(-0.34.0.71) | 0.16<br>(-0.33.0.64)  | 0.16                   | 0.11 (-0.44.0.66)     | 0.13                  | 0.05                 | ).04 (-0.50,0.58       | 0.02                  | conberP                | NA                     | NA                    | -0.016<br>(-0.41,0.376) | NA                     | NA      | NA      | NA                     | NA                     |
| BCVA                                  | 0.20                 | 0.17<br>(-0.36.0.70)  | 0.17<br>(-0.47.0.82)   | 0.12 (-0.42.0.66)     | 0.14<br>(-0.45.0.74)  | 0.06                 | 0.05                   | 0.04                  | 0.01                   | broliB                 | NA                    | NA                      | NA                     | NA      | NA      | NA                     | NA                     |
|                                       | 0.15                 | 0.12 (-0.08.0.33)     | 0.13                   | 0.08                  | 0.10                  | 0.02                 | 0.01 (-0.30.0.32)      | -0.01<br>(-0.41.0.40) | '-0.03<br>(-0.52.0.45) | '-0.04<br>(-0.61.0.53) | bevaP                 | -0.021<br>(-0.13.0.08)  | NA                     | NA      | NA      | NA                     | NA                     |
|                                       | 0.17                 | 0.14 (-0.02.0.30)     | 0.15                   | 0.09                  | 0.11 (-0.14.0.37)     | 0.03                 | 0.02                   | 0.01                  | '-0.02<br>(-0.47.0.44) | '-0.03<br>(-0.58.0.53) | 0.02                  | raniP                   | NA                     | NA      | NA      | 0.822 (0.45,1.19)      | NA                     |
|                                       | 0.34<br>(-0.04.0.72) | 0.31 (-0.01.0.64)     | 0.32                   | 0.27<br>(-0.15,0.68)  | 0.29<br>(-0.13,0.70)  | 0.21<br>(-0.30.0.71) | 0.19<br>(-0.21,0.60)   | 0.18                  | 0.16                   | 0.14                   | 0.19<br>(-0.20.0.57)  | 0.17<br>(-0.19.0.54)    | raniQ                  | NA      | NA      | NA                     | NA                     |
|                                       | 0.53                 | 0.50                  | 0.51                   | 0.46                  | 0.48                  | 0.40                 | 0.39                   | 0.37                  | 0.35                   | 0.34                   | 0.38                  | 0.36                    | 0.19                   | conberM | NA      | NA                     | NA                     |
|                                       | 1.07 (0.34,1.80)     | 1.04 (0.34,1.74)      | 1.05 (0.26,1.84)       | 1.00 (0.25,1.74)      | 1.02                  | 0.94 (0.14.1.74)     | 0.92                   | 0.91 (0.12.1.69)      | 0.89                   | 0.87                   | 0.92 (0.19,1.65)      | 0.90 (0.18,1.62)        | 0.73<br>(0.11.1.35)    | 0.54    | conberQ | 0.087                  | NA                     |
|                                       | 1.16                 | 1.13 (0.58,1.68)      | 1.13<br>(0.48,1.79)    | 1.08 (0.48,1.68)      | 1.10 (0.50,1.71)      | 1.02 (0.35,1.69)     | 1.01<br>(0.41.1.61)    | 1.00                  | 0.97                   | 0.96                   | 1.00 (0.42.1.59)      | 0.99                    | 0.82                   | 0.62    | 0.09    | sham                   | NA                     |
|                                       | 1.11<br>(0.77,1.45)  | 1.08                  | 1.09<br>(0.63,1.55)    | 1.03                  | 1.05 (0.67,1.43)      | 0.97 (0.50.1.45)     | 0.96                   | 0.95                  | 0.92                   | 0.91 (0.36.1.46)       | 0.96                  | 0.94 (0.62.1.26)        | 0.77                   | 0.58    | 0.04    | '-0.05<br>(-0.66,0.56) | PDT                    |
|                                       |                      |                       |                        |                       |                       |                      |                        |                       |                        |                        |                       |                         |                        |         |         |                        |                        |
| F                                     | Regimen              |                       | Re                     | sults of netw         | ork meta-an           | alysis               | Г                      | R                     | esults of pai          | rwise compa            | risons                |                         |                        |         |         |                        |                        |

Network plot of available treatment comparisons for mean BCVA change. Regimens are reported in order of mean BCVA change ranking according to SUCRAs. Standardized mean differences (SMD) and 95% credible intervals (<u>GT</u>) for continuous outcomes to estimate the treatment effect size. <u>rank\_ranking</u> according to SUCRAs. Standardized mean differences (SMD) and 95% credible intervals (<u>GT</u>) for continuous outcomes to estimate the treatment effect size. <u>rank\_ranking</u> according to SUCRAs. Standardized mean differences (SMD) and 95% credible intervals (<u>GT</u>) for continuous outcomes to estimate the treatment effect size. <u>rank\_ranking</u> according to SUCRAs. Standardized mean differences (<u>SMD</u>) and 95% credible intervals (<u>GT</u>) for continuous outcomes to estimate the treatment effect size. <u>rank\_ranking</u> according to SUCRAs. Standardized mean differences (<u>SMD</u>) and 95% credible intervals (<u>GT</u>) for continuous outcomes to estimate the treatment effect size. <u>rank\_ranking</u> according treat-and-extend regimen. <u>beyaff</u>\_bevacizumab PRN. <u>beyaff</u>\_bevacizumab PRN. <u>beyaff</u>\_bevacizumab treat-and-extend regimen. <u>sonberM=conbercept</u> Monthly. <u>conberQ=conbercept</u> Quarterly. <u>broket\_bevacizumab</u> Quarterly. <u>broket\_bevacizumab</u> Quarterly.

 Based on SUCRA plots, the ranibizumab treat-and-extend regimen (SUCRA 77.7%) had the highest mean ranks, whereas the conbercept quarterly regimen (SUCRA 11.8%) and PDT (SUCRA 5.3%) had the lowest ranks (s. Tab.5).

Tabelle 5: mean change in BCVA

| treatments | SUCRA(%) | meanrank |
|------------|----------|----------|
| sham       | 7.7      | 15.8     |
| PDT        | 5.3      | 16.1     |
| raniM      | 77.7     | 4.6      |
| raniQ      | 47.3     | 9.4      |
| raniP      | 50.7     | 8.9      |
| raniTE     | 80.7     | 4.1      |
| bevaM      | 66.3     | 6.4      |
| bevaP      | 51.9     | 8.7      |
| bevaTE     | 73.3     | 5.3      |
| aflibM     | 68.4     | 6.1      |
| aflibB     | 57.2     | 7.9      |
| aflibTE    | 59.4     | 7.5      |
| conberQ    | 11.8     | 15.1     |
| conberM    | 29.6     | 12.3     |
| conberP    | 53.6     | 8.4      |
| broliB     | 53.4     | 8.5      |
| broliO     | 56       | 8        |

\* Larger SUCRAs denote more BCVA change regimens.

A total of 18 studies with 9223 participants presented data of mean CRT change. A brolucizumab quarterly regimen significantly reduced CRT compared with a conbercept PRN regimen (SMD –0.31, 95% Crl –0.41 to –0.20).



|        | bro liQ                | NA                    | NA                     | NA                    | 0.307<br>(0.41,0.204)  | NA                    | NA                    | NA                    | NA                      | NA                    | NA                    | NA                     | NA                      | NA                      |
|--------|------------------------|-----------------------|------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|
|        | -0.09<br>(-0.53,0.36)  | aflibTE               | NA                     | NA                    | -0.035                 | -0.079                | NA                    | NA                    | NA                      | NA                    | NA                    | NA                     | NA                      | NA                      |
|        | -0.16 (-0.52,0.20)     | -0.07<br>(-0.33,0.19) | raniM                  | NA                    | 0.003                  | -0.008                | 0.032                 | 0.041                 | -0.059<br>(-0.15,0.031) | NA                    | NA                    | -0.18<br>(-0.35,-0.01) | NA                      | -0.25<br>(-0.42,-0.08)  |
|        | -0.13                  | -0.04                 | 0.03                   | broliB                | -0.059                 | NA                    | NA                    | NA                    | NA                      | NA                    | NA                    | NA                     | NA                      | NA                      |
|        | -0.16                  | -0.07                 | 0.00                   | -0.03<br>(-0.45,0.40) | aflibB                 | NA                    | 0.029                 | NA                    | NA                      | NA                    | NA                    | NA                     | NA                      | NA                      |
|        | -0.17                  | -0.08                 | -0.01                  | -0.04                 | -0.01<br>(-0.19.0.18)  | raniTE                | NA                    | NA                    | NA                      | 0.086                 | NA                    | NA                     | NA                      | NA                      |
| change | -0.19<br>(-0.56,0.19)  | -0.10                 | -0.03                  | -0.06                 | -0.03                  | -0.02<br>(-0.20,0.16) | aflibM                | NA                    | NA                      | NA                    | NA                    | NA                     | NA                      | NA                      |
| CRT •  | -0.20                  | -0.11                 | -0.04                  | -0.07                 | -0.04                  | -0.03                 | -0.01<br>(-0.25,0.23) | raniQ                 | NA                      | NA                    | NA                    | NA                     | NA                      | NA                      |
| Ŭ      | -0.21 (-0.56,0.14)     | -0.13                 | -0.05                  | -0.08                 | -0.05                  | -0.04 (-0.22,0.13)    | -0.02                 | -0.01<br>(-0.25,0.22) | raniP                   | NA                    | NA                    | -0.022                 | -0.394<br>(-0.98.0.194) | -0.097<br>(-0.20,0.008) |
|        | -0.24                  | -0.16                 | -0.09                  | -0.12                 | -0.09                  | -0.08                 | -0.06                 | -0.05                 | -0.03<br>(-0.30,0.23)   | b ev a TE             | NA                    | NA                     | NA                      | NA                      |
|        | -0.25                  | -0.16                 | -0.09                  | -0.12                 | -0.09                  | -0.08                 | -0.06                 | -0.05                 | -0.04                   | -0.01<br>(-0.69,0.68) | conberM               | NA                     | NA                      | NA                      |
|        | -0.28                  | -0.19                 | -0.12                  | -0.15                 | -0.12 (-0.30,0.07)     | -0.11 (-0.32,0.10)    | -0.09                 | -0.08                 | -0.06                   | -0.03                 | -0.02<br>(-0.67,0.62) | b eva M                | NA                      | -0.067<br>(-0.24,0.103) |
|        | -0.31<br>(-0.41,-0.20) | -0.22                 | -0.15                  | -0.18<br>(-0.73,0.37) | -0.15<br>(-0.51,0.21)  | -0.14<br>(-0.52,0.24) | -0.12                 | -0.11                 | -0.10                   | -0.06                 | -0.06                 | -0.03<br>(-0.40,0.33)  | co nb erP               | NA                      |
|        | -0.33<br>(-0.69,0.04)  | -0.24 (-0.52,0.04)    | -0.17<br>(-0.29,-0.05) | -0.20<br>(-0.64,0.24) | -0.17<br>(-0.33,-0.01) | -0.16<br>(-0.35,0.03) | -0.14<br>(-0.29,0.01) | -0.13 (-0.38,0.12)    | -0.12<br>(-0.22,-0.01)  | -0.08<br>(-0.36,0.20) | -0.08                 | -0.05                  | -0.02<br>(-0.37,0.33)   | b ev a P                |
| Reg    | gimen                  |                       | Results of net         | work meta-ana         | lysis                  |                       | Results of            | pairwise compa        | arisons                 |                       |                       |                        |                         |                         |

Network plot of available treatment comparisons for mean CRT change. Regimens are reported in order of mean CRT change ranking according to SUCRAs. Standardized mean differences (SMD) and 95% credible intervals (Cff) for continuous outcomes to estimate the treatment effect size. <u>raniW\_ranibizumab</u> Monthly. <u>raniQ\_ranibizumab</u> Quarterly. <u>raniP\_ranibizumab</u> PRN. <u>taniTE\_ranibizumab</u> treat-and-extend regimen. <u>beyaM\_bevacizumab</u> Monthly. <u>beyaP\_bevacizumab</u> PRN. <u>beyaTE\_bevacizumab</u> treat-and-extend regimen. <u>affibM\_affibercept</u> Monthly. <u>affibE\_affibercept</u> Monthly. <u>affibE\_affibercept</u> Vanterly. <u>anibercept</u> Bimonthly. <u>affibE\_affibercept</u> treat-and-extend regimen. <u>conberC=conbercept</u> PRN. <u>conberC=conbercept</u> Quarterly. <u>broliD\_brolucizumab</u> Bimonthly. <u>broliD\_brolucizumab</u> Quarterly.

• Brolucizumab quarterly (SUCRA 75.1%) had the highest mean ranks (s. Tab. 5).

#### Tabelle 6: mean change in CRT

| treatments | SUCRA(%) | meanrank |
|------------|----------|----------|
| raniM      | 63.2     | 5.8      |
| raniQ      | 51.8     | 7.3      |
| raniP      | 47.9     | 7.8      |
| raniTE     | 57.3     | 6.6      |
| bevaM      | 33       | 9.7      |
| bevaP      | 20.5     | 11.3     |
| bevaTE     | 40.6     | 8.7      |
| aflibM     | 53.4     | 7.1      |
| aflibB     | 61.1     | 6.1      |
| aflibTE    | 70       | 4.9      |
| conberM    | 39.8     | 8.8      |
| conberP    | 25       | 10.8     |
| broliB     | 61.2     | 6        |
| broliQ     | 75.1     | 4.2      |

\* Larger SUCRAs denote more CRT change regimens.

 Only 8 studies with 6117 participants reported usable result for mean change in CNV area. The SMDs for the eight (80%) anti-VEGF regimens that significantly reduced CNV area ranged from –0.90 (95% Crl –1.30 to –0.50) for aflibercept monthly to –0.44 (–0.81 to –0.06) to a conbercept quarterly regimen.



|            | aflibM                 | -0.03<br>(-0.13, 0.067) | 0.053<br>(-0.04,0.151) | NA                     | NA                     | NA                     | NA                      | NA                     | NA                   | NA                     |
|------------|------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|----------------------|------------------------|
|            | -0.03<br>(-0.13,0.07)  | aflibB                  | 0.018 (-0.094,0.13)    | NA                     | NA                     | NA                     | NA                      | NA                     | NA                   | NA                     |
|            | -0.05<br>(-0.15,0.05)  | -0.02<br>(-0.13,0.09)   | raniM                  | -0.05<br>(-0.22,0.12)  | -0.06<br>(-0.28,0.163) | -0.19<br>(-0.29,-0.09) | -0.216<br>(-0.38,-0,05) | NA                     | 0.86<br>(0.65,1.07)  | NA                     |
|            | -0.12<br>(-0.30,0.06)  | -0.09<br>(-0.28,0.10)   | -0.07<br>(-0.22,0.09)  | b ev aM                | NA                     | 0.045<br>(-0.12,0.21)  | -0.17<br>(-0.35,-0.01)  | NA                     | NA                   | NA                     |
| CNV change | -0.11<br>(-0.35,0.13)  | -0.08<br>(-0.33,0.17)   | -0.06<br>(-0.28,0.16)  | 0.00<br>(-0.27,0.27)   | raniQ                  | NA                     | NA                      | NA                     | NA                   | 0.792<br>(0.48,,1.107) |
| CNV        | -0.20<br>(-0.34,-0.07) | -0.18<br>(-0.32,-0.03)  | -0.15<br>(-0.25,-0.06) | -0.09<br>(-0.24,0.06)  | -0.09<br>(-0.33,0.15)  | raniP                  | -0.07<br>(-0.2,0.06)    | NA                     | NA                   | NA                     |
|            | -0.27<br>(-0.44,-0.10) | -0.24<br>(-0.42,-0.07)  | -0.22<br>(-0.35,-0.09) | -0.15<br>(-0.31,0.01)  | -0.16<br>(-0.42,0.10)  | -0.07<br>(-0.19,0.06)  | bevaP                   | NA                     | NA                   | NA                     |
|            | -0.46<br>(-1.01,0.08)  | -0.43<br>(-0.98,0.11)   | -0.41<br>(-0.95,0.12)  | -0.35<br>(-0.91,0.21)  | -0.35<br>(-0.84,0.14)  | -0.26<br>(-0.80,0.29)  | -0.19<br>(-0.75,0.36)   | conberQ                | NA                   | 0.441<br>(0.067,0.814) |
|            | -0.91<br>(-1.14,-0.68) | -0.88<br>(-1.12,-0.64)  | -0.86<br>(-1.07,-0.65) | -0.79<br>(-1.05,-0.53) | -0.80<br>(-1.10,-0.49) | -0.70<br>(-0.93,-0.47) | -0.64<br>(-0.89,-0.39)  | -0.44<br>(-1.02,0.13)  | PDT                  | NA                     |
|            | -0.90<br>(-1.30,-0.50) | -0.87<br>(-1.27,-0.47)  | -0.85<br>(-1.24,-0.47) | -0.78<br>(-1.20,-0.37) | -0.79<br>(-1.10,-0.47) | -0.70<br>(-1.09,-0.30) | -0.63<br>(-1.04,-0.22)  | -0.44<br>(-0.81,-0.06) | 0.01<br>(-0.43,0.45) | sham                   |

Network plot of available treatment comparisons for mean CNV change. Regimens are reported in order of mean CNV change ranking according to SUCRAs. Standardized mean differences (SMD) and 95% credible intervals (GI) for continuous outcomes to estimate the treatment effect size. <u>raniM=ranibizumab</u> Monthly. <u>raniQ=ranibizumab</u> Quarterly. <u>raniR=ranibizumab</u> PRN. <u>https://www.levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/levac.com/eccept/lev</u>

• Aflibercept monthly regimen (SUCRA 81.6%) had the highest mean ranks, whereas conbercept quarterly regimen (SUCRA 34%) and PDT (SUCRA 8.9%) had the lowest ranks (s. Tab 6).

#### Tabelle 7: mean change in CNV

| treatments | SUCRA(%) | meanrank |
|------------|----------|----------|
| sham       | 74.5     | 3.3      |
| PDT        | 9        | 9.2      |
| raniM      | 9        | 9.2      |
| raniQ      | 63       | 4.3      |
| raniP      | 48.3     | 5.7      |
| bevaM      | 64.2     | 4.2      |
| bevaP      | 40.5     | 6.4      |
| aflibM     | 80.9     | 2.7      |
| aflibB     | 75.5     | 3.2      |
| conbetrQ   | 35       | 6.8      |

\* Larger SUCRAs denote more CRT change regimens.

- A total of 11,500 participants from 17 trials reported usable result for the rates of SOAEs. No significant difference was found between active regimens or sham injection.
- The findings of SUCRA for the SOAEs are presented in Tab. 8.

#### Tabelle 8: incidence of SOAEs

| treatments | SUCRA(%) | meanrank |
|------------|----------|----------|
| sham       | 76.2     | 4.6      |
| PDT        | 75.1     | 4.7      |
| pegaq6w    | 40.4     | 9.9      |
| raniM      | 57.6     | 7.4      |
| raniQ      | 58.6     | 7.2      |
| raniP      | 54.9     | 7.8      |
| raniTE     | 66.4     | 6        |
| bevaM      | 33.7     | 11       |
| bevaP      | 69.1     | 5.6      |
| bevaTE     | 33.4     | 11       |
| aflibM     | 32.8     | 11.1     |
| aflibB     | 23.7     | 12.4     |
| aflibTE    | 64.4     | 6.3      |
| conbetrQ   | 73.2     | 5        |
| broliB     | 30.1     | 11.5     |
| broliQ     | 10.4     | 14.4     |

\* Larger SUCRAs denote more CRT change regimens.



Efficacy versus safety in network analysis

 A clustered ranking plot for both primary efficacy and safety results indicated that the higher frequency injection regimens were better for efficacy and worse for safety, as most of them lay in the lower right corner. Among included anti-VEGF regimens, the bevacizumab treatand-extend regimen was the most efficacious and safest regimen in this analysis (Figure 4).



**Figure 4.** Clustered ranking plot of nAMD regimens network based on primary efficacy and safety outcomes. Each color represents a group of regimens that belong to the same cluster. Regimens lying in the upper right corner are more effective and acceptable than the other regimens. afflibB, aflibercept Bimonthly; aflibM, aflibercept Monthly; aflibTE, aflibercept treat-and-extend regimen; bevaM, bevacizumab Monthly; bevaP, bevacizumab PRN; bevaTE, bevacizumab treat-and-extend regimen; broliQ, brolucizumab Quarterly; conberQ, conbercept Quarterly; nAMD, neovascular age-related macular degeneration; Pegaq6w, pegaptanib every 6weeks; raniM, ranibizumab Monthly; raniP, ranibizumab PRN; raniQ, ranibizumab Quarterly; raniTE, ranibizumab treat-and-extend regimen.

• Results for the primary outcome did not substantially change in sensitivity analyses after removing studies at high risk of bias and small sample size (n < 100), respectively.

Inconsistency

- The test of global inconsistency did not detect any evidence of statistically significant inconsistency for primary and secondary outcomes (global inconsistency: p = 0.2–0.63).
- No publication bias was found in comparison adjusted funnel plots of the NMA for any outcome

#### Anmerkung/Fazit der Autoren

This comprehensive Bayesian NMA provides substantial evidence for the clinical application of anti-VEGF drug regimens for nAMD. The treat-and- extend regimen of ranibizumab and aflibercept are the preferred anti-VEGF regimens for nAMD. The bevacizumab treat-and-extend regimen needs more head-to-head comparisons with other regimens or sham injection for advanced application. The treat-and-extend regimen proved to be the most effective for all the anti-VEGF drugs in this NMA. Pegaptanib every 6 weeks and Conbercept quarterly are unable to satisfy the BCVA improvement required by nAMD patients.

#### Kommentare zum Review

NMA: Annahme der Transitivität wurde nicht überprüft und diskutiert.



## 3.4 Leitlinien

#### National Institute for Health and Care Excellence, 2018 [9].

NICE Guideline NG82 Methods, evidence and recommendations January 2018 Age-related macular degeneration: diagnosis and management

## Leitlinienorganisation/Fragestellung

- 1) What is the effectiveness of different antiangiogenic therapies (including photodynamic therapy) for the treatment of late AMD (wet active)?
- 2) What is the effectiveness of adjunctive therapies for the treatment of late AMD (wet active)?

#### Methodik

#### Grundlage der Leitlinie

This guideline covers diagnosing and managing age-related macular degeneration (AMD) in adults. It aims to improve the speed at which people are diagnosed and treated to prevent loss of sight. This guidance replaces NICE technology appraisal guidance on the use of photodynamic therapy for age-related macular degeneration (TA68).

- Repräsentatives Gremium;
- Interessenkonflikte und finanzielle Unabhängigkeit dargelegt;
- Systematische Suche, Auswahl und Bewertung der Evidenz dargelegt;
- Formale Konsensusprozesse und externes Begutachtungsverfahren dargelegt;
- Empfehlungen der Leitlinie sind eindeutig und die Verbindung zu der zugrundeliegenden Evidenz ist explizit dargestellt;
- Regelmäßige Überprüfung der Aktualität gesichert.

#### Recherche/Suchzeitraum:

 The search undertaken by the Cochrane group on photodynamic therapy (PDT) for AMD up to 2005. We also conducted an additional update search on PDT. The search undertaken by the Cochrane group on anti-vascular endothelial growth factor (anti-VEGF) treatment for neovascular AMD up to 2015. An update search carried out near the end of guideline development identified 2 further studies including.

#### LoE/GoR

- The risk of bias of included RCTs was assessed using the Cochrane risk of bias tool.
- **GRADE** was used to assess the quality of evidence for the selected outcomes as specified in 'Developing NICE guidelines' (2014). A modified version of the standard GRADE approach for pairwise interventions was used to assess the quality of evidence across the network meta-analyses undertaken.



| Table 2: Rationale for downgrading evidence for intervention studies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| GRADE criteria                                                       | Reasons for downgrading quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Risk of bias                                                         | The quality of the evidence was downgraded if there were concerns about factors including the design or execution of the study, including concealment of allocation, blinding and loss to follow up. This was based on intervention checklists in the NICE guidelines manual (2012).                                                                                                                                                                                                                                                                                           |  |  |
| Inconsistency                                                        | The quality of the evidence was downgraded if there were concerns about inconsistency of effects across studies: occurring when there is variability in the treatment effect demonstrated across studies (heterogeneity). This was assessed using visual inspection and the statistic, I <sup>2</sup> where; I <sup>2</sup> < 50% was categorised as no inconsistency, I <sup>2</sup> $\geq$ 50% was categorised as serious inconsistency, and I <sup>2</sup> $\geq$ 50% plus obvious additional heterogeneity on visual inspection categorised as very serious inconsistency. |  |  |
| Indirectness                                                         | The quality of the evidence was downgraded if there were concerns about the population, intervention, comparator and outcome in the included studies and how directly these variables could address the specific review question.                                                                                                                                                                                                                                                                                                                                              |  |  |
| Imprecision                                                          | If MIDs (one corresponding to meaningful benefit; one corresponding to meaningful harm) were defined for the outcome, the outcome was downgraded once if the 95% confidence interval for the effect size crossed one MID, and twice if it crosses both MIDs.<br>If an MID was not defined for the outcomes, it was downgraded once if the 95% confidence interval for the effect size crossed the line of no effect (i.e. the outcome was not statistically significant).                                                                                                      |  |  |

#### Strength of recommendation

#### Interventions that must (or must not) be used

We usually use 'must' or 'must not' only if there is a legal duty to apply the recommendation. Occasionally we use 'must' (or 'must not') if the consequences of not following the recommendation could be extremely serious or potentially life threatening.

#### Interventions that should (or should not) be used – a 'strong' recommendation

We use 'offer' (and similar words such as 'refer' or 'advise') when we are confident that, for the vast majority of patients, an intervention will do more good than harm, and be cost effective. We use similar forms of words (for example, 'Do not offer...') when we are confident that an intervention will not be of benefit for most patients.

#### Interventions that could be used

We use 'consider' when we are confident that an intervention will do more good than harm for most patients, and be cost effective, but other options may be similarly cost effective. The choice of intervention, and whether or not to have the intervention at all, is more likely to depend on the patient's values and preferences than for a strong recommendation, and so the healthcare professional should spend more time considering and discussing the options with the patient.

#### Zu Fragestellung 1:

Four studies on photodynamic therapy (PDT) for AMD, one study comparing PDT and antivascular endothelial growth factor, twelve studies on bevacizumab and/or ranibizumab and two studies for aflibercept met the study inclusion criteria and were included in the review. The update search identified two further studies: one RCT compared the effectiveness of bevacizumab and ranibizumab treatment and one study compared vision-related function between people who received aflibercept and ranibizumab injection.

Siehe Anhang: Abbildung 1



## Zu Fragestellung 2:

A total of 17 RCTs were included in the review – twelve with ranibizumab as the anti-VEGF used and five with bevacizumab. Fourteen studies compared anti-VEGF monotherapy with anti-VEGF + PDT, two compared anti-VEGF monotherapy with anti-VEGF + steroids and one compared anti-VEGF + PDT with anti-VEGF + PDT + steroids. An update search carried out near the end of guideline development identified further one study.

Siehe Anhang: Abbildung 2

## Zu Fragestellung 1:

#### Empfehlungen Antiangiogenic therapies

#### Empfehlung 21:

Offer intravitreal anti-vascular endothelial growth factor (VEGF) treatment<sup>2</sup> for late AMD (wet active) for eyes with visual acuity within the range specified in recommendation 26.

#### Empfehlung 22:

Be aware that no clinically significant differences in effectiveness and safety between the different anti-VEGF treatments<sup>3</sup> have been seen in the trials considered by the guideline committee.

#### Empfehlung 23:

In eyes with visual acuity of 6/96 or worse, consider anti-VEGF treatment for late AMD (wet active) only if a benefit in the person's overall visual function is expected (for example, if the affected eye is the person's better-seeing eye).

#### Empfehlung 24:

Be aware that anti-VEGF treatment for eyes with late AMD (wet active) and visual acuity better than 6/12 is clinically effective and may be cost effective depending on the regimen used.<sup>4,5</sup>

#### Empfehlung 25:

Do not offer photodynamic therapy alone for late AMD (wet active). Recommendations from NICE technology appraisals

<sup>&</sup>lt;sup>2</sup> At the time of publication (January 2018), bevacizumab did not have a UK marketing authorisation for, and is considered by the Medicines and Healthcare products Regulatory Agency (MHRA) to be an unlicensed medication in, this indication. The prescriber should follow relevant professional guidance, taking full responsibility for the prescribing decision. Informed consent would need to be obtained and documented. See the General Medical Council's Prescribing guidance: prescribing unlicensed medicines, and the MHRA's guidance on the supply of unlicensed medicinal products ("specials"), for further information. The guideline may inform any decision on the use of bevacizumab outside its UK marketing authorisation but does not amount to an approval of or a recommendation for such use.

<sup>&</sup>lt;sup>3</sup> Given the guideline committee's view that there is equivalent clinical effectiveness and safety of different anti-VEGF agents (aflibercept, bevacizumab and ranibizumab), comparable regimens will be more cost effective if the agent has lower net acquisition, administration and monitoring costs.

<sup>&</sup>lt;sup>4</sup> At the time of publication (January 2018), bevacizumab did not have a UK marketing authorisation for, and is considered by the Medicines and Healthcare products Regulatory Agency (MHRA) to be an unlicensed medication in, this indication. The prescriber should follow relevant professional guidance, taking full responsibility for the prescribing decision. Informed consent would need to be obtained and documented. See the General Medical Council's Prescribing guidance: prescribing unlicensed medicines,, and the MHRA's guidance on the supply of unlicensed medicinal products ("specials"), for further information. The guideline may inform any decision on the use of bevacizumab outside its UK marketing authorisation but does not amount to an approval of or a recommendation for such use.

<sup>&</sup>lt;sup>5</sup> Given the guideline committee's view that there is equivalent clinical effectiveness and safety of different anti-VEGF agents (aflibercept, bevacizumab and ranibizumab), comparable regimens will be more cost effective if the agent has lower net acquisition, administration and monitoring costs.



## Empfehlung 26:

Ranibizumab, within its marketing authorisation, is recommended as an option for the treatment of wet age-related macular degeneration if:

- all of the following circumstances apply in the eye to be treated:
  - o the best-corrected visual acuity is between 6/12 and 6/96
  - there is no permanent structural damage to the central fovea
  - o the lesion size is less than or equal to 12 disc areas in greatest linear dimension
  - there is evidence of recent presumed disease progression (blood vessel growth, as indicated by fluorescein angiography, or recent visual acuity changes)

#### and

• the manufacturer provides ranibizumab with the discount agreed in the patient access scheme (as revised in 2012). [This recommendation is from Ranibizumab and pegaptanib for the treatment of age-related macular degeneration (NICE technology appraisal guidance 155).]

#### Empfehlung 27:

Pegaptanib is not recommended for the treatment of wet age-related macular degeneration.

#### Empfehlung 28:

People who are currently receiving pegaptanib for any lesion type should have the option to continue therapy until they and their clinicians consider it appropriate to stop. [This recommendation is from Ranibizumab and pegaptanib for the treatment of age-related macular degeneration (NICE technology appraisal guidance 155).]

#### Empfehlung 29.:

Aflibercept solution for injection is recommended as an option for treating wet age-related macular degeneration only if:

- it is used in accordance with the recommendations for ranibizumab NICE technology appraisal guidance 155 (re-issued in May 2012 [see recommendation 26]) and
- the manufacturer provides aflibercept solution for injection with the discount agreed in the patient access scheme. [This recommendation is from Aflibercept solution for injection for treating wet age-related macular degeneration (NICE technology appraisal guidance 294).]

#### Empfehlung 30:

People currently receiving aflibercept solution for injection whose disease does not meet the criteria in recommendation 29 should be able to continue treatment until they and their clinician consider it appropriate to stop. [This recommendation is from Aflibercept solution for injection for treating wet age-related macular degeneration (NICE technology appraisal guidance 294).]

Hintergrundinfos:

Siehe Anhang: Abbildung 3, Abbildung 4, Abbildung 5, Abbildung 6



## Zu Fragestellung 2:

### **Empfehlungen Adjunctive therapies**

#### Empfehlung 31:

Do not offer photodynamic therapy as an adjunct to anti-VEGF as first-line treatment for late AMD (wet active).

#### Empfehlung 32:

Only offer photodynamic therapy as an adjunct to anti-VEGF as second-line treatment for late AMD (wet active) in the context of a randomised controlled trial.

#### Empfehlung 33:

Do not offer intravitreal corticosteroids as an adjunct to anti-VEGF for late AMD (wet active).

Hintergrundinfos: siehe Anhang: Abbildung 7, Abbildung 8, Abbildung 9

#### Anmerkung:

There are currently licensed treatments for wet AMD and a treatment (bevacizumab) which has been used to treat AMD despite not having a marketing authorisation for such use. It is clear that, without authorisation in the product's SPC, the use of bevacizumab in AMD is off-label. NICE has previously performed technology appraisals, which are incorporated in this guideline, on the licensed anti-VEGF agents. These recommend aflibercept and ranibizumab for late AMD (wet active), and commissioners in England and Wales are bound to fund them as a result. For this guideline, the committee has considered the published evidence on clinical effectiveness and cost effectiveness of all treatments for late AMD (wet active), regardless of license status.

## American Academy of Ophthalmology, 2019 [1].

Age-Related Macular Degeneration

## Leitlinienorganisation/Fragestellung

American Academy of Ophthalmology entwickelte eine "Preferred Practice Pattern Guideline" Ziel der LL: to provide guidance for the pattern of practice, not for the case of a particular individual

#### Methodik

#### Grundlage der Leitlinie

- Repräsentatives Gremium unklar, kein Patientenvertreter;
- Interessenkonflikte und finanzielle Unabhängigkeit dargelegt;
- Systematische Suche, Auswahl und Bewertung der Evidenz;
- Keine Informationen zu formale Konsensusprozesse;



- Externes Begutachtungsverfahren dargelegt;
- Empfehlungen der Leitlinie sind eindeutig und die Verbindung zu der zugrundeliegenden Evidenz ist explizit dargestellt;
- Regelmäßige Überprüfung der Aktualität gesichert.

#### Recherche/Suchzeitraum:

• Literature searches to update the PPP were undertaken in March 2018 and June 2019 in PubMed and the Cochrane Library

#### LoE/GoR

- Application of methods from SIGN and GRADE to grade strength of the total body of evidence and all studies used to form a recommendation are graded for strength of evidence individually
- All studies used to form a recommendation for care are graded for strength of evidence individually, and
- that grade is listed with the study citation
- To rate individual studies, a scale based on SIGN<sup>1</sup> is used. The definitions and levels of evidence to rate individual studies are as follows:

| I++                                                     | High-quality meta-analyses, systematic reviews of randomized controlled trials (RCTs), or      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1++                                                     | RCTs with a very low risk of bias                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| I+                                                      | Well-conduc                                                                                    | Well-conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| I-                                                      | Meta-analys                                                                                    | es, systematic reviews of RCTs, or RCTs with a high risk of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| II++                                                    | High-quality                                                                                   | y systematic reviews of case-control or cohort studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                | y case-control or cohort studies with a very low risk of confounding or bias and a lity that the relationship is causal                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| II+                                                     |                                                                                                | cted case-control or cohort studies with a low risk of confounding or bias and a<br>obability that the relationship is causal                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| II-                                                     |                                                                                                | l or cohort studies with a high risk of confounding or bias and a significant risk that<br>hip is not causal                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| III                                                     | Nonanalytic studies (e.g., case reports, case series)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                         | mendations for                                                                                 | care are formed based on the body of the evidence. The body of evidence quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| ratings                                                 | mendations for                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| ratings<br>Good                                         | mendations for<br>are defined by                                                               | care are formed based on the body of the evidence. The body of evidence quality GRADE <sup>2</sup> as follows:<br>Further research is very unlikely to change our confidence in the estimate of                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| ratings<br>Good<br>Mode                                 | mendations for<br>are defined by<br>quality                                                    | care are formed based on the body of the evidence. The body of evidence quality<br>GRADE <sup>2</sup> as follows:<br>Further research is very unlikely to change our confidence in the estimate of<br>effect<br>Further research is likely to have an important impact on our confidence in the                                                                                                                                                                                                                                                  |  |  |  |  |
| ratings<br>Good<br>Mode                                 | mendations for<br>are defined by<br>quality<br>rate quality                                    | care are formed based on the body of the evidence. The body of evidence quality<br>GRADE <sup>2</sup> as follows:<br>Further research is very unlikely to change our confidence in the estimate of<br>effect<br>Further research is likely to have an important impact on our confidence in the<br>estimate of effect and may change the estimate<br>Further research is very likely to have an important impact on our confidence in                                                                                                            |  |  |  |  |
| Good<br>Moder<br>Insuff                                 | mendations for<br>are defined by<br>quality<br>rate quality<br>icient quality                  | care are formed based on the body of the evidence. The body of evidence quality<br>GRADE <sup>2</sup> as follows:<br>Further research is very unlikely to change our confidence in the estimate of<br>effect<br>Further research is likely to have an important impact on our confidence in the<br>estimate of effect and may change the estimate<br>Further research is very likely to have an important impact on our confidence in<br>the estimate of effect and is likely to change the estimate                                             |  |  |  |  |
| ratings<br>Good<br>Moder<br>Insuff<br>Key rec<br>Strong | mendations for<br>are defined by<br>quality<br>rate quality<br>icient quality<br>commendations | care are formed based on the body of the evidence. The body of evidence quality<br>GRADE <sup>2</sup> as follows:<br>Further research is very unlikely to change our confidence in the estimate of<br>effect<br>Further research is likely to have an important impact on our confidence in the<br>estimate of effect and may change the estimate<br>Further research is very likely to have an important impact on our confidence in<br>the estimate of effect and is likely to change the estimate<br>Any estimate of effect is very uncertain |  |  |  |  |

#### Empfehlungen

#### Neovaskuläre AMD (nAMD)

balanced

Anti-VEGF therapies have become first-line therapy for treating and stabilizing most cases of neovascular AMD and a Cochrane systematic review demonstrates the effectiveness of these agents to maintain visual acuity.<sup>167</sup> (*I*+, *Good quality, Strong recommendation*)

Hintergrundinformation:

With the introduction of the VEGF inhibitors pegaptanib sodium (Macugen®, Eyetech, Inc., Cedar Knolls, NJ) in 2004, offlabel bevacizumab (Avastin®, Genentech, Inc., South San Francisco, CA) in 2005, ranibizumab (Lucentis®, Genentech, Inc., South San Francisco, CA) in 2006, and aflibercept (Eylea™, Regeneron Pharmaceuticals, Inc., Tarrytown, NY) in



2011, more effective treatments for neovascular AMD exist. The VEGF inhibitors have demonstrated improved visual and anatomic outcomes compared with other therapies.

**Aflibercept** is a pan–VEGF-A and placental growth factor (PGF) blocker approved by the US Food and Drug Administration (FDA) that has been documented to be of similar efficacy to ranibizumab in the head-to-head phase III VEGF Trap-Eye: Investigation of Efficacy and Safety in Wet AMD (VIEW) trials.<sup>168</sup> In these pivotal studies, the currently approved 2-mg dose of aflibercept was administered by intravitreal injection every 4 weeks and every 8 weeks after three monthly loading doses. In the first year, both study arms were similar to 0.5- mg ranibizumab dosed every 4 weeks.

**Bevacizumab** is a full-length monoclonal antibody that binds all isoforms of VEGF. It is FDA approved for intravenous use in the treatment of metastatic colorectal, metastatic breast, and non-small cell lung cancer. Bevacizumab was investigated first as a systemic intravenous treatment for AMD and then as an intravitreal injection (1.25 mg) before the FDA approved ranibizumab.<sup>169,170</sup> Because preliminary reports appeared favorable, ophthalmologists began to use intravitreal bevacizumab off-label to treat CNV. Comparative trials and uncontrolled case series reported improvements in VA and decreased retinal thickness by optical coherence tomography (OCT) following intravitreal bevacizumab and its off-label status.<sup>178</sup>

Intravitreal **ranibizumab** (0.5 mg) is FDA approved for the treatment of all subtypes of neovascular AMD, based on results from three double-masked, randomized controlled trials.<sup>179,180</sup> (siehe Anhang Abbildung 10.) Ranibizumab is a recombinant, humanized immunoglobulin G1 kappa isotype therapeutic antibody fragment developed for intraocular use. Ranibizumab binds to and inhibits the biologic activity of all isoforms of human VEGF-A.

The Comparison of AMD Treatment Trials (CATT) was a multicenter clinical trial that compared the safety and effectiveness of bevacizumab with ranibizumab and an individualized dosing regimen (as needed, or PRN) with monthly injections. At 1 year, the CATT study found that ranibizumab and bevacizumab had comparable equivalence VA improvements for monthly dosing.<sup>174</sup> Ranibizumab PRN had similar VA improvements compared with a fixed schedule of monthly injections. Further follow-up at 2 years showed that the two drugs remained comparable in both efficacy and safety, but the PRN arms together did not perform as well in terms of maintaining the visual gains at the end of year 1 compared with the two monthly arms, especially in the bevacizumab PRN group.<sup>183</sup> The CATT 5-year follow-up study demonstrated vision gains during the first 2 years that were not maintained at 5 years. However, 50% of eyes had VA of 20/40 or better, confirming anti- VEGF therapy as a major long-term therapeutic advance for neovascular AMD.<sup>184</sup> Similar results were seen in the 2-year Inhibition of VEGF in Age-related choroidal Neovascularization (IVAN) trial conducted in the United Kingdom.<sup>185,186</sup> (See Glossary.)

Presently, there does not appear to be a significant difference in efficacy between ranibizumab and bevacizumab.<sup>184</sup> A meta-analysis by Nguyen in 2018 of over 8,000 eyes comparing all three drugs concluded that bevacizumab and ranibizumab had equivalent efficacy for bestcorrected visual acuity (BCVA), whereas ranibizumab had greater reduction in central macular thickness, and aflibercept and ranibizumab had comparable efficacy for BCVA and central macular thickness.<sup>187</sup> The review by Chen in 2015 also elicited similar results.<sup>188</sup> The systemic safety data in the CATT and IVAN studies are inconclusive and two Cochrane systematic reviews have also concluded that if a difference in safety between these anti-VEGF drugs exists, it is minimal.<sup>189,190</sup> (I+, Good quality, Strong recommendation) A real world analysis of 13,859 patients found that all three agents improved visual acuity similarly over 1 year.<sup>191</sup>

**Pegaptanib sodium** is a selective VEGF antagonist that binds to the 165 isoform of VEGF-A. It was the first anti-VEGF agent available for treating neovascular AMD. Pegaptanib sodium injection is FDA approved for the treatment of all subtypes of neovascular AMD, with a recommended dosage of 0.3 mg injected every 6 weeks into the vitreous. These recommendations were based on results from two double-masked, randomized controlled trials.<sup>181</sup> (See Table 3.) Unlike the other anti-VEGF agents that are currently available (ranibizumab, aflibercept, and bevacizumab), pegaptanib treatment does not improve VA on average in patients with new-onset neovascular AMD and is rarely used in current clinical practice.

Randomized clinical trials have been performed to study the adjunct use of intravitreal corticosteroids and/or anti-VEGF agents in various drug combinations or with verteporfin PDT, following the publication of results from uncontrolled case series.<sup>192-195</sup> However, the data do not currently support the use of combination therapy with steroids, especially given the long-term side effects of glaucoma and cataract that are associated with corticosteroid use.

The DENALI and MONT BLANC studies (ranibizumab and verteporfin PDT compared with ranibizumab alone) did not show a significant benefit of adding PDT to anti-VEGF therapy in new-onset neovascular AMD.<sup>196,197</sup> (See Glossary.) However, the EVEREST study demonstrated that fewer anti-VEGF injections were needed in combination therapy compared with anti-VEGF monotherapy in eyes with the PCV variant of neovascular AMD.<sup>198</sup> A 2017 meta-analysis and systematic review also concluded that treatment of PCV by PDT combined with ranibizumab is valuable in improving VA and maintaining long-term effectiveness but recommended further study.<sup>199,200</sup> A randomized trial of 310 subjects has shown aflibercept to effectively treat PCV in 85% of patients; 15% required PDT for control.<sup>200</sup> A 2018 metaanalysis of 16 studies by Gao et al compared 587 patients in the monotherapy group with various anti-VEGF agents against 673 patients in the combination group and found no statistically significant difference between groups in mean BCVA, the proportion of patients who gained 15 or more letters, or central retinal thickness at the end of the study.<sup>201</sup> However, combination therapy did require fewer anti-VEGF injections, as noted in other studies with reduced-fluence PDT demonstrating this reduction in number of injections at a statistically significant level as opposed to the standard fluence group.<sup>201</sup>

#### Subfoveal Choroidal Neovascularization

In addition to intravitreal injections of VEGF inhibitors, verteporfin PDT and thermal laser photocoagulation surgery remain approved options for the treatment of subfoveal lesions. Current practice patterns support the use of anti-VEGF monotherapy for patients with newly diagnosed neovascular AMD and suggest that these other therapies are rarely needed. Photodynamic therapy with verteporfin has FDA approval for the treatment of AMD-related, predominantly classic, subfoveal CNV; treatment trial results are described in Table 3. The efficacy of thermal laser photocoagulation surgery for



CNV was studied in the MPS (early 1990s) in a randomized, controlled, multicenter trial.<sup>148-151</sup> The MPS directly treated eyes that had subfoveal lesions using thermal laser surgery,<sup>150</sup> but the outcomes were poor and do not compare with the positive VA benefits found with current anti-VEGF therapy. Thus, thermal laser photocoagulation surgery is no longer recommended for subfoveal CNV treatment.

Table 3 (at the end of this section) summarizes the findings from randomized controlled trials of verteporfin PDT and VEGF inhibitors for the treatment of subfoveal CNV. The entry criteria varied among these studies and may have contributed to the differences among treatment cohorts.

#### Juxtafoveal Choroidal Neovascularization

Although randomized, controlled clinical trials have not routinely included patients with juxtafoveal CNV, many clinicians extrapolated the data from current trials to consider intravitreal injections of anti-VEGF agent as the primary therapy for juxtafoveal lesions. In the MPS, treatment of well-demarcated juxtafoveal CNV lesions resulted in a small overall treatment benefit.151 The rates of "persistence" (CNV leakage within 6 weeks of laser photocoagulation surgery) and "recurrence" (CNV leakage more than 6 weeks after laser photocoagulation surgery) were high (80%) at 5 years. After 5 years of follow-up, 52% of eyes treated for juxtafoveal lesions progressed to visual loss of 30 or more letters (quadrupling of the visual angle) compared with 61% of untreated eyes.<sup>151</sup>

#### **Extrafoveal Choroidal Neovascularization**

There still remains a possible role for thermal laser surgery treatment in eyes with extrafoveal and peripapillary CNV lesions as defined by the MPS.<sup>148,202</sup> Although photocoagulation of well-demarcated extrafoveal CNV lesions resulted in a substantial reduction in the risk of severe visual loss for the first 2 years, recurrence or persistence occurs in approximately 50% of cases, thus reducing this benefit over the subsequent 3 years of follow-up.<sup>148</sup> After 5 years of follow-up, 48% of eyes treated for extrafoveal lesions progressed to VA loss of 30 or more letters when compared with 62% of untreated eyes.148 The historical data are important to recognize in current practice patterns, as none of the anti-VEGF or PDT trials included extrafoveal lesions. Practitioners have extrapolated and applied data from the dramatic improvements seen in the treatment of subfoveal lesions to extrafoveal lesions. The current trend is to use anti- VEGF agents in preference to laser photocoagulation surgery. Laser surgery for extrafoveal lesions remains a less commonly used, yet reasonable, therapy. Current therapies that have insufficient data to demonstrate clinical efficacy include radiation therapy, acupuncture, electrical stimulation, macular translocation surgery, and adjunctive use of intravitreal corticosteroids with verteporfin PDT. Therefore, at this time, these therapies are not recommended.

#### Indications for Treatment for Choroidal Neovascularization

Assessment and treatment plans for non-neovascular and neovascular AMD are listed in Table 4. The criteria for treatment of AMD and the techniques of therapy are described in the aflibercept, bevacizumab, ranibizumab, pegaptanib, MPS, and AREDS literature. Aflibercept, ranibizumab, and pegaptanib-injection product labeling and other literature discuss techniques of intravitreal injection.<sup>181,207,239-241</sup> Recently, conbercept has shown promising results in the management of wet AMD,<sup>242</sup> although it has yet to receive FDA approval for its use. Similarly, abicipar has completed phase II clinical trials and has shown an extended duration of effect with a good safety profile; however, it has not received FDA approval.<sup>243,244</sup> Recently reported results from the HAWK and HARRIER phase III clinical trials showed that **brolucizumab** achieved its primary endpoint of noninferiority of BCVA change compared with aflibercept at week 48. Patients treated with brolucizumab had sub-retinal fluid, inter-retinal fluid, and sub-RPE fluid. Brolucizumab received FDA approval in October 2019.<sup>245</sup>

As is the case with most clinical trials, these treatment trials do not provide clear guidance for the management of all patients encountered in clinical practice. To date, the major prospective randomized anti-VEGF treatment trials (Anti-VEGF Antibody for the Treatment of Predominantly Classic CNV in AMD [ANCHOR], Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab in the Treatment of Neovascular AMD [MARINA], VIEW, CATT, IVAN, HARBOR) used either a fixed continuous treatment regimen (approximately every 4 or 8 weeks) or an individualized discontinuous treatment regimen (PRN).<sup>168,174,179,180,183,185,186,246</sup>

The PRN regimens using ranibizumab appear to have efficacy and safety comparable to fixed monthly regimens over 1 year of treatment, but they do not maintain the initial visual gains with longer follow-up.<sup>183,255</sup> Caution should be used when dosing PRN bevacizumab, as it may be slightly less effective than other monthly anti-VEGF regimens and other PRN anti-VEGF regimens.<sup>183</sup> Vision gains during the first 2 years of the CATT clinical trials were not maintained at the 5-year follow-up visit, but 50% of the patients maintained a VA of 20/40.<sup>184</sup>

A continuous, variable dosing regimen that attempts to individualize therapy, commonly referred to as "treat and extend," is frequently used in clinical practice as an alternative to the two treatment approaches above.248-251 Prospective studies such as Lucentis Compared to Avastin Study (LUCAS) have shown similar efficacy between monthly and treat-and-extend for bevacizumab and ranibizumab.<sup>256</sup>

Subretinal hemorrhages are relatively common in neovascular AMD. Small subretinal hemorrhages are a sign of active CNV or PCV and may be managed with anti-VEGF therapy. For the management of larger submacular hemorrhages, the SST study was inconclusive. Pneumatic displacement procedures, the use of tPA, and/or pars plana vitrectomy have been proposed. The data on management of these larger hemorrhages are inadequate to make a recommendation at this time.<sup>257</sup>

The risks, benefits, and complications of the treatment and the alternatives to it should be discussed with the patient and informed should be consent obtained.<sup>146,258</sup>



#### TABLE 4 TREATMENT RECOMMENDATIONS AND FOLLOW-UP FOR AGE-RELATED MACULAR DEGENERATION

| Recommended Treatment                                                                                                       | Diagnoses Eligible for Treatment                                                                                                                                                      | Follow-up Recommendations                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eovascular AMD                                                                                                              | •                                                                                                                                                                                     | · · · ·                                                                                                                                                                                                                                                                                                                                                         |
| Aflibercept intravitreal injection 2.0<br>mg as<br>described in published reports <sup>168</sup>                            | Macular CNV                                                                                                                                                                           | <ul> <li>Patients should be instructed to promptly report symptoms suggestive of endophthalmitis,<br/>including eye pain or increased discomfort, worsening eye redness, blurred or decreased<br/>vision, increased sensitivity to light, or increased number of floaters</li> </ul>                                                                            |
|                                                                                                                             |                                                                                                                                                                                       | <ul> <li>Return examination approximately 4 weeks after treatment initially; subsequent follow-up<br/>and treatment depends on the clinical findings and judgment of the treating<br/>ophthalmologist. A maintenance treatment regimen of every 8 weeks has been shown to<br/>have results comparable to every 4 weeks in the first year of therapy.</li> </ul> |
|                                                                                                                             |                                                                                                                                                                                       | <ul> <li>Monitoring of monocular near vision (reading/Amsler grid)</li> </ul>                                                                                                                                                                                                                                                                                   |
| Bevacizumab intravitreal injection<br>1.25 mg as described in published<br>reports <sup>172-177,183,185,240,248</sup>       | Macular CNV                                                                                                                                                                           | <ul> <li>Patients should be instructed to promptly report symptoms suggestive of endophthalmitis,<br/>including eye pain or increased discomfort, worsening eye redness, blurred or decreased<br/>vision, increased sensitivity to light, or an increased number of floaters.</li> </ul>                                                                        |
| The ophthalmologist should provide<br>appropriate informed consent with<br>respect to the off-label status. <sup>178</sup>  |                                                                                                                                                                                       | <ul> <li>Return examination approximately 4 weeks after treatment initially; subsequent follow-up<br/>and treatment depends on the clinical findings and judgment of the treating<br/>ophthalmologist</li> </ul>                                                                                                                                                |
|                                                                                                                             |                                                                                                                                                                                       | <ul> <li>Monitoring of monocular near vision (reading/Amsler grid)</li> </ul>                                                                                                                                                                                                                                                                                   |
|                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                 |
| Brolucizumab intravitreal injection 6.0<br>mg as described in FDA labeling <sup>245</sup>                                   | Macular CNV                                                                                                                                                                           | <ul> <li>Patients should be instructed to promptly report symptoms suggestive of endophthalmitis<br/>including eye pain or increased discomfort, worsening eye redness, blurred or decreased<br/>vision, increased sensitivity to light, or an increased number of floaters</li> </ul>                                                                          |
|                                                                                                                             |                                                                                                                                                                                       | <ul> <li>Return examination approximately 4 weeks after treatment initially; subsequent follow-up<br/>and treatment depends on clinical findings and judgment of the treating ophthalmologist</li> </ul>                                                                                                                                                        |
|                                                                                                                             |                                                                                                                                                                                       | <ul> <li>Monitoring of monocular near vision (reading/Amsler grid)</li> </ul>                                                                                                                                                                                                                                                                                   |
| Ranibizumab intravitreal injection 0.5<br>mg as recommended in<br>literature <sup>174,178,180,183,185,207,246,249,251</sup> | Macular CNV                                                                                                                                                                           | <ul> <li>Patients should be instructed to promptly report symptoms suggestive of endophthalmitis<br/>including eye pain or increased discomfort, worsening eye redness, blurred or decreased<br/>vision, increased sensitivity to light, or an increased number of floaters.<sup>607</sup></li> </ul>                                                           |
|                                                                                                                             |                                                                                                                                                                                       | <ul> <li>Return examination approximately 4 weeks after treatment initially; subsequent follow-up<br/>and treatment depends on the clinical findings and judgment of the treating<br/>ophthalmologist</li> </ul>                                                                                                                                                |
|                                                                                                                             |                                                                                                                                                                                       | <ul> <li>Monitoring of monocular near vision (reading/Amsler grid)</li> </ul>                                                                                                                                                                                                                                                                                   |
| ess Commonly Used Treatments for<br>eovascular AMD                                                                          |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                 |
| PDT with verteporfin as<br>recommended in the<br>TAP and VIP reports <sup>182252254*</sup>                                  | <ul> <li>Macular CNV, new or recurrent,<br/>where the classic component is<br/>&gt;50% of the lesion and the entire<br/>lesion is ≤5400 µm in greatest<br/>linear diameter</li> </ul> | <ul> <li>Return examination approximately every 3 months until stable, with retreatments as<br/>indicated</li> <li>Monitoring of monocular near vision (reading/Amsler grid)</li> </ul>                                                                                                                                                                         |
|                                                                                                                             | <ul> <li>Occult CNV may be considered for<br/>PDT with vision &lt;20/50 or if the<br/>CNV is &lt;4 MPS disc areas in size<br/>when the vision is &gt;20/50</li> </ul>                 |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                             | <ul> <li>Juxtafoveal CNV is an off-label<br/>indication for PDT but may be<br/>considered in select cases</li> </ul>                                                                  |                                                                                                                                                                                                                                                                                                                                                                 |
| Thermal laser photocoagulation<br>surgery as recommended in the MPS<br>reports is rarely used <sup>148151247</sup>          | <ul> <li>May be considered for extrafoveal<br/>classic CNV, new or recurrent</li> </ul>                                                                                               | <ul> <li>Return examination with fluorescein angiography approximately 2–4 weeks after<br/>treatment, and then at 4–6 weeks and thereafter depending on the clinical and<br/>provingenable fluorescenters.</li> </ul>                                                                                                                                           |
| reports is rarely used.                                                                                                     | <ul> <li>May be considered for<br/>juxtapapillary CNV</li> </ul>                                                                                                                      | angiographic findings <ul> <li>Retreatments as indicated</li> </ul>                                                                                                                                                                                                                                                                                             |
|                                                                                                                             | Second Second Second                                                                                                                                                                  | <ul> <li>Monitoring of monocular near vision (reading/Amsler grid)</li> </ul>                                                                                                                                                                                                                                                                                   |

AMD = Age-Related Macular Degeneration; AREDS = Age-Related Eye Disease Study; CNV = choroidal neovascularization; MPS = Macular Photoccagulation Study; OCT = optical coherence tomography; OCTA = optical coherence tomography angiography; PDT = photodynamic therapy; TAP = Treatment of Age-Related Macular Degeneration with Photodynamic Therapy; VIP = Verteporfin in Photodynamic Therapy

\* Contraindicated in patients with porphyria or known allergy.

#### **Complications of Treatment**

Possible complications of the four main modalities of treatment for AMD are listed below. Retinal pigment epithelium rips (tears) may occur with or without these treatment modalities, yet this is not a contraindication to continued anti-VEGF therapy.

#### Intravitreal Pharmacotherapy

All anti-VEGF treatments may carry theoretical risks for systemic arterial thromboembolic events and increased intraocular pressure, although the results of clinical trials studying these risks remain inconclusive.<sup>259-262</sup> A recent review of the literature concluded that anti-VEGF therapy is safe and effective for neovascular AMD.<sup>263</sup> The risks of intravitreal anti-VEGF agents in pregnant or lactating women have not been studied.<sup>264,265</sup> Intravitreal pharmacotherapy can result in endophthalmitis, noninfectious inflammation, retinal tear, or detachment.

#### Aflibercept injection

Endophthalmitis (cumulative ≤1.0% over 1 year in VIEW studies)<sup>168</sup>

At 1 year, there were no statistically significant differences in rates of serious systemic adverse events such as death, arteriothrombotic events, or venous thrombotic events between ranibizumab and aflibercept.<sup>168,266</sup>

#### **Bevacizumab injection**

 Reported safety data are limited by relatively short and variable follow-up periods and by differences in reporting criteria.<sup>267,268</sup>



Reported ocular adverse events include bacterial endophthalmitis per injection (0.16%), tractional retinal detachments (0.16%), uveitis (0.09%), rhegmatogenous retinal detachment (0.02%), and vitreous hemorrhage (0.16%).240,269

The CATT study had limited statistical power to identify any differences in treatmentrelated adverse events between bevacizumab and ranibizumab. At 1 year, there were no statistically significant differences in rates of death, arteriothrombotic events, or venous thrombotic events for the two drugs. There was a higher rate of serious systemic events (e.g., arteriothrombotic events, venous thrombosis, or gastrointestinal disorders such as hemorrhage) among patients treated with bevacizumab compared with ranibizumab (24% vs. 19%; P=0.04), and this statistically significant difference was persistent at 2 years of follow-up.174,183 The IVAN trial showed greater serum VEGF suppression with bevacizumab but did not show any statistically significant difference in serious systemic adverse events.<sup>18</sup>

#### **Ranibizumab injection**

- Endophthalmitis (cumulative ≤1.0% over 2 years in MARINA study; <1.0% over 1 year in ANCHOR study)
- Retinal detachment or traumatic injury to the lens (<0.1% of treated cases during the first year of treatment)<sup>179,180</sup>

#### Pegaptanib sodium injection270

- Endophthalmitis (1.3% of treated cases during the first year of treatment)
- Traumatic injury to the lens (0.6% of treated cases during the first year of treatment)
- Retinal detachment (0.7% of treated cases during the first year of treatment)
- Anaphylaxis/anaphylactoid reactions including angioedema (rare; these were reported following FDA approval)

#### Verteporfin Photodynamic Therapy

A severe decrease in central vision occurred within 1 week following treatment in 1% to 4% of patients, and may be permanent182,252,253

- Infusion site extravasation
- Idiosyncratic back pain during infusion of the drug (1%-2% of patients)<sup>182,252,25</sup>
- Photosensitivity reaction (<3% of patients).<sup>182,252,253</sup> The stated, current recommendations are to avoid direct sunlight for the first 5 days after a treatment.

Verteporfin is contraindicated in patients with porphyria or a known allergy or sensitivity to the drug. Careful consideration should be given to patients with liver dysfunction and to patients who are pregnant, breastfeeding, or of pediatric age, because these patients were not studied in published reports

#### Thermal Laser Photocoagulation Surgery

- Severe vision loss following treatment, which may be permanent
- Rupture of Bruch's membrane with subretinal or vitreous hemorrhage
- Effects on the fovea in subfoveal or juxtafoveal CNV

Thermal laser is no longer recommended for subfoveal CNV. Introduction or enlargement of a pre-existing scotoma, with or without VA loss, is not a complication of thermal laser photocoagulation surgery; rather, it is an anticipated side effect of the treatment. Similarly, recurrence or persistence of CNV, or the development of new CNV and further visual deterioration after adequate thermal laser surgery, is usually a result of the disease process and is not a complication. These realities must be emphasized to the patient and family before treatment.

#### Ausgewählte Referenzen:

167. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2019;3:CD005139.

168. Heier JS, Brown DM, Chong V, et al. VIEW 1 and VIEW 2 Study Groups. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537- 2548. 179. Rosenfeld PJ, Brown DM, Heier JS, et al. MARINA Study Group. Ranibizumab for neovascular age-related macular

degeneration. N Engl J Med. 2006;355(14):1419-1431.

180. Brown DM, Kaiser PK, Michels M, et al. ANCHOR Study Group. Ranibizumab versus verteporfin for neovascular agerelated macular degeneration. N Engl J Med. 2006;355(14):1432-1444.

189. Sarwar S, Clearfield E, Soliman MK, et al. Aflibercept for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2016;2:CD011346.

245. Dugel PU, Koh A, Ogura Y, et al. HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2019.



## 4 Detaillierte Darstellung der Recherchestrategie

## Cochrane Library - Cochrane Database of Systematic Reviews (Issue 9 of 12, September 2020) am 29.09.2020

| # | Suchfrage                                                                               |
|---|-----------------------------------------------------------------------------------------|
| 1 | MeSH descriptor: [Macular Degeneration] this term only                                  |
| 2 | MeSH descriptor: [Wet Macular Degeneration] explode all trees                           |
| 3 | (macular AND (degeneration* OR dystroph*)):ti,ab,kw                                     |
| 4 | ((age OR wet OR exudative OR neovascular) AND maculopath*):ti,ab,kw                     |
| 5 | ((AMD OR wAMD OR nAMD OR ARMD OR wARMD OR nARMD) AND macular):ti,ab,kw                  |
| 6 | #1 OR #2 OR #3 OR #4 OR #5                                                              |
| 7 | #6 with Cochrane Library publication date from Sep 2015 to present, in Cochrane Reviews |

## Systematic Reviews in Medline (PubMed) am 29.09.2020

| # | Suchfrage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Macular Degeneration[mh:noexp]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 | Wet Macular Degeneration[mh]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 | (macular[tiab]) AND ((degeneration*[tiab]) OR dystroph*[tiab])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4 | (((((age[tiab]) OR wet[tiab]) OR exudative[tiab]) OR neovascular[tiab])) AND maculopath*[tiab]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5 | ((AMD[tiab] OR wAMD[tiab] OR nAMD[tiab] OR ARMD[tiab] OR wARMD[tiab] OR nARMD[tiab]) AND macular[tiab])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 | #1 OR #2 OR #3 OR #4 OR #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7 | (#6) AND (((Meta-Analysis[ptyp] OR systematic[sb] OR ((systematic review [ti] OR meta-<br>analysis[pt] OR meta-analysis[ti] OR systematic literature review[tia] AND review[pt]) OR meta<br>synthesis[ti] OR meta-analy*[ti] OR integrative review[tiab] AND review[pt]) OR meta<br>synthesis[ti] OR meta-analy*[ti] OR integrative review[tw] OR integrative research review[tw]<br>OR rapid review[tw] OR umbrella review[tw] OR consensus development conference[pt] OR<br>practice guideline[pt] OR drug class reviews[ti] OR cochrane database syst rev[ta] OR acp<br>journal club[ta] OR health technol assess[ta] OR evid rep technol assess summ[ta] OR jbi<br>database system rev implement rep[ta]) OR (clinical guideline[tw] AND management[tw]) OR<br>((evidence based[ti] OR evidence-based medicine[mh] OR best practice*[ti] OR evidence<br>synthesis[tiab]) AND (review[pt] OR diseases category[mh] OR behavior and behavior<br>mechanisms[mh] OR therapeutics[mh] OR evaluation study[pt] OR validation study[pt] OR<br>guideline[pt] OR pmcbook)) OR ((systematic[tw] OR systematically[tw] OR critical[tiab] OR<br>(study selection[tw]) OR (predetermined[tw] OR inclusion[tw] AND criteri* [tw]) OR exclusion<br>criteri*[tw] OR main outcome measures[tw] OR standard of care[tw] OR standards of care[tw])<br>AND (survey[tiab] OR surveys[tiab] OR overview*[tw] OR review[tiab] OR reviews[tiab] OR<br>(reduction[tw] AND (risk[mh] OR risk[tw]) AND (death OR recurrence))) AND (literature[tiab]<br>OR articles[tiab] OR publications[tiab] OR publication [tiab] OR bibliography[tiab] OR<br>bibliographies[tiab] OR publications[tiab] OR publication[tw] OR critation[tw]<br>OR citations[tw] OR database[tiab] OR triats[tiab] OR meta-analy*[tw] OR (clinical[tiab]<br>AND studies[tiab]) OR treatment outcome[mh] OR treatment outcome[tw] OR pmcbook)) NOT<br>(letter[pt] OR newspaper article[pt])) OR Technical Report[ptyp]) OR ((((trials[tiab] OR |



| #  | Suchfrage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | studies[tiab] OR database*[tiab] OR literature[tiab] OR publication*[tiab] OR Medline[tiab] OR<br>Embase[tiab] OR Cochrane[tiab] OR Pubmed[tiab])) AND systematic*[tiab] AND (search*[tiab]<br>OR research*[tiab]))) OR ((((((((((HTA[tiab]) OR technology assessment*[tiab]) OR technology<br>report*[tiab])) OR (systematic*[tiab] AND review*[tiab])) OR (systematic*[tiab] AND<br>overview*[tiab])) OR meta-analy*[tiab]) OR (meta[tiab] AND analyz*[tiab])) OR (meta[tiab] AND<br>analys*[tiab])) OR (meta[tiab] AND analyt*[tiab])) OR (((review*[tiab])) OR overview*[tiab]))<br>AND ((evidence[tiab]) AND based[tiab])))))) |
| 8  | (#7) AND ("2015/09/01"[PDAT] : "3000"[PDAT])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9  | (#8) NOT "The Cochrane database of systematic reviews"[Journal]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 | (#9) NOT (animals[MeSH:noexp] NOT (Humans[mh] AND animals[MeSH:noexp]))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11 | (#10) NOT (retracted publication [pt] OR retraction of publication [pt])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Leitlinien in Medline (PubMed) am 29.09.2020

| # | Suchfrage                                                                                                                                                                                         |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Macular Degeneration[mh:noexp]                                                                                                                                                                    |
| 2 | Wet Macular Degeneration[mh]                                                                                                                                                                      |
| 3 | (macular[tiab]) AND ((degeneration*[tiab]) OR dystroph*[tiab])                                                                                                                                    |
| 4 | (((((age[tiab]) OR wet[tiab]) OR exudative[tiab]) OR neovascular[tiab])) AND maculopath*[tiab]                                                                                                    |
| 5 | ((AMD[tiab] OR wAMD[tiab] OR nAMD[tiab] OR ARMD[tiab] OR wARMD[tiab] OR nARMD[tiab]) AND macular[tiab])                                                                                           |
| 6 | #1 OR #2 OR #3 OR #4 OR #5                                                                                                                                                                        |
| 7 | (#6) AND (Guideline[ptyp] OR Practice Guideline[ptyp] OR guideline*[Title] OR Consensus<br>Development Conference[ptyp] OR Consensus Development Conference, NIH[ptyp] OR<br>recommendation*[ti]) |
| 8 | (#7) AND ("2015/09/01"[PDAT] : "3000"[PDAT])                                                                                                                                                      |
| 9 | (#8) NOT (retracted publication [pt] OR retraction of publication [pt])                                                                                                                           |



## Referenzen

- American Academy of Ophthalmology (AAO). Age-related macular degeneration [online]. San Francisco (USA): AAO; 2019. [Zugriff: 01.10.2020]. (Preferred Practice Pattern). URL: <u>https://www.aao.org/Assets/81ff9cc2-291c-4117-946e-</u> <u>dbb2aa56e884/637140915362300000/age-related-macular-degeneration-ppp-2019-pdf</u>.
- 2. **Gao Y, Yu T, Zhang Y, Dang G.** Anti-VEGF monotherapy versus photodynamic therapy and anti-VEGF combination treatment for neovascular age-related macular degeneration: a meta-analysis. Invest Ophthalmol Vis Sci 2018;59(10):4307-4317.
- Gemeinsamer Bundesausschuss (G-BA). Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII -Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V – Brolucizumab (Neovaskuläre altersabhängige Makuladegeneration) vom 3. September 2020 [online]. Berlin (GER): G-BA; 2020. [Zugriff: 01.10.2020]. URL: <u>https://www.g-ba.de/downloads/39-261-4449/2020-09-03\_AM-RL-XII\_Brolucizumab\_D-514.pdf</u>.
- 4. Gemeinsamer Bundesausschuss (G-BA). Photodynamische Therapie (PDT) mit Verteporfin bei altersabhängiger feuchter Makuladegeneration mit subfoveolären klassischen choriodalen Neovaskularisationen; Zusammenfassender Bericht des Arbeitsausschusses "Ärztliche Behandlung" des Bundesausschusses der Ärzte und Krankenkassen über die Beratungen gemäß §135 Abs.1 SGB V; vom 22. Januar 2001 [online]. Berlin (GER): G-BA; 2001. [Zugriff: 01.10.2020]. URL: <u>https://www.gba.de/downloads/40-268-249/HTA-Photodynamische\_Therapie\_.pdf</u>.
- Gemeinsamer Bundesausschuss (G-BA). Protonentherapie bei altersabhängiger Makuladegeneration: Abschlussbericht Beratungsverfahren nach § 137c SGB V (Krankenhausbehandlung) vom 13. Januar 2010 [online]. Berlin (GER): G-BA; 2010. [Zugriff: 01.10.2020]. URL: <u>https://www.g-ba.de/downloads/40-268-1132/2009-09-17-RL-Kh-Protonen-Makula\_Abschluss.pdf</u>.
- Gemeinsamer Bundesausschuss (G-BA). Richtlinie über die Verordnung von Arzneimitteln in der vertragsärztlichen Versorgung (AM-RL); Anlage XII: (Frühe) Nutzenbewertung nach § 35a SGB V; Geltende Fassung zum Beschluss vom 06. Juni 2013 - Aflibercept [online]. Berlin (GER): GBA; 2013. [Zugriff: 01.10.2020]. URL: <u>https://www.g-ba.de/downloads/91-1385-50/2013-06-06\_Geltende-Fassung\_Aflibercept\_D-052.pdf</u>.
- Li S, Hu A, Wang W, Ding X, Lu L. Combinatorial treatment with topical NSAIDs and anti-VEGF for age-related macular degeneration, a meta-analysis. PLoS One 2017;12(10):e0184998.
- 8. Low A, Faridi A, Bhavsar KV, Cockerham GC, Freeman M, Fu R, et al. Comparative effectiveness and harms of intravitreal antivascular endothelial growth factor agents for three retinal conditions: a systematic review and meta-analysis. Br J Ophthalmol 2019;103(4):442-451.
- 9. **National Institute for Health and Care Excellence (NICE).** Age-related macular degeneration: diagnosis and management [online]. London (GBR): NICE; 2018. [Zugriff:



30.09.2020]. (NICE guideline; Band 82). URL: <a href="https://www.nice.org.uk/guidance/ng82/evidence/full-guideline-pdf-170036251098">https://www.nice.org.uk/guidance/ng82/evidence/full-guideline-pdf-170036251098</a>.

- 10. Nguyen CL, Oh LJ, Wong E, Wei J, Chilov M. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration: a meta-analysis of randomized controlled trials. BMC Ophthalmol 2018;18(1):130.
- 11. **Pham B, Thomas SM, Lillie E, Lee T, Hamid J, Richter T, et al.** Anti-vascular endothelial growth factor treatment for retinal conditions: a systematic review and meta-analysis. BMJ Open 2019;9(5):e022031.
- Sarwar S, Clearfield E, Soliman MK, Sadiq MA, Baldwin AJ, Hanout M, et al. Aflibercept for neovascular age-related macular degeneration. Cochrane Database of Systematic Reviews [online]. 2016(2):Cd011346. URL: <u>http://dx.doi.org/10.1002/14651858.CD011346.pub2</u>.
- Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database of Systematic Reviews [online]. 2019(3):Cd005139. URL: <u>http://dx.doi.org/10.1002/14651858.CD005139.pub4</u>.
- 14. **Su Y, Wu J, Gu Y.** Photodynamic therapy in combination with ranibizumab versus ranibizumab monotherapy for wet age-related macular degeneration: a systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2018;22:263-273.
- 15. Ye L, Jiaqi Z, Jianchao W, Zhaohui F, Liang Y, Xiaohui Z. Comparative efficacy and safety of anti-vascular endothelial growth factor regimens for neovascular age-related macular degeneration: systematic review and Bayesian network meta-analysis. Ther Adv Chronic Dis 2020;11:2040622320953349.



## Anhang

## National Institute for Health and Care Excellence, 2018 [9].

## Antiangiogenic therapies

| Study    | Population                                                                 | Intervention                                               | Comparator                                                      | Outcome                                 |
|----------|----------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|
| TAP 1999 | People with<br>subfoveal CNV<br>lesions caused by<br>AMD (n=609<br>people) | Photodynamic<br>therapy following<br>verteporfin injection | Photodynamic<br>therapy following<br>intravenous 5%<br>dextrose | Visual acuity<br>at 12 and 24<br>months |
| Study    | Population                                                                 | Intervention                                               | Comparator                                                      | Outcome                                 |
| VIM 2005 | People with<br>minimally classic<br>CNV due to AMD<br>(n=117 people)       | Photodynamic<br>therapy following<br>verteporfin injection | Photodynamic<br>therapy following<br>intravenous 5%<br>dextrose | Visual acuity<br>at 12 and 24<br>months |
| VIO 2007 | People with occult<br>but no classic CNV<br>due to AMD<br>(n=364 people)   | Photodynamic<br>therapy (verteporfin)                      | Placebo (5%<br>dextrose in water<br>for injection)              | Loss of fewe<br>than 15<br>letters      |
| VIP 2001 | People with<br>subfoveal CNV<br>cause by AMD<br>(n=339 people)             | Photodynamic<br>therapy following<br>verteporfin injection | Photodynamic<br>therapy following<br>intravenous 5%<br>dextrose | Visual acuity                           |

#### Table 38: Anti-vascular endothelial growth factor for late AMD (wet active)

| Study                      | Population                                                                                                           | Intervention  | Comparator                                                                             | Outcome                                                                    |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Bevacizumab vs             |                                                                                                                      | Interferition | Comparator                                                                             | outcome                                                                    |  |
| ABC 2010                   | People with CNV<br>lesion in study eye<br>due to AMD<br>(n=131 people)                                               | Bevacizumab   | Standard treatment<br>(including<br>pegaptanib,<br>verteporfin PDT,<br>sham injection) | Proportion of<br>people<br>gaining 15<br>letter or more<br>at 1 year       |  |
| Sacu 2009                  | People with late<br>AMD (wet active)<br>(n=28 people)                                                                | Bevacizumab   | Verteporfin PDT<br>plus intravitreal<br>triamcinolone                                  | Change in<br>mean visual<br>acuity                                         |  |
| Ranibizumab vs o           | control                                                                                                              |               |                                                                                        |                                                                            |  |
| ANCHOR 2006                | People with CNV<br>due to AMD<br>(n=423 people)                                                                      | Ranibizumab   | Sham injection                                                                         | Proportion of<br>people losing<br>fewer than<br>15 letter at<br>12 months  |  |
| MARINA 2006                | People with active<br>primary or<br>recurrent<br>subfoveal lesions<br>with CNV<br>secondary to AMD<br>(n=716 people) | Ranibizumab   | Sham injection                                                                         | Proportion of<br>people losing<br>fewer than<br>15 letter at<br>12 months  |  |
| PIER 2008                  | People with<br>primary or<br>recurrent<br>subfoveal CNV<br>secondary to<br>AMD(n=184<br>people)                      | Ranibizumab   | Sham injection                                                                         | Changes in<br>VA at 1 year                                                 |  |
| LAPTOP 2013                | People with<br>treatment naïve<br>PCV (n=93 people)                                                                  | Ranibizumab   | Photodynamic<br>therapy<br>(verteporfin)                                               | Proportion of<br>people losing<br>of more than<br>0.2loqMAR<br>at 24 weeks |  |
| Bevacizumab vs ranibizumab |                                                                                                                      |               |                                                                                        |                                                                            |  |
| Biswas 2011                | People with<br>presence of<br>subfoveal or<br>juxtafoveal CNV<br>(n=120 people)                                      | Bevacizumab   | Ranibizumab                                                                            | Changes in<br>BCVA                                                         |  |



| CATT 2011             | People with<br>untreated active<br>CNV due to AMD<br>(n=1,208 people)                                     | Bevacizumab | Ranibizumab | Change in<br>visual acuity                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------------|
| GEFAL 2013            | People with active<br>foveal neovascular<br>AMD (n=501<br>people)                                         | Bevacizumab | Ranibizumab | Change in<br>BCVA at 1<br>year                                 |
| IVAN 2013             | People with<br>untreated<br>neovascular AMD<br>(n=628 people)                                             | Bevacizumab | Ranibizumab | Change in<br>BCVA at 2<br>years                                |
| LUCAS 2015            | People with<br>untreated active<br>neovascular AMD<br>in study eye<br>(n=441 people)                      | Bevacizumab | Ranibizumab | Change in<br>BCVA at 2<br>years                                |
| MANTA 2013            | People with active<br>primary or<br>recurrent<br>subfoveal lesion<br>with CNV (n=321<br>people)           | Bevacizumab | Ranibizumab | Change in<br>BCVA at 1<br>year                                 |
| Schauwvlieghe<br>2016 | People with<br>primary or<br>recurrent sub- or<br>juxtafoveal CNV<br>due to AMD<br>(n=327 people)         | Bevacizumab | Ranibizumab | Change in<br>BCVA at 1<br>year                                 |
| Subramanian<br>2010   | People with<br>presence of<br>symptomatic CNV<br>(n=28 people)                                            | Bevacizumab | Ranibizumab | Visual acuity                                                  |
| Aflibercept vs Ra     | nibizumab                                                                                                 |             |             |                                                                |
| VIEW 1                | People diagnosed<br>with neovascular<br>AMD in the study<br>eye (n=1,217<br>people)                       | Aflibercept | Ranibizumab | Proportion of<br>people<br>maintaining<br>vision at<br>week 52 |
| VIEW 2                | People diagnosed<br>with neovascular<br>AMD in the study<br>eye (n=1,240<br>people)                       | Aflibercept | Ranibizumab | Proportion of<br>people<br>maintaining<br>vision at<br>week 52 |
| Yuzawa 2015           | People diagnosed<br>with neovascular<br>AMD in the study<br>eye (VIEW 1 and<br>VIEW2) (n=2,419<br>people) | Aflibercept | Ranibizumab | NEI-VFQ<br>score                                               |

Abbildung 1: Brief summary of included studies antiangiogenic therapies



## Adjunctive therapies

| Study                                                                                        |                                                                                                                                                                           |                                                                                               |                            |                                                                                                                                   |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| [country]                                                                                    | Study population                                                                                                                                                          | Intervention                                                                                  | Comparator                 | Outcomes                                                                                                                          |
|                                                                                              | with anti-VEGF                                                                                                                                                            |                                                                                               |                            |                                                                                                                                   |
| Bashshur Z F<br>et al 2011<br>[Lebanon]                                                      | Patients with<br>neovascular AMD<br>(n=30 people, 40 eyes)                                                                                                                | Verteporfin<br>photodynamic<br>therapy combined<br>with as-needed<br>ranibizumab<br>treatment | Ranibizumab<br>monotherapy | Proportion of<br>patients who<br>lost <15 letters<br>in best-<br>corrected<br>visual acuity;<br>Mean change<br>in BCVA            |
| Datseris I et<br>al 2015<br>[Greece]                                                         | Patients with<br>predominantly classic<br>and occult choroidal<br>neovascularisation in<br>one or both eyes<br>(n=100 people)                                             | Photodynamic<br>therapy combined<br>with intravitreal<br>bevacizumab                          | Bevacizumab<br>monotherapy | Mean number<br>of re-injection;<br>Corrected<br>distance visual<br>acuity                                                         |
| Gomi F et al<br>2015 [Japan]                                                                 | Patients with treatment-<br>naïve polypoidal<br>choroidal vasculopathy<br>(n=72 people, 72 eyes)                                                                          | Photodynamic<br>Therapy in<br>combination with<br>ranibizumab                                 | Ranibizumab<br>monotherapy | Change in best<br>corrected<br>visual acuity                                                                                      |
| Hatz K et al<br>2015                                                                         | Patients with subfoveal<br>choroidal<br>neovascularisation<br>secondary to AMD<br>(n=40 people)                                                                           | Verteporfin<br>photodynamic<br>therapy plus<br>ranibizumab                                    | Ranibizumab<br>monotherapy | Number of<br>ranibizumab<br>retreatment;<br>Best-corrected<br>visual acuity                                                       |
| Kaiser P K, et<br>al 2012                                                                    | Patients had subfoveal<br>choroidal<br>neovascularisation<br>secondary to<br>neovascular age-related<br>degeneration (n=321<br>people)                                    | Verteporfin plus<br>ranibizumab                                                               | Ranibizumab<br>monotherapy | Best-corrected<br>visual acuity                                                                                                   |
| Koh A et al<br>2012 [Hong<br>Kong,<br>Singapore,<br>South<br>Korean,<br>Taiwan,<br>Thailand] | Treatment naïve<br>patients with<br>symptomatic macular<br>polypoidal choroidal<br>vasculopathy (n=61<br>people)                                                          | Verteporfin<br>photodynamic<br>therapy in<br>combination with<br>ranibizumab                  | Ranibizumab<br>monotherapy | The proportion<br>of patients in<br>achieving<br>complete<br>regression of<br>polyps;<br>Mean best-<br>corrected<br>visual acuity |
| Krebs I et al<br>2013 [Austria]                                                              | Patients with subfoveal<br>choroidal<br>neovascularisation<br>secondary to<br>neovascular age-related<br>degeneration; patients<br>with predominantly<br>classic lesions; | Combination of<br>photodynamic<br>therapy with<br>ranibizumab                                 | Ranibizumab<br>monotherapy | The number of<br>Ranibizumab<br>injections;<br>Mean changes<br>in best-<br>corrected<br>visual acuity                             |



| Study population                                                                                                                                                                                                                                    | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comparator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evidence that CNV<br>extends under the<br>geometric centre of the<br>foveal avascular zone<br>(n=48 people)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Patients with a<br>diagnosis of AMD<br>related active subfoveal<br>choroidal<br>neovascularisation<br>(n=255 people)                                                                                                                                | Verteporfin plus<br>ranibizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ranibizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean change<br>in best-<br>corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Patients with minimally<br>classic or occult<br>choroidal<br>neovascularisation due<br>to AMD in one or both<br>eyes (n=156 people)                                                                                                                 | Verteporfin therapy<br>and intravitreal<br>bevacizumab<br>combined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bevacizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Best-corrected<br>visual acuity;<br>Central foveal<br>thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Patients with<br>neovascular AMD or<br>polypoidal choroidal<br>vasculopathy (n=47<br>people)                                                                                                                                                        | Photodynamic<br>therapy<br>combination with<br>intravitreal<br>bevacizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bevacizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Best corrected<br>visual acuity;<br>Central foveal<br>thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Naïve eyes affected by<br>neovascular AMD<br>(n=75 people)                                                                                                                                                                                          | Photodynamic<br>Therapy combined<br>ranibizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ranibizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Best corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FFA demonstrating<br>choroidal<br>neovascularisation<br>secondary to AMD<br>(n=18 people)                                                                                                                                                           | Combination<br>photodynamic<br>treatment and<br>intravitreal<br>ranibizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ranibizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Best corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| People with new onset<br>CNV due to CNV (n=34<br>people)                                                                                                                                                                                            | Combination<br>photodynamic<br>treatment and<br>intravitreal<br>ranibizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ranibizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Best corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Patients with untreated<br>subfoveal neovascular<br>AMD (n=60 people)                                                                                                                                                                               | Combined and<br>photodynamic<br>therapy and<br>intravitreal<br>ranibizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ranibizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nbined with steroids                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Patients with subfoveal<br>choroidal<br>neovascularisation<br>(n=120 people)                                                                                                                                                                        | Combined<br>intravitreal<br>bevacizumab and<br>triamcinolone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bevacizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Change in<br>best-corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Patients with choroidal<br>neovascularisation<br>secondary to AMD<br>(n=310 people)                                                                                                                                                                 | Dexamethasone<br>intravitreal implant<br>as adjunctive<br>therapy to<br>ranibizumab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ranibizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The<br>ranibizumab<br>injection free<br>interval;<br>Best-corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Patients with<br>neovascular AMD<br>(n=40 people)                                                                                                                                                                                                   | Ranibizumab plus<br>dexamethasone<br>combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ranibizumab<br>monotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Best corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| with anti-VEGF and stero                                                                                                                                                                                                                            | oids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Patients with subfoveal<br>choroidal<br>neovascularisation of all<br>types (predominantly<br>classic, minimally<br>classic, occult and<br>retinal angiomatous<br>proliferation) secondary<br>to AMD and no history<br>of treatment (n=84<br>people) | Photodynamic<br>therapy and<br>intravitreal<br>bevacizumab with<br>triamcinolone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Photodynamic<br>therapy and<br>intravitreal<br>bevacizumab<br>without<br>triamcinolone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Change in best<br>corrected<br>visual acuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                     | Evidence that CNV<br>extends under the<br>geometric centre of the<br>foveal avascular zone<br>(n=48 people)<br>Patients with a<br>diagnosis of AMD<br>related active subfoveal<br>choroidal<br>neovascularisation<br>(n=255 people)<br>Patients with minimally<br>classic or occult<br>choroidal<br>neovascularisation due<br>to AMD in one or both<br>eyes (n=156 people)<br>Patients with<br>neovascular AMD or<br>polypoidal choroidal<br>vasculopathy (n=47<br>people)<br>Naïve eyes affected by<br>neovascular AMD<br>(n=75 people)<br>FFA demonstrating<br>choroidal<br>neovascularisation<br>secondary to AMD<br>(n=18 people)<br>Patients with new onset<br>CNV due to CNV (n=34<br>people)<br>Patients with untreated<br>subfoveal neovascular<br>AMD (n=60 people)<br>Patients with subfoveal<br>choroidal<br>neovascularisation<br>secondary to AMD<br>(n=120 people)<br>Patients with choroidal<br>neovascularisation<br>secondary to AMD<br>(n=310 people)<br>with anti-VEGF and stere<br>Patients with subfoveal<br>choroidal<br>neovascularisation of all<br>types (predominantly<br>classic, occult and<br>retinal angiomatous<br>proliferation) secondary<br>to AMD and no history<br>of treatment (n=84 | Evidence that CNV<br>extends under the<br>geometric centre of the<br>foveal avascular zone<br>(n=48 people)Verteporfin plus<br>ranibizumabPatients with a<br>diagnosis of AMD<br>related active subfoveal<br>choroidal<br>neovascularisation<br>(n=255 people)Verteporfin therapy<br>and intravitreal<br>bevacizumab<br>combinedPatients with minimally<br>classic or occult<br>choroidal<br>neovascularisation due<br>to AMD in one or both<br>eyes (n=166 people)Verteporfin therapy<br>and intravitreal<br>bevacizumabPatients with<br>neovascular AMD or<br>polypoidal choroidal<br>vasculopathy (n=47<br>people)Photodynamic<br>therapy combined<br>ranibizumabNaïve eyes affected by<br>neovascular AMD<br>(n=75 people)Photodynamic<br>therapy combined<br>ranibizumabFFA demonstrating<br>choroidal<br>neovascularisation<br>secondary to AMD<br>(n=18 people)Combination<br>photodynamic<br>treatment and<br>intravitreal<br>ranibizumabPeople with new onset<br>CNV due to CNV (n=34<br>people)Combined and<br>photodynamic<br>treatment and<br>intravitreal<br>ranibizumabPatients with untreated<br>subfoveal neovascularisation<br>neovascularisation<br>(n=120 people)Combined and<br>photodynamic<br>therapy and<br>intravitreal<br>ranibizumabPatients with subfoveal<br>choroidal<br>neovascularisation<br>secondary to AMD<br>(n=310 people)Combined<br>therapy to<br>ranibizumabPatients with<br>neovascularisation secondary to AMD<br>(n=310 people)Dexamethasone<br>intravitreal<br>implexPatients with<br>neovascularisation secondary to AMD<br>(n=310 people)Dexamethasone<br>intravitreal<br>bevacizumab with<br>tiamcinolonePatients with<br>neovascularisation of all<br>to AMD and no history<br>of | Evidence that CNV<br>extends under the<br>geometric centre of the<br>foveal avascular zone<br>(n=48 people)Verteporfin plus<br>ranibizumabRanibizumab<br>monotherapyPatients with a<br>diagnosis of AMD<br>related active subfoveal<br>horoidal<br>neovascularisation due<br>to AMD in one or both<br>eyes (n=156 people)Verteporfin therapy<br>and intravitreal<br>bevacizumab<br>combinedBevacizumab<br>monotherapyPatients with<br>neovascular AMD or<br>polypoidal choroidal<br>neovascular AMD or<br>polypoidal choroidal<br>vasculopathy (n=47<br>people)Photodynamic<br>therapy combined<br>ranibizumabBevacizumab<br>monotherapyPatients with<br>neovascular AMD<br>(n=75 people)Photodynamic<br>treatment and<br>intravitreal<br>ranibizumabRanibizumab<br>monotherapyPFA demonstrating<br>ohroidal<br>(n=76 people)Combination<br>photodynamic<br>treatment and<br>intravitreal<br>ranibizumabRanibizumab<br>monotherapyPeople with new onset<br>cNV due to CNV (n=34<br>photodynamic<br>treatment and<br>intravitreal<br>ranibizumabCombination<br>photodynamic<br>treatment and<br>intravitreal<br>ranibizumabRanibizumab<br>monotherapyPatients with untreated<br>subfoveal neovascularisation<br>(n=310 people)Combined<br>intravitreal<br>ranibizumabRanibizumab<br>monotherapyPatients with<br>secondary to AMD<br>(n=310 people)Combined<br>intravitreal<br>a adjunctive<br>therapy to<br>ranibizumabRanibizumab<br>monotherapyPatients with<br>secondary to AMD<br>(n=310 people)Combined<br>intravitreal<br>bevacizumab and<br>triamicoloneRanibizumab<br>monotherapyPatients with<br>neovascularisation<br>(n=310 people)Ranibizumab<br>bevacizumab with<br>triamicolon |

Abbildung 2: Brief summary of included studies adjunctive therapies



## Antiangiogenic therapies

#### **GRADE** tables and meta-analysis results

| Outcomes                                                                                 | Illustrative comparative<br>risks*<br>(95% CI)       |                                                                | Relative effect            | No of Participants  | Quality of the<br>evidence                                                    |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------|---------------------|-------------------------------------------------------------------------------|--|
|                                                                                          | Corresponding risk                                   | Assumed risk                                                   | (95% CI)                   | (studies)           | (GRADE)                                                                       |  |
|                                                                                          | Intervention (photodynamic therapy with verteporfin) | Control (photodynamic<br>therapy with 5% dextrose in<br>water) |                            |                     |                                                                               |  |
| Loss of 3 or more<br>lines (15 or more<br>letter) visual acuity<br>ETDRS at 24<br>months | 487 per 1000<br>(445 to 536)                         | 609 per 1000                                                   | RR 0.8,<br>0.73 to 0.89    | 1381<br>(4 studies) | ⊕⊕⊕⊖<br>Moderate <sup>1</sup>                                                 |  |
| Loss of 6 or more<br>lines (30 or more<br>letter) visual acuity<br>ETDRS at 24<br>months | 220 per 1000<br>(176 to 276)                         | 333 per 1000                                                   | RR 0.66,<br>0.55 to 0.78   | 1381<br>(4 studies) | ⊕⊕⊕⊕<br>High                                                                  |  |
| Gain of 3 or more<br>lines (15 or more                                                   | 80 per 1000                                          | 36 per 1000                                                    | RR 2.59,                   | 941                 | $\oplus \oplus \oplus \oplus$                                                 |  |
| letter) visual acuity<br>ETDRS at 24<br>months                                           | (43 to 151)                                          |                                                                | 1.33 to 5.06               | (3 studies)         | High                                                                          |  |
| Adverse effects:<br>acute severe visual<br>acuity decrease<br>(follow-up: 7 days)        | 11 per 1000<br>(3 to 48)                             | 3 per 1000                                                     | RR 3.75<br>0.87 to 16.12   | 1075<br>(3 studies) | ⊕⊕⊕⊖<br>Moderate <sup>1</sup>                                                 |  |
| Adverse effects:<br>visual disturbance                                                   | 270 per 1000                                         | 170 per 1000                                                   | RR 1.56<br>1.21 to 2.01    | 1075<br>(3 studies) | ⊕⊕⊕⊖<br>Moderate <sup>1</sup>                                                 |  |
| Adverse effects:<br>injection site                                                       | 120 per 1000                                         | 60 per 1000                                                    | RR 1.36<br>0.50 to 3.71    | 1075<br>(3 studies) | $\bigcirc \bigcirc \bigcirc \bigcirc$<br>Very low <sup>2</sup>                |  |
| Adverse effects:<br>infusion-related back<br>pain                                        | 20 per 1000<br>(6 to 70)                             | 2 per 1000                                                     | RR 9.93<br>(2.82 to 35.02) | 1439<br>(4 studies) | ⊕⊕⊕⊕<br>High <sup>3</sup>                                                     |  |
| Adverse effects:<br>allergic reactions                                                   | 17 per 1000                                          | 19 per 1000                                                    | RR 0.94<br>(0.35 to 2.51)  | 948<br>(2 studies)  | ⊕⊕⊝⊝<br>Low⁴                                                                  |  |
| Adverse effects:<br>photosensitivity<br>reactions                                        | 24 per 1000                                          | 3 per 1000                                                     | RR 2.73<br>(0.08 to 97.96) | 948<br>(2 studies)  | $\begin{array}{c} \oplus \ominus \ominus \ominus \\ Very \ low^2 \end{array}$ |  |

\*The basis for the assumed risk is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95%CI)
1. Downgrade one level of imprecision: 95%CI of the estimated effect across 1 line of defined minimal important difference.
2. Downgrade one level of heterogeneity (i2>=50%), and downgrade two levels of imprecision (wide confidence interval)
3. Not downgraded for imprecision: confidence interval wide however do not include 1 (no effect)
4. Downgrade two levels of serious imprecision.

Abbildung 3: Photodynamic therapy versus placebo



| Outcomes                                                           | Illustrative comparative<br>risks*<br>(95% CI)                                                                                                    |                                                                                                                           | Relative effect                                                  | No of Participants          | Quality of the evidence                              | Comments                                                                                                                    |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                    | Corresponding risk                                                                                                                                | Assumed risk                                                                                                              | (95% CI)                                                         | (studies)                   | (GRADE)                                              |                                                                                                                             |
|                                                                    | Ranibizumab                                                                                                                                       | Control                                                                                                                   |                                                                  |                             |                                                      |                                                                                                                             |
| Gain of 15 letters or<br>more visual acuity at<br>one year         | 230 per 1000<br>(93 to 566)                                                                                                                       | 59 per 1000                                                                                                               | RR 3.25<br>(1.44 to 7.33)                                        | 1415 (4 studies)            | ⊕⊕⊕⊖ Moderate <sup>1</sup>                           |                                                                                                                             |
| Loss of fewer than 15<br>letters visual acuity at<br>one year      | 934 per 1000<br>(861 to 1000)                                                                                                                     | 610 per 1000                                                                                                              | RR 1.51<br>(1.41 to 1.63)                                        | 1415 (4 studies)            | $\oplus \oplus \oplus \oplus$ High                   |                                                                                                                             |
| Mean change in visual<br>acuity at one year<br>(number of letters) | The mean change in<br>visual acuity in the<br>ranibizumab groups was<br>on average 17.80 more<br>letters gained (95%CI<br>15.95 to 19.65 letters) | The mean change<br>across control<br>groups ranged<br>from a loss 10 to<br>16 letter                                      | MD 17.81<br>(15.94 to 19.67)                                     | 1322 (3 studies)            | ⊕⊕⊕⊕ High                                            |                                                                                                                             |
| Mean change in vision-<br>related quality of life                  | The mean change in<br>vision related quality of<br>life in the ranibizumab<br>groups ranged from 5 to<br>7 points                                 | The mean change<br>across control<br>groups in vision-<br>related quality of<br>life scores ranged<br>from -3 to 2 points | MD 6.69<br>(3.38 to 9.99)                                        | 1134 (2 studies)            | ⊕⊕⊕⊕ High                                            | Using the NEI-<br>VFQ<br>questionnaire<br>with a 10-point<br>difference<br>considered as<br>being clinically<br>meaningful. |
| Serious systemic<br>adverse events at one<br>year                  | Range of 0 to 55 per<br>1000                                                                                                                      | Range of 5 to 83<br>per 1000 for<br>various systematic<br>adverse events                                                  | Range of RR<br>0.17 (0.01 to<br>4.24) to 2.08<br>(0.23 to 18.45) | 603 (2 studies)             |                                                      |                                                                                                                             |
| Myocardial infarction                                              | 10 per 1000                                                                                                                                       | < 10 per 1000                                                                                                             | RR 2.08 (0.23,<br>18.45)                                         | 603 (2 studies)             | $\oplus \oplus \ominus \ominus \cup Low^2$           |                                                                                                                             |
| Stroke or cerebral<br>infarction                                   | < 10 per 1000                                                                                                                                     | < 10 per 1000                                                                                                             | RR 1.04 (0.09,<br>11.38)                                         | 603 (2 studies)             | $\oplus \oplus \ominus \ominus \cup Low^2$           |                                                                                                                             |
| Treatment-emergent<br>hypertension                                 | 60 per 1000                                                                                                                                       | 80 per 1000                                                                                                               | RR 0.67 (0.36, 1.24)                                             | 603 (2 studies)             | ⊕⊕⊕⊖ Moderate <sup>3</sup>                           |                                                                                                                             |
| Non-ocular hemorrhage                                              | 60 per 1000                                                                                                                                       | 30 per 1000                                                                                                               | RR 1.90 (0.78, 4.62)                                             | 603 (2 studies)             | $\oplus \oplus \ominus \ominus \operatorname{Low}^2$ |                                                                                                                             |
| Serious ocular adverse<br>events at one year                       | Range of 3 to 118 per 1000                                                                                                                        | Range of 0 to 68<br>per 1000 for<br>various systematic<br>adverse events                                                  | Range of RR<br>0.52 (0.03 to<br>8.25) to 2.71<br>(1.36 to 5.42)  | 603 (2 studies)             |                                                      |                                                                                                                             |
| Ocular inflammation                                                | 120 per 1000                                                                                                                                      | 40 per 1000                                                                                                               | RR 2.71<br>(1.36 to 5.42)                                        | 603 (2 studies)             | $\oplus \oplus \oplus \oplus$ High                   |                                                                                                                             |
| Elevated intraocular<br>pressure (30 mmHg or<br>more increase)     | 80 per 1000                                                                                                                                       | 30 per 1000                                                                                                               | RR 2.22<br>(0.99, 4.98)                                          | 603 (2 studies)             | ⊕⊕⊕⊖ Moderate <sup>3</sup>                           |                                                                                                                             |
| Cataract                                                           | 100 per 1000                                                                                                                                      | 70 per 1000                                                                                                               | RR 1.48 (0.83, 2.66)                                             |                             | ⊕⊕⊕⊖ Moderate <sup>3</sup>                           |                                                                                                                             |
|                                                                    |                                                                                                                                                   |                                                                                                                           | arison group and the                                             | e relative effect of the in | ntervention (and its 959                             | %CI)                                                                                                                        |

Abbildung 4: Ranibizumab vs control (sham injection or PDT)



| Outcomes                                                                                         | Illustrative comparative risks*<br>(95% CI)                                                                                                                         |                                                                                                                         | Relative effect             | No of Participants | Quality of the evidence                              | Comments |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|------------------------------------------------------|----------|
|                                                                                                  | Corresponding risk                                                                                                                                                  | Assumed risk                                                                                                            | (95% CI)                    | (studies)          | (GRADE)                                              |          |
|                                                                                                  | Alfibercept                                                                                                                                                         | Ranibizumab                                                                                                             |                             |                    |                                                      |          |
| Mean change in BCVA in<br>ETDRS letters at 1 year                                                | Mean change in visual acuity in<br>aflibercept groups was on<br>average 0.15 fewer letters<br>gained (95% CI 1.47 fewer<br>letters to 1.17 more letters)            | Mean change in visual<br>acuity across<br>ranibizumab groups<br>ranged from gains of<br>8.57 letters to 8.71<br>letters | MD -0.15 (-1.47 to<br>1.17) | 2412 (2 studies)   | ⊕⊕⊕⊕ High                                            |          |
| Gain of 15 of BCVA at one<br>year                                                                | 314 per 1000 (275 to 360)                                                                                                                                           | 324 per 1000                                                                                                            | RR 0.97 (0.85 to<br>1.11)   | 2412 (2 studies)   | ⊕⊕⊕ High                                             |          |
| Quality of life measures at 1<br>year (national eye institute-<br>visual function questionnaire) | Mean improvement in<br>composite NEI-VQF score in<br>intervention groups was on<br>average 0.39 points lower<br>(95% Cl 1.71 points lower to<br>0.93 points higher) | Mean improvement<br>in composite NEI-VQF<br>score ranged across<br>control groups from<br>4.9 to 6.3 points             | MD -0.39 (-1.71 to<br>0.93) | 2412 (2 studies)   | ⊕⊕⊕High                                              |          |
| Adverse events (serious<br>systemic events at 1 year)                                            | 138 per 1000 (110 to 174)                                                                                                                                           | 139 per 1000                                                                                                            | RR 0.99 (0.79 to<br>1.25)   | 2419 (2 studies)   | $\oplus \oplus \oplus \ominus$ Moderate <sup>1</sup> |          |
| Adverse events (serious<br>ocular events at 1 year)                                              | 20 per 1000 (12 to 34)                                                                                                                                              | 32 per 1000                                                                                                             | RR 0.62 (0.36 to<br>1.07)   | 2419 (2 studies)   | $\oplus \oplus \oplus \ominus$ Moderate <sup>1</sup> |          |

Abbildung 5: Aflibercept vs. Ranibizumab

The data presented in the GRADE table below were identified by update searches undertaken after the search date of the Cochrane systematic reviews used above

| Number of studies                                                                                                                                   | Risk of bias                                                                                   | Inconsistency        | Indirectness | Imprecision          | Sample size | Effect (95%CI)            | Quality  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------|--------------|----------------------|-------------|---------------------------|----------|--|--|--|--|
| Proportion of people gaining more than 5 ETDRS letters and having clinical improvement (more than 6-points) in the NEI-VFQ25 at 52-weeks follow –up |                                                                                                |                      |              |                      |             |                           |          |  |  |  |  |
| 2 (VIEW 1, VIEW2)                                                                                                                                   | Not serious                                                                                    | Serious <sup>1</sup> | Not serious  | Not serious          | 1193        | RR 0.97<br>(0.86, 1.10)   | MODERATE |  |  |  |  |
| NEI-VFQ-25 subscale score cha                                                                                                                       | NEI-VFQ-25 subscale score changes from baseline to week 52 (higher scores indicate better QoL) |                      |              |                      |             |                           |          |  |  |  |  |
| General vision                                                                                                                                      | Not serious                                                                                    | Not serious          | Not serious  | Not serious          | 1193        | MD 0.06<br>(-2.00, 2.13)  | HIGH     |  |  |  |  |
| Near activities                                                                                                                                     | Not serious                                                                                    | Not serious          | Not serious  | Not serious          | 1193        | MD -0.62<br>(-3.09, 1.86) | HIGH     |  |  |  |  |
| Distance activities                                                                                                                                 | Not serious                                                                                    | Not serious          | Not serious  | Serious <sup>2</sup> | 1193        | MD 0.08<br>(-2.43, 2.58)  | MODERATE |  |  |  |  |
| Mental health                                                                                                                                       | Not serious                                                                                    | Not serious          | Not serious  | Serious <sup>2</sup> | 1193        | MD 0.14<br>(-2.41, 2.70)  | MODERATE |  |  |  |  |
| Role difficulities                                                                                                                                  | Not serious                                                                                    | Not serious          | Not serious  | Serious <sup>2</sup> | 1193        | MD 1.09<br>(-2.04, 4.23)  | MODERATE |  |  |  |  |
| Dependency                                                                                                                                          | Not serious                                                                                    | Not serious          | Not serious  | Serious <sup>2</sup> | 1193        | MD -1.29<br>(-4.00, 1.43) | MODERATE |  |  |  |  |
| Social funictioning                                                                                                                                 | Not serious                                                                                    | Not serious          | Not serious  | Serious <sup>2</sup> | 1193        | MD 0.18<br>(-2.35, 2.70)  | MODERATE |  |  |  |  |
| Driving                                                                                                                                             | Not serious                                                                                    | Not serious          | Not serious  | Serious <sup>2</sup> | 1193        | MD 1.51<br>(-1.15, 4.17)  | MODERATE |  |  |  |  |
| Colour vision                                                                                                                                       | Not serious                                                                                    | Not serious          | Not serious  | Not serious          | 1193        | MD -2.04<br>(-4.33, 0.26) | HIGH     |  |  |  |  |
| Ocular pain                                                                                                                                         | Not serious                                                                                    | Not serious          | Not serious  | Not serious          | 1193        | MD -0.94<br>(-3.21, 1.32) | HIGH     |  |  |  |  |
| Peripheral vision                                                                                                                                   | Not serious                                                                                    | Not serious          | Not serious  | Not serious          | 1193        | MD 0.86<br>(-3.73, 2.00)  | HIGH     |  |  |  |  |
| General health                                                                                                                                      | Not serious                                                                                    | Not serious          | Not serious  | Not serious          | 1193        | MD -0.23<br>(-2.56, 2.10) | HIGH     |  |  |  |  |

#### Aflibercept vs ranibizumab: NEI-VFQ 25

1. Downgraded one level for inconsistency due to heterogenioty (i2>50%)

2. Downgraded one level for imprecision due to 95%CI of estimated effect crossing 1 line of a defined minimal important difference (2.3 point)

Abbildung 6: Aflibercept vs. Ranibizumab: NEI-VFQ 25



## Adjunctive therapies

### **GRADE** tables and meta-analysis results

| Number of RCTs                                                                                                     | Design         | Risk of bias             | Inconsistency        | Indirectness        | Imprecision          | Sample size | Effect (95%CI)             | Quality         |
|--------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|----------------------|---------------------|----------------------|-------------|----------------------------|-----------------|
| Anti-VEGF + PDR v                                                                                                  | s anti-VEGF    |                          |                      |                     |                      |             |                            |                 |
| BCVA (ETDRS lette                                                                                                  | rs ≤3 month    | s) - positive valu       | es favour combi      | nation              |                      |             |                            |                 |
| 1 (Lazic)*                                                                                                         | RCT            | Serious <sup>1</sup>     | Not serious          | Not serious         | Serious <sup>2</sup> | 106         | MD -7.25<br>(-19.82, 5.31) | LOW             |
| BCVA (ETDRS lette                                                                                                  | rs >3 month    | s) - positive valu       | es favour combi      | nation              |                      |             |                            |                 |
| 11 (Datseris;<br>Bashshur; Hatz;<br>Kaiser; Krebs;<br>Larsen; Semeraro*;<br>Weingessel;<br>Williams: Gomi;<br>Koh) | RCT            | Not serious <sup>3</sup> | Not serious          | Not serious         | Not serious          | 1025        | MD -0.54<br>(-1.29, 0.21)  | HIGH            |
| BCVA (proportion g                                                                                                 | jain ≥15 lette | ers, >3 months) -        | values greater t     | han 1 favour com    | bination             |             |                            |                 |
| 9 (Datseris;<br>Bashshur; Hatz;<br>Kaiser; Larsen;<br>Vallance; Williams:<br>Gomi; Koh)                            | RCT            | Not serious <sup>3</sup> | Not serious          | Not serious         | Serious <sup>2</sup> | 923         | RR 0.76<br>(0.63, 0.92)    | MODERATE        |
| Reinjections (>3 m                                                                                                 | onths) - posi  | tive values favou        | r monotherapy        |                     |                      |             |                            |                 |
| 5 (Datseris;<br>Bashshur; Larsen;<br>Gomi; Koh)                                                                    | RCT            | Serious <sup>4</sup>     | Serious <sup>5</sup> | Not serious         | Not serious          | 488         | MD -1.43<br>(-2.42, -0.45) | LOW             |
| Total number of inj                                                                                                | ections (>3 r  | nonths) - positiv        | e values favour r    | nonotherapy         |                      |             |                            |                 |
| 6 (Lim; Krebs;                                                                                                     | RCT            | Serious <sup>4</sup>     | Serious <sup>5</sup> | Not serious         | Not serious          | 474         | MD -0.94                   | LOW             |
| Larsen; Semeraro;<br>Weignessel,<br>Williams)                                                                      |                |                          |                      |                     |                      |             | (-1.76, -0.12)             |                 |
| Proportion needing                                                                                                 | retreatment    | (>3 months) - va         | lues greater that    | n 1 favour combin   | ation                |             |                            |                 |
| 1 (Hatz)                                                                                                           | RCT            | Serious <sup>6</sup>     | N/A                  | Not serious         | Serious <sup>2</sup> | 40          | RR 0.69<br>(0.42, 1.13)    | LOW             |
| Proportion having o                                                                                                | cular adver    | se events - valu         | es greater than 1    | favour combinati    | on                   |             |                            |                 |
| 5 (Lazic; Bashshur;<br>Hatz; Kaiser;<br>∟arsen)                                                                    | RCT            | Not serious <sup>3</sup> | Not serious          | Not serious         | Not serious          | 762         | RR 1.03<br>(0.88, 1.21)    | HIGH            |
| Proportion having r                                                                                                | on-ocular a    | dverse events - v        | alues greater th     | an 1 favour combi   | nation               |             |                            |                 |
| 1 (Larsen)                                                                                                         | RCT            | Not serious              | N/A                  | Not serious         | Serious <sup>2</sup> | 255         | RR 1.03<br>(0.82, 1.29)    | MODERATE        |
| 2. Downgraded                                                                                                      | one level for  | confidence interv        |                      | of a defined minima |                      |             | nates between high         | and low quality |

studies.

4. Downgraded one level for includes open label studies; lack of appropriate assessor masking.

Downgraded one level for heterogeneity (i<sup>2</sup>>50%).

6. Downgraded one level for selection bias (differences in baseline characteristics between treatment groups)

\*visual acuity outcome reported in the study used logMAR, and was converted to number of letters (logMAR=no. of letters × -0.02).

Abbildung 7: Anti-VEGF +PDT vs anti-VEGF



| Number of RCTs                                                     | Design           | Risk of<br>bias             | Inconsistency        | Indirectness         | Imprecision               | Sample size | Effect (95%CI)            | Quality  |  |
|--------------------------------------------------------------------|------------------|-----------------------------|----------------------|----------------------|---------------------------|-------------|---------------------------|----------|--|
| Anti-VEGF vs anti                                                  | -VEGF steroids   |                             |                      |                      |                           |             |                           |          |  |
| BCVA (ETDRS letters >3 months) - postive values favour combination |                  |                             |                      |                      |                           |             |                           |          |  |
| 3 (Ahmadieh;<br>Kuppermann;<br>Ranchod)                            | RCT              | Not<br>serious <sup>1</sup> | Not serious          | Serious <sup>2</sup> | Not serious               | 267         | MD 0.82<br>(-1.91, 3.55)  | MODERATE |  |
| <b>BCVA</b> (proportion                                            | gain ≥15 letter, | >3 months                   | s) - values greater  | than 1 favour co     | mbination                 |             |                           |          |  |
| 2 (Kuppermann;<br>Ranchod)                                         | RCT              | Serious <sup>3</sup>        | Not serious          | Serious <sup>2</sup> | Very serious <sup>4</sup> | 152         | RR 1.20<br>(0.53, 2.70)   | VERY LOW |  |
| Total number of in                                                 | jections (>3 mo  | onths) - pos                | sitive values favou  | ur combination       |                           |             |                           |          |  |
| 1 (Ranchod)                                                        | RCT              | Serious <sup>3</sup>        | N/A                  | Serious <sup>2</sup> | Serious <sup>5</sup>      | 37          | MD -0.50<br>(-1.30, 0.30) | VERY LOW |  |
| Proportion needin                                                  | g retreatment (  | >3 months                   | ) - values greater f | han 1 favour cor     | nbination                 |             |                           |          |  |
| 1 (Ahmadieh)                                                       | RCT              | Serious <sup>3</sup>        | N/A                  | Serious <sup>2</sup> | Serious <sup>6</sup>      | 115         | RR 0.65<br>(0.42, 1.00)   | VERY LOW |  |
| Proportion having                                                  | ocular adverse   | e events - v                | alues greater than   | n 1 favour combi     | nation                    |             |                           |          |  |
| 1 (Kuppermann)                                                     | RCT              | Serious <sup>3</sup>        | N/A                  | Serious <sup>2</sup> | Serious <sup>6</sup>      | 333         | RR 1.20<br>(0.91, 1.59)   | VERY LOW |  |

1. Some individual studies at high-risk of bias, but overall risk of bias rated low due to consistency of effect size estimates between high and low quality studies.

2. Downgraded one level for unclear about cataract status of study population.

3. Downgraded one level for study design (open label, single blinded)

4. Downgraded one level for confidence interval crossing 2 lines of a defined minimal important difference.

 Downgraded one level for non-significant effect.
 Downgraded one level for confidence interval crossing 1 line of a defined minimal important difference. \*visual acuity outcome reported in the study used logMAR, and was converted to number of letters (logMAR=no. of letters × -0.02).

## Abbildung 8: Anti-VEGF + steroids vs anti-VEGF

| Number of<br>RCTs                           | Design           | Risk of bias       | Inconsistency      | Indirectness         | Imprecision          | Sample<br>size | Effect (95%CI)            | Quality |  |
|---------------------------------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------|---------------------------|---------|--|
| Anti-VEGF + PDT vs anti-VEGF steroids + PDT |                  |                    |                    |                      |                      |                |                           |         |  |
| BCVA (ETDRS                                 | letters >3 mon   | ths) – positive va | lues favour triple | therapy              |                      |                |                           |         |  |
| 1 (Piri)*                                   | RCT              | Not serious        | Not serious        | Serious <sup>1</sup> | Serious <sup>2</sup> | 84             | MD 0.50<br>(-6.04, 7.04)  | LOW     |  |
| Reinjections (                              | >3 months) – p   | ositive values fav | our triple therapy |                      |                      |                |                           |         |  |
| 1 (Piri)                                    | RCT              | Not serious        | Not serious        | Serious <sup>1</sup> | Serious <sup>2</sup> | 84             | MD -0.40<br>(-0.83, 0.03) | LOW     |  |
| Proportion nee                              | ding retreatment | (>3 months) - val  | ues greater than 1 | favour triple ther   | ару                  |                |                           |         |  |
| 1 (Piri)                                    | RCT              | Not serious        | Not serious        | Serious <sup>1</sup> | Serious <sup>2</sup> | 84             | RR 0.84<br>(0.71, 0.98)   | LOW     |  |

1. Downgraded one level for unclear about cataract status of study population

2. Downgraded one level for confidence interval crossing 1 line of a defined minimal important difference.

\*visual acuity outcome reported in the study used logMAR, and was converted to number of letters (logMAR=no. of letters × -0.02).

Abbildung 9: Anti-VEGF +PDT vs anti-VEGF steroid + PDT



#### American Academy of Ophthalmology, 2019 [1].

#### TABLE 3 EFFECTS OF TREATMENT ON VISION IN RANDOMIZED CONTROLLED TRIALS OF SUBFOVEAL CHOROIDAL NEOVASCULARIZATION

| Study                                                        | No. of<br>Patients | Patient Characteristics                                                                                                                                                          | Duration and<br>Frequency of<br>Treatment                                            | Treated Eyes                             |                                          | Untreate                                    | d Eyes                                   | Years after<br>Enrollment |
|--------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------|
|                                                              |                    |                                                                                                                                                                                  |                                                                                      | Visual Loss of<br>15 Letters or<br>More* | Visual Gain of<br>15 Letters or<br>More* | Visual Loss of<br>15 Letters or<br>More*    | Visual Gain<br>of 15 Letters<br>or More* |                           |
| ANCHOR (2006;<br>ranibizumab<br>injection) <sup>180</sup>    | 423                | Mean age 77 years; BCVA 20/40<br>to 20/320; total lesion size<br>≤5400 µm; no previous                                                                                           | Monthly ranibizumab<br>injections for 2 years                                        | 10% (0.5 mg)                             | 41% (0.5 mg)                             | N/A<br>(All patients received<br>treatment) |                                          | 2                         |
| njection)™                                                   |                    | treatment (including verteporfin<br>therapy) that might compromise<br>an assessment of the study<br>treatment; predominantly classic<br>CNV lesions                              | Verteporfin PDT on day<br>O and then PRN<br>following FA at months<br>3, 6, 9, or 12 | 66%                                      | 6%                                       |                                             |                                          |                           |
| MARINA<br>(2006;<br>ranibizumab<br>injection) <sup>179</sup> | 716                | Mean age 77 years; BCVA 20/40<br>to 20/320; primary or recurrent<br>CNV; minmally classic or occult<br>with no classic CNV lesions;<br>presumed recent progression of<br>disease | Monthly ranibizumab<br>injections for 2 years                                        | 10% (0.5 mg)                             | .33% (0.5 mg)                            | 47%                                         | -4%                                      | 2                         |
| VIEW 1 and 2<br>(2012: aflibercept                           | 2419               | Mean age 76 years; BCVA 20/40 to 20/320; primary, active                                                                                                                         | Aflibercept 0.5 mg q 4<br>weeks 4                                                    | -4%                                      | 30%                                      | (All patient                                |                                          | 1                         |
| (2012; anibercept<br>injection) <sup>168</sup>               |                    | subfoveal (or juxtafoveal) CNV,                                                                                                                                                  |                                                                                      | 5%                                       | 34%                                      | treatr                                      |                                          |                           |
|                                                              |                    | with the total CNV area (classic<br>plus occult CNV) ≥50% of total                                                                                                               | Aflibercept 2.0 mg q 4<br>weeks                                                      | 4%                                       | 31%                                      |                                             |                                          |                           |
|                                                              |                    | lesion size; any lesion subtype                                                                                                                                                  | Aflibercept 2.0 mg q 4<br>weeks x 3, then q 8<br>weeks                               | 6%                                       | 33%                                      |                                             |                                          |                           |
|                                                              |                    |                                                                                                                                                                                  | Ranibizumab 0.5 mg q<br>4 weeks                                                      |                                          |                                          |                                             |                                          |                           |

#### TABLE 3 EFFECTS OF TREATMENT ON VISION IN RANDOMIZED CONTROLLED TRIALS OF SUBFOVEAL CNV (CONTINUED)

| Study                                                             | No. of<br>Patients |                                                                                                                 | Duration and Frequency<br>of Treatment                                                                                                                          | Treated Eyes                             |                                          | Untreated Eyes                           |                                          | Years after<br>Enrollmen<br>t |
|-------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------|
|                                                                   | •                  |                                                                                                                 |                                                                                                                                                                 | Visual Loss of<br>15 Letters or<br>More* | Visual Gain of<br>15 Letters or<br>More* | Visual Loss of<br>15 Letters or<br>More* | Visual Gain of<br>15 Letters or<br>More* |                               |
| CATT                                                              |                    | Mean age 79 years; BCVA 20/25 to 20/320: untreated.                                                             | Ranibizumab 0.5 mg q                                                                                                                                            | 6%                                       | 34%                                      | NA                                       | 1                                        | CATT                          |
| (2011; bevacizumab<br>vs                                          |                    | active CNV, with CNV, fluid, or<br>hemorrhage under the fovea                                                   | 4 weeks                                                                                                                                                         | 6%                                       | 31%                                      | (All patients<br>received                |                                          | (bevacizu<br>mab vs.          |
| ranibizumab<br>injection) <sup>74</sup>                           |                    |                                                                                                                 | Bevacizumab 1.25 mg q<br>-4 weeks                                                                                                                               | .5%                                      | 25%                                      | treatment)                               |                                          | ranibizum<br>ab               |
|                                                                   |                    |                                                                                                                 | Ranibizumab 0.5 mg<br>PRN                                                                                                                                       | 9%                                       | 28%                                      |                                          |                                          | injection) <sup>17</sup>      |
|                                                                   |                    |                                                                                                                 | Bevacizumab 1.25 mg<br>PRN                                                                                                                                      |                                          |                                          |                                          |                                          |                               |
| VISION<br>•(2006; pegaptanib<br>sodium injection) <sup>181*</sup> | .590               | Age ≥50 years; BCVA 20/40<br>to 20/320; subfoveal CNV with<br>total lesion size ≤12 disc areas;<br>IOP ≤23 mmHg | Injection every 6 weeks<br>for 54 weeks (9 total<br>treatments); then<br>rerandomized and<br>injection every 6 weeks<br>through week 96 (8<br>total treatments) | 45%                                      | 10%                                      | 59%                                      | 4%                                       | 2                             |
| TAP                                                               | 609                | Mean age 75 years; BCVA                                                                                         | Following first                                                                                                                                                 | 47%                                      | 8%                                       | 62%                                      | 4%                                       | 2                             |
| (2001; verteporfin<br>PDT) <sup>182</sup>                         |                    | 20/40 to 20/200; classic CNV<br>or occult CNV if >50% of total<br>lesion size                                   | treatment, retreatment<br>was considered every 3<br>months per FA findings<br>through 21 months of<br>follow-up                                                 | 41%:                                     |                                          | 69%'                                     |                                          |                               |

ANCHOR = Anti-VEGF Antibody for the Treatment of Predominantly Classic CNV in AMD; BCVA = best-corrected visual acuity; CNV = choroidal neovascularization; FA = fluorescein angiography; CATT = Comparison of Age-Related Macular Degeneration Treatment Trials; IOP = intraocular pressure; MARINA = Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab in the Treatment of Neovascular AMD; NA = not applicable; PRN = as needed; PDT = photodynamic therapy; TAP = Treatment of Age-Related Macular Degeneration with Photodynamic Therapy; VIEW = VEGF Trap-Eye: Investigation of Efficacy and Safety in Wet AMD; VISION = VEGF Inhibition Study in Ocular Neovascularization

\* Defined as doubling of the visual angle.
' Pegaptanib sodium injection was administered to patients who were allowed both prior and on-study PDT.

<sup>1</sup> Predominantly classic.

#### Abbildung 10: Effects of Treatment on vision in RCTs of subfoveal choroidal neovascularization

## Beteiligung von AkdÄ und Fachgesellschaften nach §35a Abs. 7 SGB V i.V.m. VerfO 5. Kapitel § 7 Abs. 6

2021-B-045

#### Kontaktdaten

Deutsche Ophthalmologische Gesellschaft (DOG)

Unterstützt von:

Deutschsprachige Gesellschaft für Intraokularlinsen-Implantation (DGII), Berufsverband der Augenärzte (BVA), Retinologische Gesellschaft (RG)

DGf Allgemein- und Familienmedizin (DEGAM)

Indikation gemäß Beratungsantrag

...wird angewendet bei Erwachsenen zur Behandlung der neovaskulären (feuchten) altersabhängigen Makuladegeneration (nAMD).

# Was ist der Behandlungsstandard in o.g. Indikation unter Berücksichtigung der vorliegenden Evidenz? Wie sieht die Versorgungspraxis in Deutschland aus?

Die Behandlung der neovaskulären altersabhängigen Makuladegeneration (nAMD) wurde zuletzt in einer Stellungnahme der ophthalmologischen Fachgesellschaften ausführlich dargestellt [1].

Nach Sicherung der Diagnose hat bisher eine Therapie mit Hemmstoffen des vascular endothelial growth factor (VEGF) zu erfolgen. Für die intravitreale operative Medikamentenapplikation (IVOM) ist nach der initialen Therapie eine Festlegung der Wiederbehandlungsstrategie gemäß individueller Kriterien angeraten. Obwohl in den meisten Zulassungsstudien eine Wiederbehandlung mit festen Intervallen zur Kontrolle und Behandlung erfolgte, gibt es auch zunehmend Evidenz für die Alternative einer Anpassung der Behandlungsintervalle in Abhängigkeit von der Aktivität der zugrundeliegenden Gefäßmembran. Einerseits geht eine Unterbehandlung mit schlechteren funktionellen Ergebnissen einher; andererseits gehen die Behandlungsrisiken, insbesondere die Gefahr einer infektiösen Entzündung, mit dem Risiko eines irreversiblen Sehverlusts, auf die Verabreichungsprozedur zurück. Daher ist der Grundsatz "so viel wie nötig, so wenig wie möglich" zielführend.

In früheren Verfahren der frühen Nutzenbewertung (Aflibercept: A12-19 / BAnz AT 27.06.2013 B3, Brolucizumab: A20-23 / BAnz AT 01.10.2020 B6) hatten pharmazeutische Unternehmer keine Studiendaten vorlegen können, in denen die zweckmäßige Vergleichstherapie (Ranibizumab oder Aflibercept) gemäß deren Zulassung oder der jeweils aktuellen medizinischen Fachinformation eingesetzt worden war. Allerdings sehen die Fachinformationen unterschiedliche Wiederbehandlungsstrategien vor und lassen der ärztlichen Therapiefreiheit ausdrücklich Spielraum [2,3]. In die Beurteilung, ob eine Wiederbehandlung erfolgen soll, gehen sinnvollerweise viele Parameter wie die Funktion des Partnerauges, der Allgemeinzustand, Begleiterkrankungen und die Prognose von Sehfunktion und Lebenserwartung ein [1].

Zu berücksichtigen ist, dass vergleichende Studien bisher zumeist die Frage einer Nicht-Unterlegenheit ("non-inferiority") bewerten sollten. Statistische Signifikanz ist hier nicht gleichbedeutend mit einem klinisch relevanten Unterschied [4]. Zudem müssen Verzerrungspotential und Sensitivität (Fallzahlplanung, Studiendesign) berücksichtigt werden. Ein Beispiel für Studien mit geringer Aussagekraft ist die TREX-AMD Studie, in der anfangs nur 60 Patienten randomisiert wurden, zwei identisch behandelte Gruppen ("treat & extend" vs. "treat & extend to PRN") einen signifikanten Unterschied bei Monat 24 zeigten, die

Retention allerdings nur bei 77% lag [5]. Eine Abnahme der notwendigen Wiederbehandlungen um 30 bis 50% bei vergleichbarer Wirksamkeit wäre durchaus ein relevanter Vorteil. Weil bisher eine Phase mit regelmäßigen Behandlungen für den Therapiestart vorgesehen ist, ist damit zu rechnen, dass die relevanten Unterschiede erst mit zunehmender Behandlungsdauer, als auch Studien mit mehrjähriger Nachverfolgung sichtbar werden.

Unterschiede auf seltene sicherheitsrelevante Ereignisse durch Wirkstoffe oder unterschiedlichen Behandlungshäufigkeiten sind nur mit sehr großen Fallzahlen zu belegen. Für die wirtschaftlichen Auswirkungen müssen neben der Prozedur und dem Medikament die Kosten der Kontrolluntersuchungen berücksichtigt werden.

Es gibt Hinweise auf eine jährliche Zunahme der zu behandelnden Patienten mit nAMD [6]. Diese Zunahme wird mit einer früheren Diagnose und dem demographischen Wandel erklärt. In der deutschen Versorgungspraxis findet die IVOM-Therapie im Rahmen der gesetzlichen Krankenversorgung statt. Es gibt zudem Selektivverträge, die von Maßnahmen der Qualitätskontrolle und Anreizen zu einem wirtschaftlichen Medikamenteneinsatz getragen werden [7,8]. In Deutschland wird mit einem wesentlichen Anteil auch der nicht zugelassene Wirkstoff Bevacizumab eingesetzt [9,10], für den eine vergleichbare Wirksamkeit und Sicherheit in randomisierten kontrollierten Studien nachgewiesen wurde [11,12].

Der Charakter der chronischen Erkrankung bedeutet für die nAMD, dass der Adhärenz eine wesentliche Bedeutung zukommt [13,14]. Registerdaten und nicht-interventionelle Studien belegen, dass im klinischen Alltag eine Unterbehandlung mit schlechteren funktionellen Ergebnissen assoziiert ist [15,16].

Gibt es Kriterien für unterschiedliche Behandlungsentscheidungen bei der Behandlung von "neovaskulärer (feuchter) altersabhängiger Makuladegeneration", die regelhaft berücksichtigt werden? Wenn ja, welche sind dies und was sind in dem Fall die Therapieoptionen?

Basis der Entscheidung über die Behandlungsindikation ist die klinische Untersuchung mit Erhebung der bestkorrigierten Sehschärfe, Untersuchung von vorderem und hinterem Augenabschnitt und die optische Kohärenztomographie (OCT) [1]. Für die Bestätigung einer behandlungsbedürftigen Läsion ist initial außerdem eine Fluoreszenz-Angiographie gefordert.

Insbesondere die Untersuchung mit Hilfe der OCT (BAnz AT 22.03.2019 B2) liefert hochaufgelöste Bilder der zentralen Netzhaut, in denen nicht nur über die Detektion von Flüssigkeit in und unter der Netzhaut und Veränderungen der entsprechenden Netzhautschichten die Aktivität der nAMD-Läsionen beurteilt werden kann, sondern auch Hinweise auf eine limitierte Visusprognose und einen sinnvollen Therapie-Abbruch gefunden werden können. Neu aufgetretene Blutungen und eine Sehverschlechterung sind weitere Aktivitätskriterien, die auf eine notwendige Wiederbehandlung hinweisen können.

Bisher gibt es keine Belege dafür, dass unterschiedliche Strategien der Wiederbehandlung (PRN: Kontrolle und Wiederbehandlung bei Aktivität, Behandlungsserien, Treat & Extend: Verkürzung oder Verlängerung der Behandlungsintervalle) für individuelle Entscheidungen oder Subgruppen der Erkrankung Vorteile bieten. Daher sind verschiedene Behandlungsstrategien als zusätzliche Optionen in die Fachinformationen aufgenommen worden (Flexibilisierung ohne Priorisierung) [3].

#### Referenzen:

- DOG, Deutsche Ophthalmologische Gesellschaft. "Stellungnahme der DOG, der RG und des BVA zur Anti-VEGF-Therapie bei der neovaskulären altersabhängigen Makuladegeneration." Klinische Monatsblatter fur Augenheilkunde 237.8 (2020): 995-1003.
- 2. Fachinformation Ranibizumab
- 3. Fachinformation Aflibercept
- 4. Ledolter, Johannes, and Randy H. Kardon. "Focus on Data: Statistical Design of Experiments and Sample Size Selection Using Power Analysis." Investigative Ophthalmology & Visual Science 61.8 (2020): 11-11.
- Wykoff, Charles C., et al. "Neovascular age-related macular degeneration management in the third year: final results from the TREX-AMD randomised trial." British Journal of Ophthalmology 102.4 (2018): 460-464.
- 6. Brandl, C., et al. "Epidemiology of age-related macular degeneration." Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 113.9 (2016): 735-745.
- 7. Stasch-Bouws, J., et al. "Intravitreale operative Medikamenteneingabe (IVOM)–Qualitätssicherung in Westfalen-Lippe." Der Ophthalmologe (2020): 1-7.
- 8. Agostini, H., et al. "Gelebte Qualitätssicherung im IVOM-Strukturvertrag der AOK-BW." Der Ophthalmologe (2020): 1-5.
- 9. Glasser, David B., et al. "Intravitreal Anti-Vascular Endothelial Growth Factor Cost Savings Achievable with Increased Bevacizumab Reimbursement and Utilization." Ophthalmology (2020).
- 10. Bro, Tomas, et al. "Off-label use of bevacizumab for wet age-related macular degeneration in Europe." Graefe's Archive for Clinical and Experimental Ophthalmology 258.3 (2020): 503-511.
- 11. Miller, Joan W. "Comparison of Age-Related Macular Degeneration Treatments Trials 2: Introducing Comparative Effectiveness Research." Ophthalmology 127.4 (2020): S133-S134.
- 12. Schmucker, Christine, et al. "A safety review and meta-analyses of bevacizumab and ranibizumab: off-label versus goldstandard." PLoS One 7.8 (2012): e42701.
- 13. Ehlken, Christoph, et al. "Systematic review: non-adherence and non-persistence in intravitreal treatment." Graefe's Archive for Clinical and Experimental Ophthalmology (2020): 1-14.
- 14. Okada, Mali, et al. "Non-adherence or non-persistence to intravitreal injection therapy for neovascular age-related macular degeneration: a mixed-methods systematic review." Ophthalmology (2020).
- 15. Holz, Frank G., et al. "Key drivers of visual acuity gains in neovascular age-related macular degeneration in real life: findings from the AURA study." British Journal of Ophthalmology 100.12 (2016): 1623-1628.
- 16. Nguyen, Vuong, et al. "Outcomes of suspending VEGF inhibitors for neovascular age-related macular degeneration when lesions have been inactive for 3 months." Ophthalmology Retina 3.8 (2019): 623-628.